Provide U-Boot variants for SD-card as well as eMMC boot, so we can
generate whole-disk images for the device.
While at it, rename 'mt7622' to 'mt7622-rfb1' to make it less confusing
now that more boards are being added.
Thanks to Frank Wunderlich (@frank-w) for making that nice SVG image
explaining the MMC boot process[1] and for providing the necessary
binary header blobs.
[1]: https://github.com/frank-w/BPI-R64-ATF
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add U-Boot environment configuration for the Linksys E8450 (UBI) to
allow access to the bootloader environment from OpenWrt via
'fw_printenv' and 'fw_setenv'.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Build U-Boot for the Linksys E8450 in order to have support for UBI.
The loader has a default environment with scripts handling the reset
button as well as fall-back to recovery firmware. If the loader comes
up without a valid environment found in UBI, it will automatically
make sure UBI is formatted and create a new environment and proceed
to load recovery firmware (either from UBI or via TFTP if recovery is
corrupted or unavailable).
If the button is held down during power-on, the yellow status LED
turns on and the bootloader environment is reset to factory defaults.
If the button is released at this point, the recovery firmware (if
existing) is loaded from UBI and booted.
If the button is continously held down even beyond the point that
the yellow LED turned on, the loader will try to load the recovery
firmware via TFTP from server 192.168.1.254, write it to UBI and
boot.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The Linksys E8450 aka. Belkin RT3200 comes with a rather fresh brand
of SPI NAND storage. Add support for it to the nandx driver in
arm-trusted-firmware-mediatek, so we can boot from that chip.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Instead of only relying in /sysupgrade.tgz being present in rootfs to
restore configuration, also grab /tmp/sysupgrade.tar which may have
magically gotten there during preinit...
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
CHACHA_MIPS depends on CPU_MIPS32_R2. Therefore,
kmod-crypto-lib-chacha20 should not contain chacha-mips.ko on MIPS32 R1
targets. Enforce that in the target-specific definition.
Fixes bcm47xx, bcm63xx, lantiq/ase, ath25 builds.
Fixes: 06351f1 ("kernel: migrate wireguard into the kernel tree")
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
To the vast majority of the users, wireguard-tools are not useful
without the underlying kernel module. The cornercase of only generating
keys and not using the secure tunnel is something that won't be done on
an embedded OpenWrt system often. On the other hand, maintaining a
separate meta-package only for this use case introduces extra
complexity. WireGuard changes for Linux 5.10 remove the meta-package.
So let's make wireguard-tools depend on kmod-wireguard
to make WireGuard easier to use without having to install multiple
packages.
Fixes: ea980fb9 ("wireguard: bump to 20191226")
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
Use NETWORK_SUPPORT_MENU like all other modules in netsupport.mk. Drop
SECTION and CATEGORY fields as they are set by default and to match
other packages in netsupport.mk. Use better TITLE for kmod-wireguard
(taken from upstream drivers/net/Kconfig).
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
On Linux 5.4, build WireGuard from backports. Linux 5.10 contains
wireguard in-tree.
Add in-kernel crypto libraries required by WireGuard along with
arch-specific optimizations.
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
ZTE MF283+ is a dual-antenna LTE category 4 router, based on Ralink
RT3352 SoC, and built-in ZTE P685M PCIe MiniCard LTE modem.
Hardware highlighs:
- CPU: MIPS24KEc at 400MHz,
- RAM: 64MB DDR2,
- Flash: 16MB SPI,
- Ethernet: 4 10/100M port switch with VLAN support,
- Wireless: Dual-stream 802.11n (RT2860), with two internal antennas,
- WWAN: Built-in ZTE P685M modem, with two internal antennas and two
switching SMA connectors for external antennas,
- FXS: Single ATA, with two connectors marked PHONE1 and PHONE2,
internally wired in parallel by 0-Ohm resistors, handled entirely by
internal WWAN modem.
- USB: internal miniPCIe slot for modem,
unpopulated USB A connector on PCB.
- SIM slot for the WWAN modem.
- UART connector for the console (unpopulated) at 3.3V,
pinout: 1: VCC, 2: TXD, 3: RXD, 4: GND,
settings: 57600-8-N-1.
- LEDs: Power (fixed), WLAN, WWAN (RGB),
phone (bicolor, controlled by modem), Signal,
4 link/act LEDs for LAN1-4.
- Buttons: WPS, reset.
Installation:
As the modem is, for most of the time, provided by carriers, there is no
possibility to flash through web interface, only built-in FOTA update
and TFTP recovery are supported.
There are two installation methods:
(1) Using serial console and initramfs-kernel - recommended, as it
allows you to back up original firmware, or
(2) Using TFTP recovery - does not require disassembly.
(1) Using serial console:
To install OpenWrt, one needs to disassemble the
router and flash it via TFTP by using serial console:
- Locate unpopulated 4-pin header on the top of the board, near buttons.
- Connect UART adapter to the connector. Use 3.3V voltage level only,
omit VCC connection. Pin 1 (VCC) is marked by square pad.
- Put your initramfs-kernel image in TFTP server directory.
- Power-up the device.
- Press "1" to load initramfs image to RAM.
- Enter IP address chosen for the device (defaults to 192.168.0.1).
- Enter TFTP server IP address (defaults to 192.168.0.22).
- Enter image filename as put inside TFTP server - something short,
like firmware.bin is recommended.
- Hit enter to load the image. U-boot will store above values in
persistent environment for next installation.
- If you ever might want to return to vendor firmware,
BACK UP CONTENTS OF YOUR FLASH NOW.
For this router, commonly used by mobile networks,
plain vendor images are not officially available.
To do so, copy contents of each /dev/mtd[0-3], "firmware" - mtd3 being the
most important, and copy them over network to your PC. But in case
anything goes wrong, PLEASE do back up ALL OF THEM.
- From under OpenWrt just booted, load the sysupgrade image to tmpfs,
and execute sysupgrade.
(2) Using TFTP recovery
- Set your host IP to 192.168.0.22 - for example using:
sudo ip addr add 192.168.0.22/24 dev <interface>
- Set up a TFTP server on your machine
- Put the sysupgrade image in TFTP server root named as 'root_uImage'
(no quotes), for example using tftpd:
cp openwrt-ramips-rt305x-zte_mf283plus-squashfs-sysupgrade.bin /srv/tftp/root_uImage
- Power on the router holding BOTH Reset and WPS buttons held for around
5 seconds, until after WWAN and Signal LEDs blink.
- Wait for OpenWrt to start booting up, this should take around a
minute.
Return to original firmware:
Here, again there are two possibilities are possible, just like for
installation:
(1) Using initramfs-kernel image and serial console
(2) Using TFTP recovery
(1) Using initramfs-kernel image and serial console
- Boot OpenWrt initramfs-kernel image via TFTP the same as for
installation.
- Copy over the backed up "firmware.bin" image of "mtd3" to /tmp/
- Use "mtd write /tmp/firmware.bin /dev/mtd3", where firmware.bin is
your backup taken before OpenWrt installation, and /dev/mtd3 is the
"firmware" partition.
(2) Using TFTP recovery
- Follow the same steps as for installation, but replacing 'root_uImage'
with firmware backup you took during installation, or by vendor
firmware obtained elsewhere.
A few quirks of the device, noted from my instance:
- Wired and wireless MAC addresses written in flash are the same,
despite being in separate locations.
- Power LED is hardwired to 3.3V, so there is no status LED per se, and
WLAN LED is controlled by WLAN driver, so I had to hijack 3G/4G LED
for status - original firmware also does this in bootup.
- FXS subsystem and its LED is controlled by the
modem, so it work independently of OpenWrt.
Tested to work even before OpenWrt booted.
I managed to open up modem's shell via ADB,
and found from its kernel logs, that FXS and its LED is indeed controlled
by modem.
- While finding LEDs, I had no GPL source drop from ZTE, so I had to probe for
each and every one of them manually, so this might not be complete -
it looks like bicolor LED is used for FXS, possibly to support
dual-ported variant in other device sharing the PCB.
- Flash performance is very low, despite enabling 50MHz clock and fast
read command, due to using 4k sectors throughout the target. I decided
to keep it at the moment, to avoid breaking existing devices - I
identified one potentially affected, should this be limited to under
4MB of Flash. The difference between sysupgrade durations is whopping
3min vs 8min, so this is worth pursuing.
In vendor firmware, WWAN LED behaviour is as follows, citing the manual:
- red - no registration,
- green - 3G,
- blue - 4G.
Blinking indicates activity, so netdev trigger mapped from wwan0 to blue:wwan
looks reasonable at the moment, for full replacement, a script similar to
"rssileds" would need to be developed.
Behaviour of "Signal LED" in vendor firmware is as follows:
- Off - no signal,
- Blinking - poor coverage
- Solid - good coverage.
A few more details on the built-in LTE modem:
Modem is not fully supported upstream in Linux - only two CDC ports
(DIAG and one for QMI) probe. I sent patches upstream to add required device
IDs for full support.
The mapping of USB functions is as follows:
- CDC (QCDM) - dedicated to comunicating with proprietary Qualcomm tools.
- CDC (PCUI) - not supported by upstream 'option' driver yet. Patch
submitted upstream.
- CDC (Modem) - Exactly the same as above
- QMI - A patch is sent upstream to add device ID, with that in place,
uqmi did connect successfully, once I selected correct PDP context
type for my SIM (IPv4-only, not default IPv4v6).
- ADB - self-explanatory, one can access the ADB shell with a device ID
added to 51-android.rules like so:
SUBSYSTEM!="usb", GOTO="android_usb_rules_end"
LABEL="android_usb_rules_begin"
SUBSYSTEM=="usb", ATTR{idVendor}=="19d2", ATTR{idProduct}=="1275", ENV{adb_user}="yes"
ENV{adb_user}=="yes", MODE="0660", GROUP="plugdev", TAG+="uaccess"
LABEL="android_usb_rules_end"
While not really needed in OpenWrt, it might come useful if one decides to
move the modem to their PC to hack it further, insides seem to be pretty
interesting. ADB also works well from within OpenWrt without that. O
course it isn't needed for normal operation, so I left it out of
DEVICE_PACKAGES.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove kmod-usb-ledtrig-usbport, take merged upstream patches]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
As PKG_LICENSE is originally set by include/trusted-firmware-a.mk it
can only be appended after that. Hence move that line below the
include to actually make sense.
(cosmetical change, already slipped into openwrt-21.02 branch)
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This package had two patches (with two headers etc.) in one file,
which would have quilt merging them during a refresh.
Separate these patches into two files, as the original intent seems
to be having them separate.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
When using Shell arithmetric evaluation via $((..)) the variables in
the expression do not need to be prefixed by the '$' sign.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Check if firmware environment variable 'rootfs_data_max' exists and is
set to a numerical value greater than 0. If so, limit rootfs_data
volume to that size instead of using the maximum available size.
This is useful on devices with lots of flash where users may want to
have eg. a volume for persistent logs and statistics or for external
applications/containers. Persistence on rootfs overlay is limited by
the size of memory available during the sysugprade process as that
data needs to be copied to RAM while the volume is being recreated
during sysupgrade. Hence it is unsuitable for keeping larger amounts
of data accross upgrade which makes additional volume(s) for
application data desirable.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Allow for single (external-data) FIT image to hold kernel, dtb and
squashfs. In that way, the bootloader verifies the system integrity
including the rootfs, because what's the point of checking that the
hash of the kernel is correct if it won't boot in case of squashfs
being corrupted? Better allow bootloader to check everything needed
to make it at least up to failsafe mode. As a positive side effect
this change also makes the sysupgrade process on nand potentially
much easier as it is now.
In short: mkimage has a parameter '-E' which allows generating FIT
images with 'external' data rather than embedding the data into the
device-tree blob itself. In this way, the FIT structure itself remains
small and can be parsed easily (rather than having to page around
megabytes of image content). This patch makes use of that and adds
support for adding sub-images of type 'filesystem' which are used to
store the squashfs. Now U-Boot can verify the whole OS and the new
partition parsers added in the Linux kernel can detect the filesystem
sub-images, create partitions for them, and select the active rootfs
volume based on the configuration in FIT (passing configuration via
device tree could be implemented easily at a later stage).
This new FIT partition parser works for NOR flash (on top of mtdblock),
NAND flash (on top of ubiblock) as well as classic block devices
(ie. eMMC, SDcard, SATA, NVME, ...).
It could even be used to mount such FIT images via `losetup -P` on a
user PC if this patch gets included in Linux upstream one day ;)
Signed-off-by: John Crispin <john@phrozen.org>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Upstream integrated multiple patches from Distributions and did other
changes:
* rp-pppoe.so was renamed to pppoe.so
* Converted to ANSI C
The following patches were applied upstream:
* 100-debian_ip-ip_option.patch
* 101-debian_close_dev_ppp.patch
* 103-debian_fix_link_pidfile.patch
* 106-debian_stripMSdomain.patch
* 107-debian_pppoatm_wildcard.patch
* 110-debian_defaultroute.patch
* 202-no_strip.patch
Compilation with musl libc was fixed upstream so
140-pppoe_compile_fix.patch is not needed any more
Parts of the 203-opt_flags.patch patch were applied in a different way
upstream.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The packages feed has a proposed package for a GOST engine, which needs
support from the main openssl library. It is a default option in
OpenSSL. All that needs to be done here is to not disable it.
Package increases by a net 1-byte, so it is not really really worth
keeping this optional.
This commit also includes a commented-out example engine configuration
in openssl.cnf, as it is done for other available engines.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
This adds the necessary nuts and bolts for the uboot settings for both the ZyXEL GS1900-8HP v1 and v2.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Biggest fix for this version is CVE-2021-3336, which has already been
applied here. There are a couple of low severity security bug fixes as
well.
Three patches are no longer needed, and were removed; the one remaining
was refreshed.
This tool shows no ABI changes:
https://abi-laboratory.pro/index.php?view=objects_report&l=wolfssl&v1=4.6.0&v2=4.7.0
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
There are efforts underway to bring wireguard in-tree for Linux 5.4 and
to have a common build infrastructure for both 5.4 and 5.10 for
kmod-wireguard[0]. Until then, restrict kmod-wireguard to build only on
Linux 5.4, because the wireguard-compat package will not build on Linux
5.10.
[0]: https://github.com/openwrt/openwrt/pull/3885
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
Modify existing modules to reflect their new location in Linux 5.10. Add
missing dependenices.
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
[enable CRYPTO_USER_API_ENABLE_OBSOLETE; add kmod-crypto-hash dependency
to usb-net-rtl8152]
Signed-off-by: David Bauer <mail@david-bauer.net>
Now that mirrors have picked it up, switch to using the @OPENWRT
mirror instead of hosting those files on Github.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2be57ed cosmetics: provide compatible system info on Aarch64
37eed13 system: expose if system was booted from initramfs
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Prerequisite patch:
Correct a typo in the Changelog and clean up a stray file
Fix changes in libusb which introduced a regression:
Commit e2be556bd2 ("linux_usbfs: Parse config descriptors during device
initialization") introduced a regression for devices with multiple
configurations. The logic that verifies the reported length of the
configuration descriptors failed to count the length of the
configuration descriptor itself and would truncate the actual length by
9 bytes, leading to a parsing error for subsequent descriptors.
Signed-off-by: Georgi Valkov <gvalkov@abv.bg>
The ls-ddr-phy package needs fiptool options that are not
available via the version from arm-trusted-firmware-tools.
This breaks build for layerscape with the recently added LX2160a:
create: unrecognized option '--ddr-immem-udimm-1d'
Use the tfa-layerscape variant again for now, but rename it to
fiptool-layerscape to indicate that it's a specific variant.
This reverts 84bc7d31e0 ("tfa-layerscape: don't build fiptool").
Fixes: f59d7aab2a ("layerscape: add ddr-phy package")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This driver adds the LED support for the PC Engines APU1.
This integrates the Linux kernel driver and includes a patch to support
newer firmware versions. Also the default LED configuration is updated
to use the correct devices.
Signed-off-by: Andreas Eberlein <foodeas@aeberlein.de>
This is a backport of the upstream commit 58bbbb598144 ("nl80211: Ignore
4addr mode enabling error if it was already enabled") which fixes same
issue as in the current fix contained in '130-wpa_supplicant-multi_ap_roam.patch',
but in a different way:
nl80211_set_4addr_mode() could fail when trying to enable 4addr mode on
an interface that is in a bridge and has 4addr mode already enabled.
This operation would not have been necessary in the first place and this
failure results in disconnecting, e.g., when roaming from one backhaul
BSS to another BSS with Multi AP.
Avoid this issue by ignoring the nl80211 command failure in the case
where 4addr mode is being enabled while it has already been enabled.
Signed-off-by: Raphaël Mélotte <raphael.melotte@mind.be>
[bump PKG_RELEASE, more verbose commit description]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
OpenSSL downloads itself are distributed using Akamai CDN, so use these
sources as the highest priority.
Remove a stale mirror which seems to be offline for a longer time
already.
Add fallbacks to the old release path also for the mirrors.
Signed-off-by: David Bauer <mail@david-bauer.net>
The QorIQ LX2160A reference design board provides a comprehensive platform
that enables design and evaluation of the LX2160A processor.
- Enables network intelligence with the next generation Datapath (DPPA2)
which provides differentiated offload and a rich set of IO, including
10GE, 25GE, 40GE, and PCIe Gen4
- Delivers unprecedented efficiency and new virtualized networks
- Supports designs in 5G packet processing, network function
virtualization, storage controller, white box switching, network
interface cards, and mobile edge computing
- Supports all three LX2 family members (16-core LX2160A; 12-core LX2120A;
and 8-core LX2080A)
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[use AUTORELEASE, add dtb to firmware part]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Add ddr-phy package for layerscape. Currently only LX2160ARDB
requires the package.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[use AUTORELEASE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The LS1046A Freeway board (FRWY) is a high-performance computing,
evaluation, and development platform that supports the QorIQ
LS1046A architecture processor capable of support more than 32,000
CoreMark performance. The FRWY-LS1046A board supports the QorIQ
LS1046A processor, onboard DDR4 memory, multiple Gigabit Ethernet,
USB3.0 and M2_Type_E interfaces for Wi-Fi.
The FRWY-LS1046A-TP includes the Coral Tensor Flow Processing Unit
that offloads AI/ML inferencing from the CPU to provide significant
boost for AI/ML applications. The FRWY-LS1046A-TP includes one M.2
TPU module and more modules can easily be added including USB
versions of the module to scale the AI/ML performance.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[rebase, use AUTORELEASE, fix sorting, add dtb to firmware part]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
If an external module uses exported symbols from another external
module, Kbuild needs to have full knowledge of all symbols to
avoid spitting out warnings about undefined symbols.
Use PKG_EXTMOD_SUBDIRS to point to the build directory which contains
the Module.symvers.
Pass KERNEL_MAKE_FLAGS to the external module build, to inject
KBUILD_EXTRA_SYMBOLS. KBUILD_EXTRA_SYMBOLS holds a space separated list
of Module.symvers, which list all exported symbols.
Signed-off-by: Mathias Kresin <dev@kresin.me>
This fixes 4 security vulnerabilities/bugs:
- CVE-2021-2839 - SSLv2 vulnerability. Openssl 1.1.1 does not support
SSLv2, but the affected functions still exist. Considered just a bug.
- CVE-2021-2840 - calls EVP_CipherUpdate, EVP_EncryptUpdate and
EVP_DecryptUpdate may overflow the output length argument in some
cases where the input length is close to the maximum permissable
length for an integer on the platform. In such cases the return value
from the function call will be 1 (indicating success), but the output
length value will be negative.
- CVE-2021-2841 - The X509_issuer_and_serial_hash() function attempts to
create a unique hash value based on the issuer and serial number data
contained within an X509 certificate. However it was failing to
correctly handle any errors that may occur while parsing the issuer
field (which might occur if the issuer field is maliciously
constructed). This may subsequently result in a NULL pointer deref and
a crash leading to a potential denial of service attack.
- Fixed SRP_Calc_client_key so that it runs in constant time. This could
be exploited in a side channel attack to recover the password.
The 3 CVEs above are currently awaiting analysis.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>