NEC Aterm WG2200HP is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
QCA9558.
Specification:
- SoC : Qualcomm Atheros QCA9558
- RAM : DDR2 128 MiB (2x ESMT M14D5121632A)
- Flash : SPI-NOR 16 MiB (Macronix MX25L12835FM2I-10G)
- WLAN : 2.4/5 GHz
- 2.4 GHz : 3T3R (Qualcomm Atheros QCA9558 (SoC))
- 5 GHz : 4T4R (Qualcomm Atheros QCA9984)
- Ethernet : 5x 10/100/1000 Mbps
- switch : Qualcomm Atheros QCA8337
- LEDs/Keys (GPIO) : 12x/4x
- UART : through-hole on PCB
- assignment : 3.3V, GND, NC, TX, RX from tri-angle marking
- settings : 9600n8
- USB : 1x USB 2.0 Type-A
- Power : 12 VDC, 1.5 A (Max: 20 W)
- Stock OS : NetBSD based
Flash instruction using initramfs-factory.bin image:
1. Connect and open serial console
2. Power on WG2200HP and interrupt bootloader by ESC key
3. Login to the bootloader CLI with a password "chiron"
4. Start TFTP server by "tftpd" command
5. Upload initramfs-factory.bin via tftp from your computer
example (Windows): tftp -i 192.168.0.1 PUT initramfs-factory.bin
6. Boot initramfs image by "boot" command
7. On the initramfs image, back up the stock bootloader and firmware if
needed
8. Upload (or download) uboot.bin and sysupgrade.bin image to the device
9. Rplace the bootloader with a uboot.bin image
mtd write <uboot.bin image> bootloader
10. Perform sysupgrade with a sysupgrade.bin image
11. Wait ~120 seconds to complete flashing
Notes:
- All LEDs are connected to the Diodes PI4IOE5V9539LE I2C Expander chip.
(compatible with NXP PCA9539)
- The stock bootloader requires an unknown filesystem on firmware area
in the flash. Booting of OpenWrt from that filesystem cannot be
handled, so the bootloader needs to be replaced to mainline U-Boot
before OpenWrt installation.
- The data length of blocks in firmware image will be checked
(4M < threshold < 6M) on the stock WebUI of all versions, and
initramfs-factory.bin image of OpenWrt has the larger block data for
initramfs image. So that image cannot be applied to the stock WebUI
at all.
MAC addresses:
LAN : 98:F1:99:xx:xx:7C (config, 0x6 (hex))
WAN : 98:F1:99:xx:xx:7D (config, 0xc (hex))
2.4 GHz: 98:F1:99:xx:xx:7E (config, 0x0 (hex))
5 GHz : 98:F1:99:xx:xx:7F (config, 0x12 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17584
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add more DT labels and move a USB hub node to dts files of Aterm devices
as a preparation for adding support of Aterm WG2200HP.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17584
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The built-in watchdog is redundant when the device has an external
GPIO based hardware watchdog. And there is a conflict that both of
them will attempt to register the same device entry in sysfs. This
resulted in the built-in watchdog being unable to be activated.
This patch explicitly disables the built-in watchdog for devices
that use GPIO watchdog to fix the error:
[ 1.779206] ath79-wdt 18060008.wdt: unable to register misc device, err=-16
[ 1.786355] ath79-wdt: probe of 18060008.wdt failed with error -16
Signed-off-by: Shiji Yang <yangshiji66@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/18395
Signed-off-by: Robert Marko <robimarko@gmail.com>
Add switch LED definitions for TP-Link TL-WR1043ND family, based on data
extracted from ar71xx board file. Update the LED labels to match current
pattern, i.e. drop the "tp-link:" prefix.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/12487
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Attaching PHY driver to the switch, while adding LEDs binding causes the
PHY driver to create additional LED instances, handled incorrectly by
the PHY driver, which are non-functional. Use fixed-link to attach the
switch driver, instead of PHY driver, to prevent that.
This has a side effect of not logging switch port up/down events in the kernel
log.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/12487
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add switch LED definitions for TP-Link Archer C7 v1/2/3 family, based on data
extracted from ar71xx board file. Update the LED labels to match current
pattern, i.e. drop the "tp-link:" prefix.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/12487
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Attaching PHY driver to the switch, while adding LEDs binding causes the
PHY driver to create additional LED instances, handled incorrectly by
the PHY driver, which are non-functional. Use fixed-link to attach the
switch driver, instead of PHY driver, to prevent that.
This has a side effect of not logging switch port up/down events in the kernel
log.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/12487
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add switch LED definitions for TP-Link TL-WDR4300 family, based on data
extracted from ar71xx board file. Update the LED labels to match current
pattern, i.e. drop the "tp-link:" prefix.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/12487
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Attaching PHY driver to the switch, while adding LEDs binding causes the
PHY driver to create additional LED instances, handled incorrectly by
the PHY driver, which are non-functional. Use fixed-link to attach the
switch driver, instead of PHY driver, to prevent that.
This has a side effect of not logging switch port up/down events in the kernel
log.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/12487
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Devices with chipidea usb controller does not detect usb hub after
phy-names change to "usb", revert it back to "usb-phy"
Fixes: 787cb9d87edb ("ath79: change phy-names to only usb")
Signed-off-by: Simonas Tamošaitis <simsasss@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/18230
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Using board definition file extracted from stock firmware yields 50%
throughput improvement in RX direction under iperf3 test.
Make the device use temporary files from firmware_qca-wireless.git
temporarily, as well as select the specific variant in the device tree
files. The device uses same board file as the MF286C.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17620
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
ZTE MF286 is an indoor LTE category 12 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.
Software-wise it's compatible with previous MF286A, save for different
5GHz Wi-Fi board definition file, requiring a separate image.
Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: W25N01GV 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9886 2x2 MIMO 802.11ac Wave2 radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN: MDM9250-based category 12 internal LTE modem
in extended mini-PCIE form factor, with 5 internal antennas and
2 external antenna connections, single mini-SIM slot.
- FXS: one external ATA port (handled entirely by modem part) with two
physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
Signal state) handled entirely by modem. 4 link status LEDs handled by
the switch on the backside.
- Label MAC device: eth0
Internal modem of MF286C is supported via uqmi.
Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.
Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.
STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
ath79: support ZTE MF286C
STEP 1: Booting initramfs image:
Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
set your computer's IP address as 192.168.0.22. This is the default
expected by U-boot. You may wish to change that, and alter later
commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:
setenv serverip 192.168.0.22
setenv ipaddr 192.168.0.1
tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286c-initramfs-kernel.bin
bootm 0x81000000
(Replace server IP and router IP as needed). There is no emergency
TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
installation.
STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
It is highly recommended to perform backup using both methods, to avoid
hassle of reassembling firmware images in future, if a restore is
needed.
Method 1: after booting OpenWrt initramfs image via TFTP:
- Connect your USB-UART adapter
- Dump stock firmware located on stock kernel and ubi partitions:
ssh root@192.168.1.1: cat /dev/mtd9 > mtd3_ubiconcat0.bin
ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
ssh root@192.168.1.1: cat /dev/mtd9 > mtd5_ubiconcat1.bin
And keep them in a safe place, should a restore be needed in future.
Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:
cat /proc/mtd
It should show the following:
mtd0: 000a0000 00010000 "u-boot"
mtd1: 00020000 00010000 "u-boot-env"
mtd2: 00140000 00010000 "reserved1"
mtd3: 000a0000 00020000 "fota-flag"
mtd4: 00080000 00020000 "art"
mtd5: 00080000 00020000 "mac"
mtd6: 000c0000 00020000 "reserved2"
mtd7: 00400000 00020000 "cfg-param"
mtd8: 00400000 00020000 "log"
mtd9: 000a0000 00020000 "oops"
mtd10: 00500000 00020000 "reserved3"
mtd11: 00800000 00020000 "web"
mtd12: 00300000 00020000 "kernel"
mtd13: 01a00000 00020000 "rootfs"
mtd14: 01900000 00020000 "data"
mtd15: 03200000 00020000 "fota"
mtd16: 01d00000 00020000 "firmware"
Differences might indicate that this is NOT a MF286C device but
one of other variants.
- Copy over all MTD partitions, for example by executing the following:
for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do cat /dev/mtd$i > \
/var/usb_disk/mtd$i; done
"Firmware" partition can be skipped, it is a concatenation
of "kernel" and "rootfs".
- If the count of MTD partitions is different, this might indicate that
this is not a MF286C device, but one of its other variants.
- (optionally) rename the files according to MTD partition names from
/proc/mtd
- Unmount the filesystem:
umount /var/usb_disk; sync
and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
firmware. This is especially important, because stock firmware for
this device is not available officially, and is usually customized by
the mobile providers.
STEP 3: Actual installation:
- Set your computer IP to 192.168.1.22/24
- scp the sysupgrade image to the device:
scp -O openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin \
root@192.168.1.1:/tmp/
- ssh into the device and execute sysupgrade:
sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin
- Wait for router to reboot to full OpenWrt.
STEP 4: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth '<auth>' # As required, usually 'none'
option pincode '<pin>' # If required by SIM
option apn '<apn>' # As required by ISP
option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'
For example, the following works for most polish ISPs
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth 'none'
option apn 'internet'
option pdptype 'ipv4'
The required minimum is:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
In this case, the modem will use last configured APN from stock
firmware - this should work out of the box, unless your SIM requires
PIN which can't be switched off.
If you have build with LuCI, installing luci-proto-qmi helps with this
task.
Restoring the stock firmware:
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
(scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
mtd write kernel /tmp/mtd4_kernel.bin
rm /tmp/mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
restore them individually. Otherwise you might run out of space in
tmpfs:
(scp -O mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)
mtd write ubiconcat0 /tmp/mtd3_ubiconcat0.bin
rm /tmp/mtd3_ubiconcat0.bin
(scp -O mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)
mtd write ubiconcat1 /tmp/mtd5_ubiconcat1.bin
rm /tmp/mtd5_ubiconcat1.bin
- If the write was correct, force a device reboot with
reboot -f
Quirks and known issues
- It was observed, that CH340-based USB-UART converters output garbage
during U-boot phase of system boot. At least CP2102 is known to work
properly.
- Kernel partition size is increased to 4MB compared to stock 3MB, to
accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
image is at 2.5MB which is dangerously close to the limit. This has no
effect on booting the system - but keep that in mind when reassembling
an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
you used before in stock firmware first. If you need to change it,
please use protocok '3g' to establish connection once, or use the
following command to change APN (and optionally IP type) manually:
echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the blue debug LED hidden
inside the case. All other LEDs are controlled by modem, on which the
router part has some influence only on Wi-Fi LED.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
reset of whole board, not only the modem. It is attached to
gpio-restart driver, to restart the modem on reboot as well, to ensure
QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
for OpenWrt operation at all - have fun lurking around.
The same modem module is used as in older MF286.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17620
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Using board definition file extracted from stock firmware yields 50%
throughput improvement in RX direction under iperf3 test.
Make the device use temporary files from firmware_qca-wireless.git
temporarily, as well as select the specific variant in the device tree
files.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17620
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Forum discussion : https://forum.openwrt.org/t/aps-256va-help-for-identification/143653/52
Specification:
Power: 12-36V input via 5,5/2,1 DC barrel jack, or 5V Micro USB-B
CPU: Atheros AR9344 rev 2
RAM: 128MB
Flash: 16MB
WI-Fi: 2.4GHz
Fast Ethernet: 1 WAN and 2 LAN
USB: 2 x USB-A, 1 x micro-USB-B (for power input)
WWAN: 3G modem via extended mini-PCIE form factor (can be replaced with Wifi 5GHz card)
The device come with custom openwrt BB an CC.
Because of limited LAN port, I disable GMAC0, so the WAN port can be connected to GMAC1 and function as LAN port as well.
Enable ssh access and Backup:
1. open router admin page via LAN cable
2. browse 192.168.111.1:8000
3. login with password 123456
4. click wifi icon on top menu
5. change the path at the end of the url (after random hash) with /admin/system/flashops
it will looks like this:
http://192.168.111.1:8000/cgi-bin/luci/;stok=29698152cf64c980177a04f86c99ea0d/admin/system/flashops
(the hash after "stok=" will be different)
6. restore the config with this modified backup (can be created manually by changing dropbear config to allow ssh)
https://drive.google.com/file/d/1Vs-k7DHBSRZFfkxv1cMOmgAPZfB-RUen/view?usp=sharing
7. now you can login to ssh with root user and 123456 password, and backup all partition and upgrade firmware
!!! BACKUP EVERY PARTITION !!!
Flashing instructions:
- Flash directly from factory web interface accessed from "Enable ssh access" step 5
Signed-off-by: Roy H <roy@altbytes.com>
Link: https://github.com/openwrt/openwrt/pull/17939
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
FCC ID: TVE-121402
Fortinet FAP-221-C is an indoor access point with 1gb ethernet port,
dual-band wireless, internal antenna plates, and 802.3at PoE+.
Hardware and board design are from Senao. The device appears very
similar to the EnGenius EAP1200H, albeit with double the flash and RAM.
**Specifications:**
- QCA9557 SOC
- QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 32 MB FLASH FL256SAIFR0
- 2x 128 MB RAM NT5TU64M16HG
- UART populated
- 4 internal antenna plates
- 5 LEDs, 1 button (power, 'warning', eth0, wifi1, wifi2) (reset)
Amber LAN LED appears hardwired to ethernet port. Power LED is green
only. Other LEDs are amber/green.
**MAC addresses:**
1 MAC Address in flash at end of uboot
ASCII encoded, no delimiters
Labeled as "MAC Address" on case
**Serial Access:**
Pinout: (arrow) VCC GND RX TX
Pins are populated with a header and traces not blocked.
Bootloader is set to 9600 baud, 8 data, 1 stop.
**Console Access:**
Bootloader:
Interrupt boot with Ctrl+C
Press "k" and enter password "1"
OR
Hold reset button for 5 sec during power on
Interrupt the TFTP transfer with Ctrl+C
to print commands available, enter "help"
OEM:
default username is "admin", password blank
telnet is available at default address 192.168.1.2
serial is available with baud 9600
to print commands available, enter "help"
or tab-tab (busybox list of commands)
**Installation:**
Use factory.bin with OEM upgrade procedures
OR
Use initramfs.bin with uboot TFTP commands.
Then perform a sysupgrade with sysupgrade.bin
**TFTP Recovery:**
Using serial console, load initramfs.bin using TFTP
to boot openwrt without touching the flash.
**Return to OEM:**
The best way to return to OEM firmware
is to have a copy of the MTD partitions
before flashing Openwrt.
Backup copies should be made of partitions
"fwconcat0", "loader", and "fwconcat1"
which together is the same flash range
as OEM's "rootfs" and "uimage"
by loading an initramfs.bin
and using LuCI to download the mtdblocks.
It is also possible to extract from the
OEM firmware upgrade image by splitting it up
in parts of lengths that correspond
to the partitions in openwrt
and write them to flash,
after gzip decompression.
After writing to the firmware partitions,
erase the "reserved" partition and reboot.
Signed-off-by: Bernardus Jansen <bernardus@bajansen.nl>
Link: https://github.com/openwrt/openwrt/pull/18109
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
When support for Routerboard 911G was introduced, Routerboad 912UAG
device tree was used as a base, and the common part. This led to use of
40MHz as the reference clock frequency for both [1], while RB911G uses 25MHz
crystal on the board, causing heavy system clock drift.
Split the definition, and set the reference clock frequency for RB911G
back to 25MHz.
[1] a716ac556497 ("ath79: fix reference clock for RouterBoard 912UAG")
Fixes: bcc44b1212b2 ("ath79: support for MikroTik RouterBOARD 911G-(2,5)HPnD")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17944
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Ruckus R500 datasheet: https://webresources.ruckuswireless.com/datasheets/r500/ds-ruckus-r500.html
Specifications:
SoC: 720Mhz QCA9558
RAM: 256MB
Storage: 64MB of FLASH (SPI NOR - S25FL512S)
1x AR8327 GB switch
Ethernet: 1x1000M port #3 on AR8327,
1x1000M (802.3at POE), port #5 on AR8327
Wireless: QCA988X HW2.0 802.11ac
AR9550 2.4GHz 802.11b/g/n
5x GPIO LED
1x GPIO Reset Button
1x DC Jack 12v
1x UART, 3.3v, 115200
1x TPM, SLB9645TT12
2x Beamforming antennas configured via 74LV164
MAC addresses:
1. art 0x807E | Factory bridged | f0:3e:90:XX:XX:80 |
2. art 0x66 | eth0 | f0:3e:90:XX:XX:83 | (port 5, cpu port 6) - PoE port
3. art 0x6c | eth1 | f0:3e:90:XX:XX:84 | (port 3, cpu port 0) - non PoE port
Serial console: 115200-8-N-1 on internal H4 header.
Pinout:
H1
-----------
|1|x|3|4|5|
-----------
Pin 1 is near the "H4" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H2, similar to MIPS eJTAG, standard, unpoulated.
H9
----------------------
|2 |4 |6 |8 |10|12|14|
----------------------
|1 |3 |5 |7 |9 |11|13|
----------------------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
I²C: connector H2, near power LED, unpopulated:
------
|1|2|3
------
H2
1 - SCL
2 - SDA
3 - GND
Installation:
Serial Port/TFTP
1. Setup tftp server on the local network
2. Connect to UART with TTL
3. Interupt U-boot process with Ctrl-C
4. Setup appropriate ipaddr and serverip in setenv:
- setenv ipaddr 192.168.1.1
- setenv serverip 192.168.1.2
5. On TFTP Server - copy openwrt-ath79-generic-ruckus_r500-initramfs-kernel.bin to /srv/tftp
6. On R500 boot into initrd image
- tftpboot 0x81000000 openwrt-ath79-generic-ruckus_r500-initramfs-kernel.bin
- bootm 0x81000000
7. On TFTP server - scp -O openwrt-ath79-generic-ruckus_r500-squashfs-sysupgrade.bin root@192.168.1.1:/tmp
8. Ensure the boot command is set before flashing the image:
fw_setenv bootcmd 'bootm 0xbf1c0000'
9. On R500 - sysupgrade /tmp/openwrt-ath79-generic-ruckus_r500-squashfs-sysupgrade.bin
10. If not done in 8; set boot command from U-boot shell itself:
- setenv bootcmd bootm 0xbf1c0000
- saveenv
- reset
This patch adapted from https://github.com/victhor393/openwrt-ruckus-r500/tree/ruckus-r500-master
Signed-off-by: Damien Mascord <tusker@tusker.org>
- Heavily refactored the device tree
- Extended commit message
- Documented onboad connectors
- Refactored MAC and calibration data setups to use nvmem-layout
- Made both network interfaces LAN ports and bridge them, this makes
more sense for an access point and is consistent with the rest of
Ruckus APs.
- Enable lzma-loader for compressed initramfs
- Enabled the optional internal USB port
- Added missing LEDs and according pinctrl settings
- Added reserved memory region used for bootloader communication
- Added the bit-banged I²C bus and onboard TPM
- Refactored boot scheme and flash layout to match earlier Ruckus
devices and maximize usable space for user data.
Quirks:
- H7 is the physical presence switch for the SLB9645TT12 TPM.
TODO:
- Link state reporting on the Ethernet ports doesn't work and both ports
report "up" due to limitation of swconfig ar8327 driver. With DSA
conversion, this shall be rectified.
- Locate 2nd shift register (U7) controlling beamforming antennas, probably
on ath10k GPIOs which are currently unsupported in the driver. For
this, there is a device tree node describing that - but explicitly
disabled.
- At the moment of adding support, there is an endianness bug in the TPM
driver causing it to not detect the TPM module because of ID mismatch.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17550
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Remove GPIO hog for modem power, as well as define userspace GPIO
switches for enabling and resetting the modem. While at that, define a
switch for the external GPIO available on the power connector.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17503
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
USB VBUS regulator was attached to GPIO19, which isn't in fact
controlling the modem power itself, but rather modem power key - which
has to be asserted high for at least 500ms, to start the modem. Keeping
it high allows the modem to reboot upon shutdown - so it is desirable to
control this line from userspace, for example - to allow clean modem
shutdown down upon powering off the router part.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17503
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Teltonika RUT240 has an extra 4G status LED on GPIO21. Otherwise the
hardware is fully compatible with RUT230 line. Attach the LED inside
device tree.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17503
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Due to "SIM present" input defaulting to "button" type, it is
interpreted as such when booting, and causes the system to enter
failsafe, if the tray is missing. Similarly to rfkill switch on
TP-Link WDR4300 and Archer C7, make it EV_SW instead, to stop it from
interfering with the boot process.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17503
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
It's missing a hyphen present in every other LED from the set. Set it to
"green:signal-strength-4".
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17503
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Currently, an OpenWrt hack is used to turn the GPIO on in terms of the
PHY driver when it should be the USB driver that controls it. The
chipidea USB2 driver has support for a vbus-supply property. Use it
instead of the local OpenWrt solution that just turns on the GPIO.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17356
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The chipidea USB2 driver used on this platform supports controlling GPIO
through regulators. This is the upstream friendly solution.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17356
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
ath79 uses the generic-ehci driver, which does not support regulators
using vbus-supply.
dr_mode is also not useful as the driver does not support multiple
modes.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17486
Signed-off-by: Robert Marko <robimarko@gmail.com>
The fritz 300e has an AR9382, which is atypical for ar7242 platforms.
Document it properly.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17427
Signed-off-by: Nick Hainke <vincent@systemli.org>
The former is deprecated in favor of nvmem-layout. In preparation for
eventual removal from the kernel, do so here.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16097
Signed-off-by: Robert Marko <robimarko@gmail.com>
The former is deprecated in favor of nvmem-layout. In preparation for
eventual removal from the kernel, do so here.
Some of these are leftovers from nvmem-layout conversion.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16097
Signed-off-by: Robert Marko <robimarko@gmail.com>
Short specification:
* 650/600/216 MHz (CPU/DDR/AHB)
* 2x 10/100 Mbps Ethernet, passive PoE support
* 64 MB of RAM (DDR2)
* 16 MB of FLASH
* 2T2R 2.4 GHz with external PA, up to 30 dBm (1000mW)
* 2x internal 14 dBi antennas
* 8x LED, 1x button
* No UART on PCB on some versions
* Display panel with 2x buttons (F/N) not supported (and not relevant in OpenWrt)-
Flash instructions
* Connect PC with 192.168.0.141 to WAN port
* Install a TFTP server on your PC ('atftp' is doing the job for instance)
* Copy your firmware in the TFTP folder as upgrade.bin
* Power up device pushing the 'reset' button
* The device shall upload upgrade.bin, install it and reboot
* Device shall be booting on 192.168.1.1 as default
Signed-off-by: Joan Moreau <jom@grosjo.net>
Link: https://github.com/openwrt/openwrt/pull/17279
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Makes it clear that the calibration size is correct as most ar72xx
devices use older wifi chips.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17278
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
These devices use AR9287, which uses 3d8 as the calibration size, not
440 like newer chips do. Add a compatible line to make it clear that
this is the case.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17278
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
These three devices use AR9287 chips, which have a calibration size of 3d8.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17278
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Referencing commit a1837135e04b
Hardware
--------
SoC: Qualcomm Atheros QCA9558
RAM: 128M DDR2 (Nanya NT5TU64M16HG-AC)
FLASH: 128M SPI-NAND (Spansion S34ML01G100TFI00)
WLAN: QCA9558 3T3R 802.11 bgn
ETH: Qualcomm Atheros QCA8337
UART: 115200 8n1
BUTTON: Reset - WPS - "Router" switch
LED: 2x system-LED, 2x wlan-LED, 1x internet-LED,
2x routing-LED
LEDs besides the ethernet ports are controlled
by the ethernet switch
MAC Address:
use address(sample 1) source
label cc:e1:d5:xx:xx:ed art@macaddr_wan
lan cc:e1:d5:xx:xx:ec art@macaddr_lan
wan cc:e1:d5:xx:xx:ed $label
WiFi4_2G cc:e1:d5:xx:xx:ec art@cal_ath9k
Installation from Serial Console
------------
1. Connect to the serial console. Power up the device and interrupt
autoboot when prompted
2. Connect a TFTP server reachable at 192.168.11.10/24
to the ethernet port. Serve the OpenWrt initramfs image as
"openwrt.bin"
3. Boot the initramfs image using U-Boot
ath> tftpboot 0x84000000 openwrt.bin
ath> bootm 0x84000000
4. Copy the OpenWrt sysupgrade image to the device using scp and
install it like a normal upgrade (with no need to keeping config
since no config from "previous OpenWRT installation" could be kept
at all)
# sysupgrade -n /path/to/openwrt/sysupgrade.bin
Installation from Web Interface
------------
To flash just do a firmware upgrade from the stock firmware (Buffalo
branded dd-wrt) with squashfs-factory.bin
Signed-off-by: Edward Chow <equu@openmail.cc>
Link: https://github.com/openwrt/openwrt/pull/17227
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Userspace handling is deprecated.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17311
Signed-off-by: Robert Marko <robimarko@gmail.com>
Userspace handling is deprecated. MAC address stuff needs to remain
handled in userspace as it's encrypted. Maybe an NVMEM driver can be
written in the future...
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17276
Signed-off-by: Robert Marko <robimarko@gmail.com>
This is using mac-base and so a 0 needs to be added.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17274
Signed-off-by: Robert Marko <robimarko@gmail.com>
The original ar71xx version of this device used 1002 as mac address for
both ethernet and wireless. The ath79 version inexplicably changes this
to 2, which seems to be done nowhere else in ath79, indicating it's
bogus.
Restore previous ar71xx assignment. 1002 is used as an ethernet
interface with some other devices as well.
Also remove the bogus caldata userspace extraction. The size is bogus
and it's already handled in dts.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17083
Signed-off-by: John Crispin <john@phrozen.org>
Upstream uses devm_reset_control_array_get_optional_shared, which does
not use names. reset-names is also not specified in the documentation.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17118
Signed-off-by: John Crispin <john@phrozen.org>
Both generic-ehci.yaml and generic-ohci.yaml state that phy-names is to
only be usb.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17118
Signed-off-by: John Crispin <john@phrozen.org>
This matches the upstream PHY driver, which removed it.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17118
Signed-off-by: John Crispin <john@phrozen.org>
This is a simple conversion to dts.
68ac3f2cddab states that the 5ghz wifi address is calculated from ART 0
+ 2.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17066
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
1002 and 5006 are default addresses as part of the calibration data.
Don't bother specifying them explicitly.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17082
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The KuWFi N650 is a 5GHz outdoor wireless bridge based on QCA9563.
Specs
=====
CPU: QCA9563, 775MHz
RAM: 128MiB
Flash: 16MiB
Wireless: QCA9888 (5GHz only)
Ethernet: 2x GBit (via QCA8337), 48V passive PoE
Installation
============
From OEM firmware
-----------------
The OEM firmware has telnet enabled by default. If not, it can be enabled
from the firmware web interface. You need a TFTP server on your computer
and the OpenWrt factory image should be available as "n650factory.bin".
It is assumed that your computer has the IP 192.168.1.1 and the N650
192.168.1.20 (default IP address).
1. Connect via Telnet to the device and log in with the default credentials
"admin:admin"
2. Exploit the limited interface by typing "ps & /bin/sh"
3. Press <ENTER> to start the shell
4. Enter the following commands:
$ cd /tmp
$ tftp -r n650factory.bin -g 192.168.1.1
$ cat << EOF > /tmp/openwrt.sh
#!/bin/sh
IMAGE_NAME="\$1"
if [ ! -e \${IMAGE_NAME} ]; then
echo "Image file not found: \${IMAGE_NAME}"
exit 1
fi
. /usr/sbin/common.sh
kill_remaining TERM
sleep 3
kill_remaining KILL
run_ramfs mtd write \${IMAGE_NAME} firmware
sleep 2
reboot -f
EOF
$ chmod +x /tmp/openwrt.sh
$ /tmp/openwrt.sh n650factory.bin
Once the device reboots, it should load OpenWrt.
From UART
---------
UART installation is possible since the serial header is already soldered
on. The pinout is GND - Tx - Rx - VCC from top to bottom (RJ45 ports are
at the bottom). Connect with 115200 8N1.
First, boot OpenWrt from TFTP. Enter the following commands in the U-Boot
shell, assuming your computer has the IP address 192.168.1.1 and a TFTP
server running where the initramfs image is provided as n650.bin:
setenv ipaddr 192.168.1.20
setenv serverip 192.168.1.1
tftpboot 0x84000000 n650.bin
bootm
Once booted, transfer -loader.bin and -sysupgrade.bin images to the device
at /tmp. Enter the following commands, replacing the filenames:
mtd write /tmp/loader.bin loader
sysupgrade /tmp/sysupgrade.bin
Reboot and OpenWrt should load from flash.
Back to Stock
-------------
Back to stock is only possible if you saved a partition backup before
installing OpenWrt. Assuming you have fullbackup.bin covering the whole
flash, you need to prepare the image as follows:
$ dd if=fullbackup.bin of=fwconcat0.bin bs=65536 skip=4 count=212
$ dd if=fullbackup.bin of=loader.bin bs=65536 skip=216 count=1
$ dd if=fullbackup.bin of=fwconcat1.bin bs=65536 skip=217 count=22
$ cat fwconcat0.bin fwconcat1.bin > firmware.bin
Transfer firmware.bin and loader.bin to the OpenWrt device. First, flash
loader.bin to mtd device loader, then force sysupgrade:
$ mtd write loader.bin loader
$ sysupgrade -F firmware.bin
The reason for the two-step process is the way the flash layout is designed
for OpenWrt in contrast to the OEM firmware partition.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Link: https://github.com/openwrt/openwrt/pull/17089
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The recently added AP15C dts file only differs by the definition of the
reset button. Unify the shared definition into a dtsi to reduce code
duplication.
Signed-off-by: Christoph Krapp <achterin@gmail.com>
Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Link: https://github.com/openwrt/openwrt/pull/16998
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This reverts commit 70e41d0205d95386881fa1cdf6ee00f6cca1b3f6.
"ethaddr" is stored into the "u-boot-env" (stock: "Config") partition
and it's quoted with double-quotations, but that format is not supported
by the current NVMEM u-boot-env driver (and mac_pton() function) and the
MAC address won't be parsed to byte array.
This causes random MAC addresses on the adapters, so revert the above
commit.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17116
Signed-off-by: Robert Marko <robimarko@gmail.com>
TP-Link CPE710-v2 is an outdoor wireless CPE for 5 GHz with one Ethernet
port based on the AP152 reference board. Compared to the CPE710-v1, the
only change observed in hardware is that the mdio address of the ethernet
physical changed from 0x4 to 0x0.
Specifications:
- SoC: QCA9563-AL3A MIPS 74kc @ 775MHz, AHB @ 258MHz
- RAM: 128MiB DDR2 @ 650MHz
- Flash: 16MiB SPI NOR Based on the GD25Q128
- Wi-Fi 5Ghz: ath10k chip (802.11ac for up to 867Mbps on 5GHz wireless
data rate), based on the QCA9896
- Ethernet: one 1GbE port
- 23dBi high-gain directional 2×2 MIMO parabolic antenna
- Power, LAN, WLAN5G Blue LEDs
Flashing instructions:
Flash factory image through stock firmware WEB UI or through TFTP
To get to TFTP recovery just hold reset button while powering on for around
30-40 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP address:192.168.0.254
Signed-off-by: Tim Noack <tim@noack.id>
Link: https://github.com/openwrt/openwrt/pull/16637
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This is done in preparation of adding support for the CPE710-v2,
which uses a similiar device tree.
Signed-off-by: Tim Noack <tim@noack.id>
Link: https://github.com/openwrt/openwrt/pull/16637
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>