update ath9k to latest git version

SVN-Revision: 12079
This commit is contained in:
Imre Kaloz 2008-08-03 14:28:21 +00:00
parent 38a87b1430
commit 8de805b27c
17 changed files with 2711 additions and 2846 deletions

View File

@ -8,7 +8,7 @@ include $(TOPDIR)/rules.mk
include $(INCLUDE_DIR)/kernel.mk include $(INCLUDE_DIR)/kernel.mk
PKG_NAME:=ath9k PKG_NAME:=ath9k
PKG_VERSION:=20080731 PKG_VERSION:=20080803
PKG_RELEASE:=1 PKG_RELEASE:=1
include $(INCLUDE_DIR)/package.mk include $(INCLUDE_DIR)/package.mk

File diff suppressed because it is too large Load Diff

View File

@ -29,10 +29,10 @@
static int ath_beaconq_config(struct ath_softc *sc) static int ath_beaconq_config(struct ath_softc *sc)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
struct hal_txq_info qi; struct ath9k_txq_info qi;
ath9k_hw_gettxqueueprops(ah, sc->sc_bhalq, &qi); ath9k_hw_gettxqueueprops(ah, sc->sc_bhalq, &qi);
if (sc->sc_opmode == HAL_M_HOSTAP) { if (sc->sc_opmode == ATH9K_M_HOSTAP) {
/* Always burst out beacon and CAB traffic. */ /* Always burst out beacon and CAB traffic. */
qi.tqi_aifs = 1; qi.tqi_aifs = 1;
qi.tqi_cwmin = 0; qi.tqi_cwmin = 0;
@ -70,11 +70,11 @@ static void ath_beacon_setup(struct ath_softc *sc,
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
struct ath_desc *ds; struct ath_desc *ds;
int flags, antenna; int flags, antenna;
const struct hal_rate_table *rt; const struct ath9k_rate_table *rt;
u_int8_t rix, rate; u8 rix, rate;
int ctsrate = 0; int ctsrate = 0;
int ctsduration = 0; int ctsduration = 0;
struct hal_11n_rate_series series[4]; struct ath9k_11n_rate_series series[4];
DPRINTF(sc, ATH_DBG_BEACON, "%s: m %p len %u\n", DPRINTF(sc, ATH_DBG_BEACON, "%s: m %p len %u\n",
__func__, skb, skb->len); __func__, skb, skb->len);
@ -82,11 +82,11 @@ static void ath_beacon_setup(struct ath_softc *sc,
/* setup descriptors */ /* setup descriptors */
ds = bf->bf_desc; ds = bf->bf_desc;
flags = HAL_TXDESC_NOACK; flags = ATH9K_TXDESC_NOACK;
if (sc->sc_opmode == HAL_M_IBSS && ah->ah_caps.halVEOLSupport) { if (sc->sc_opmode == ATH9K_M_IBSS && ah->ah_caps.halVEOLSupport) {
ds->ds_link = bf->bf_daddr; /* self-linked */ ds->ds_link = bf->bf_daddr; /* self-linked */
flags |= HAL_TXDESC_VEOL; flags |= ATH9K_TXDESC_VEOL;
/* Let hardware handle antenna switching. */ /* Let hardware handle antenna switching. */
antenna = 0; antenna = 0;
} else { } else {
@ -114,10 +114,10 @@ static void ath_beacon_setup(struct ath_softc *sc,
ath9k_hw_set11n_txdesc(ah, ds ath9k_hw_set11n_txdesc(ah, ds
, skb->len + FCS_LEN /* frame length */ , skb->len + FCS_LEN /* frame length */
, HAL_PKT_TYPE_BEACON /* Atheros packet type */ , ATH9K_PKT_TYPE_BEACON /* Atheros packet type */
, avp->av_btxctl.txpower /* txpower XXX */ , avp->av_btxctl.txpower /* txpower XXX */
, HAL_TXKEYIX_INVALID /* no encryption */ , ATH9K_TXKEYIX_INVALID /* no encryption */
, HAL_KEY_TYPE_CLEAR /* no encryption */ , ATH9K_KEY_TYPE_CLEAR /* no encryption */
, flags /* no ack, veol for beacons */ , flags /* no ack, veol for beacons */
); );
@ -129,11 +129,11 @@ static void ath_beacon_setup(struct ath_softc *sc,
, ds /* first descriptor */ , ds /* first descriptor */
); );
memzero(series, sizeof(struct hal_11n_rate_series) * 4); memzero(series, sizeof(struct ath9k_11n_rate_series) * 4);
series[0].Tries = 1; series[0].Tries = 1;
series[0].Rate = rate; series[0].Rate = rate;
series[0].ChSel = sc->sc_tx_chainmask; series[0].ChSel = sc->sc_tx_chainmask;
series[0].RateFlags = (ctsrate) ? HAL_RATESERIES_RTS_CTS : 0; series[0].RateFlags = (ctsrate) ? ATH9K_RATESERIES_RTS_CTS : 0;
ath9k_hw_set11n_ratescenario(ah, ds, ds, 0, ath9k_hw_set11n_ratescenario(ah, ds, ds, 0,
ctsrate, ctsduration, series, 4, 0); ctsrate, ctsduration, series, 4, 0);
} }
@ -325,7 +325,7 @@ static void ath_beacon_start_adhoc(struct ath_softc *sc, int if_id)
/* /*
* Setup a h/w transmit queue for beacons. * Setup a h/w transmit queue for beacons.
* *
* This function allocates an information structure (struct hal_txq_info) * This function allocates an information structure (struct ath9k_txq_info)
* on the stack, sets some specific parameters (zero out channel width * on the stack, sets some specific parameters (zero out channel width
* min/max, and enable aifs). The info structure does not need to be * min/max, and enable aifs). The info structure does not need to be
* persistant. * persistant.
@ -333,14 +333,14 @@ static void ath_beacon_start_adhoc(struct ath_softc *sc, int if_id)
int ath_beaconq_setup(struct ath_hal *ah) int ath_beaconq_setup(struct ath_hal *ah)
{ {
struct hal_txq_info qi; struct ath9k_txq_info qi;
memzero(&qi, sizeof(qi)); memzero(&qi, sizeof(qi));
qi.tqi_aifs = 1; qi.tqi_aifs = 1;
qi.tqi_cwmin = 0; qi.tqi_cwmin = 0;
qi.tqi_cwmax = 0; qi.tqi_cwmax = 0;
/* NB: don't enable any interrupts */ /* NB: don't enable any interrupts */
return ath9k_hw_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
} }
@ -373,7 +373,7 @@ int ath_beacon_alloc(struct ath_softc *sc, int if_id)
struct ath_buf, list); struct ath_buf, list);
list_del(&avp->av_bcbuf->list); list_del(&avp->av_bcbuf->list);
if (sc->sc_opmode == HAL_M_HOSTAP || if (sc->sc_opmode == ATH9K_M_HOSTAP ||
!sc->sc_ah->ah_caps.halVEOLSupport) { !sc->sc_ah->ah_caps.halVEOLSupport) {
int slot; int slot;
/* /*
@ -433,7 +433,7 @@ int ath_beacon_alloc(struct ath_softc *sc, int if_id)
* following the header. * following the header.
*/ */
if (avp->av_bslot > 0) { if (avp->av_bslot > 0) {
u_int64_t tsfadjust; u64 tsfadjust;
__le64 val; __le64 val;
int intval; int intval;
@ -539,19 +539,19 @@ void ath_beacon_free(struct ath_softc *sc)
void ath9k_beacon_tasklet(unsigned long data) void ath9k_beacon_tasklet(unsigned long data)
{ {
#define TSF_TO_TU(_h,_l) \ #define TSF_TO_TU(_h,_l) \
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) ((((u32)(_h)) << 22) | (((u32)(_l)) >> 10))
struct ath_softc *sc = (struct ath_softc *)data; struct ath_softc *sc = (struct ath_softc *)data;
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf = NULL; struct ath_buf *bf = NULL;
int slot, if_id; int slot, if_id;
u_int32_t bfaddr; u32 bfaddr;
u_int32_t rx_clear = 0, rx_frame = 0, tx_frame = 0; u32 rx_clear = 0, rx_frame = 0, tx_frame = 0;
u_int32_t show_cycles = 0; u32 show_cycles = 0;
u_int32_t bc = 0; /* beacon count */ u32 bc = 0; /* beacon count */
u_int64_t tsf; u64 tsf;
u_int32_t tsftu; u32 tsftu;
u_int16_t intval; u16 intval;
if (sc->sc_noreset) { if (sc->sc_noreset) {
show_cycles = ath9k_hw_GetMibCycleCountsPct(ah, show_cycles = ath9k_hw_GetMibCycleCountsPct(ah,
@ -739,11 +739,11 @@ void ath_bstuck_process(struct ath_softc *sc)
void ath_beacon_config(struct ath_softc *sc, int if_id) void ath_beacon_config(struct ath_softc *sc, int if_id)
{ {
#define TSF_TO_TU(_h,_l) \ #define TSF_TO_TU(_h,_l) \
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) ((((u32)(_h)) << 22) | (((u32)(_l)) >> 10))
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
u_int32_t nexttbtt, intval; u32 nexttbtt, intval;
struct ath_beacon_config conf; struct ath_beacon_config conf;
enum hal_opmode av_opmode; enum ath9k_opmode av_opmode;
if (if_id != ATH_IF_ID_ANY) if (if_id != ATH_IF_ID_ANY)
av_opmode = sc->sc_vaps[if_id]->av_opmode; av_opmode = sc->sc_vaps[if_id]->av_opmode;
@ -768,7 +768,7 @@ void ath_beacon_config(struct ath_softc *sc, int if_id)
nexttbtt = TSF_TO_TU(LE_READ_4(conf.u.last_tstamp + 4), nexttbtt = TSF_TO_TU(LE_READ_4(conf.u.last_tstamp + 4),
LE_READ_4(conf.u.last_tstamp)); LE_READ_4(conf.u.last_tstamp));
/* XXX conditionalize multi-bss support? */ /* XXX conditionalize multi-bss support? */
if (sc->sc_opmode == HAL_M_HOSTAP) { if (sc->sc_opmode == ATH9K_M_HOSTAP) {
/* /*
* For multi-bss ap support beacons are either staggered * For multi-bss ap support beacons are either staggered
* evenly over N slots or burst together. For the former * evenly over N slots or burst together. For the former
@ -776,10 +776,10 @@ void ath_beacon_config(struct ath_softc *sc, int if_id)
* Slots that are not occupied will generate nothing. * Slots that are not occupied will generate nothing.
*/ */
/* NB: the beacon interval is kept internally in TU's */ /* NB: the beacon interval is kept internally in TU's */
intval = conf.beacon_interval & HAL_BEACON_PERIOD; intval = conf.beacon_interval & ATH9K_BEACON_PERIOD;
intval /= ATH_BCBUF; /* for staggered beacons */ intval /= ATH_BCBUF; /* for staggered beacons */
} else { } else {
intval = conf.beacon_interval & HAL_BEACON_PERIOD; intval = conf.beacon_interval & ATH9K_BEACON_PERIOD;
} }
if (nexttbtt == 0) /* e.g. for ap mode */ if (nexttbtt == 0) /* e.g. for ap mode */
@ -788,11 +788,11 @@ void ath_beacon_config(struct ath_softc *sc, int if_id)
nexttbtt = roundup(nexttbtt, intval); nexttbtt = roundup(nexttbtt, intval);
DPRINTF(sc, ATH_DBG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", DPRINTF(sc, ATH_DBG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
__func__, nexttbtt, intval, conf.beacon_interval); __func__, nexttbtt, intval, conf.beacon_interval);
/* Check for HAL_M_HOSTAP and sc_nostabeacons for WDS client */ /* Check for ATH9K_M_HOSTAP and sc_nostabeacons for WDS client */
if (sc->sc_opmode == HAL_M_STA) { if (sc->sc_opmode == ATH9K_M_STA) {
struct hal_beacon_state bs; struct ath9k_beacon_state bs;
u_int64_t tsf; u64 tsf;
u_int32_t tsftu; u32 tsftu;
int dtimperiod, dtimcount, sleepduration; int dtimperiod, dtimcount, sleepduration;
int cfpperiod, cfpcount; int cfpperiod, cfpcount;
@ -901,24 +901,24 @@ void ath_beacon_config(struct ath_softc *sc, int if_id)
ath9k_hw_set_interrupts(ah, 0); ath9k_hw_set_interrupts(ah, 0);
ath9k_hw_set_sta_beacon_timers(ah, &bs); ath9k_hw_set_sta_beacon_timers(ah, &bs);
sc->sc_imask |= HAL_INT_BMISS; sc->sc_imask |= ATH9K_INT_BMISS;
ath9k_hw_set_interrupts(ah, sc->sc_imask); ath9k_hw_set_interrupts(ah, sc->sc_imask);
} else { } else {
u_int64_t tsf; u64 tsf;
u_int32_t tsftu; u32 tsftu;
ath9k_hw_set_interrupts(ah, 0); ath9k_hw_set_interrupts(ah, 0);
if (nexttbtt == intval) if (nexttbtt == intval)
intval |= HAL_BEACON_RESET_TSF; intval |= ATH9K_BEACON_RESET_TSF;
if (sc->sc_opmode == HAL_M_IBSS) { if (sc->sc_opmode == ATH9K_M_IBSS) {
/* /*
* Pull nexttbtt forward to reflect the current * Pull nexttbtt forward to reflect the current
* TSF . * TSF .
*/ */
#define FUDGE 2 #define FUDGE 2
if (!(intval & HAL_BEACON_RESET_TSF)) { if (!(intval & ATH9K_BEACON_RESET_TSF)) {
tsf = ath9k_hw_gettsf64(ah); tsf = ath9k_hw_gettsf64(ah);
tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), tsftu = TSF_TO_TU((u32)(tsf>>32),
(u_int32_t)tsf) + FUDGE; (u32)tsf) + FUDGE;
do { do {
nexttbtt += intval; nexttbtt += intval;
} while (nexttbtt < tsftu); } while (nexttbtt < tsftu);
@ -927,7 +927,7 @@ void ath_beacon_config(struct ath_softc *sc, int if_id)
DPRINTF(sc, ATH_DBG_BEACON, DPRINTF(sc, ATH_DBG_BEACON,
"%s: IBSS nexttbtt %u intval %u (%u)\n", "%s: IBSS nexttbtt %u intval %u (%u)\n",
__func__, nexttbtt, __func__, nexttbtt,
intval & ~HAL_BEACON_RESET_TSF, intval & ~ATH9K_BEACON_RESET_TSF,
conf.beacon_interval); conf.beacon_interval);
/* /*
@ -937,17 +937,17 @@ void ath_beacon_config(struct ath_softc *sc, int if_id)
* self-linked tx descriptor and let the hardware * self-linked tx descriptor and let the hardware
* deal with things. * deal with things.
*/ */
intval |= HAL_BEACON_ENA; intval |= ATH9K_BEACON_ENA;
if (!ah->ah_caps.halVEOLSupport) if (!ah->ah_caps.halVEOLSupport)
sc->sc_imask |= HAL_INT_SWBA; sc->sc_imask |= ATH9K_INT_SWBA;
ath_beaconq_config(sc); ath_beaconq_config(sc);
} else if (sc->sc_opmode == HAL_M_HOSTAP) { } else if (sc->sc_opmode == ATH9K_M_HOSTAP) {
/* /*
* In AP mode we enable the beacon timers and * In AP mode we enable the beacon timers and
* SWBA interrupts to prepare beacon frames. * SWBA interrupts to prepare beacon frames.
*/ */
intval |= HAL_BEACON_ENA; intval |= ATH9K_BEACON_ENA;
sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ sc->sc_imask |= ATH9K_INT_SWBA; /* beacon prepare */
ath_beaconq_config(sc); ath_beaconq_config(sc);
} }
ath9k_hw_beaconinit(ah, nexttbtt, intval); ath9k_hw_beaconinit(ah, nexttbtt, intval);
@ -957,7 +957,7 @@ void ath_beacon_config(struct ath_softc *sc, int if_id)
* When using a self-linked beacon descriptor in * When using a self-linked beacon descriptor in
* ibss mode load it once here. * ibss mode load it once here.
*/ */
if (sc->sc_opmode == HAL_M_IBSS && ah->ah_caps.halVEOLSupport) if (sc->sc_opmode == ATH9K_M_IBSS && ah->ah_caps.halVEOLSupport)
ath_beacon_start_adhoc(sc, 0); ath_beacon_start_adhoc(sc, 0);
} }
#undef TSF_TO_TU #undef TSF_TO_TU

View File

@ -21,23 +21,23 @@
static int ath_outdoor; /* enable outdoor use */ static int ath_outdoor; /* enable outdoor use */
static const u_int8_t ath_bcast_mac[ETH_ALEN] = static const u8 ath_bcast_mac[ETH_ALEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static u_int32_t ath_chainmask_sel_up_rssi_thres = static u32 ath_chainmask_sel_up_rssi_thres =
ATH_CHAINMASK_SEL_UP_RSSI_THRES; ATH_CHAINMASK_SEL_UP_RSSI_THRES;
static u_int32_t ath_chainmask_sel_down_rssi_thres = static u32 ath_chainmask_sel_down_rssi_thres =
ATH_CHAINMASK_SEL_DOWN_RSSI_THRES; ATH_CHAINMASK_SEL_DOWN_RSSI_THRES;
static u_int32_t ath_chainmask_sel_period = static u32 ath_chainmask_sel_period =
ATH_CHAINMASK_SEL_TIMEOUT; ATH_CHAINMASK_SEL_TIMEOUT;
/* return bus cachesize in 4B word units */ /* return bus cachesize in 4B word units */
static void bus_read_cachesize(struct ath_softc *sc, int *csz) static void bus_read_cachesize(struct ath_softc *sc, int *csz)
{ {
u_int8_t u8tmp; u8 u8tmp;
pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u_int8_t *)&u8tmp); pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
*csz = (int)u8tmp; *csz = (int)u8tmp;
/* /*
@ -60,7 +60,7 @@ static void bus_read_cachesize(struct ath_softc *sc, int *csz)
static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode) static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
{ {
const struct hal_rate_table *rt; const struct ath9k_rate_table *rt;
int i; int i;
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
@ -68,11 +68,11 @@ static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
BUG_ON(!rt); BUG_ON(!rt);
for (i = 0; i < rt->rateCount; i++) for (i = 0; i < rt->rateCount; i++)
sc->sc_rixmap[rt->info[i].rateCode] = (u_int8_t) i; sc->sc_rixmap[rt->info[i].rateCode] = (u8) i;
memzero(sc->sc_hwmap, sizeof(sc->sc_hwmap)); memzero(sc->sc_hwmap, sizeof(sc->sc_hwmap));
for (i = 0; i < 256; i++) { for (i = 0; i < 256; i++) {
u_int8_t ix = rt->rateCodeToIndex[i]; u8 ix = rt->rateCodeToIndex[i];
if (ix == 0xff) if (ix == 0xff)
continue; continue;
@ -110,7 +110,7 @@ static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
static int ath_rate_setup(struct ath_softc *sc, enum wireless_mode mode) static int ath_rate_setup(struct ath_softc *sc, enum wireless_mode mode)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
const struct hal_rate_table *rt; const struct ath9k_rate_table *rt;
switch (mode) { switch (mode) {
case WIRELESS_MODE_11a: case WIRELESS_MODE_11a:
@ -168,60 +168,89 @@ static int ath_rate_setup(struct ath_softc *sc, enum wireless_mode mode)
/* /*
* Set up channel list * Set up channel list
* */
* Determines the proper set of channelflags based on the selected mode, static int ath_setup_channels(struct ath_softc *sc)
* allocates a channel array, and passes it to the HAL for initialization.
* If successful, the list is passed to the upper layer, then de-allocated.
*/
static int ath_getchannels(struct ath_softc *sc,
u_int cc,
bool outDoor,
bool xchanMode)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
struct hal_channel *chans; int nchan, i, a = 0, b = 0;
int nchan; u8 regclassids[ATH_REGCLASSIDS_MAX];
u_int8_t regclassids[ATH_REGCLASSIDS_MAX]; u32 nregclass = 0;
u_int nregclass = 0; struct ieee80211_supported_band *band_2ghz;
struct ieee80211_supported_band *band_5ghz;
chans = kmalloc(ATH_CHAN_MAX * sizeof(struct hal_channel), GFP_KERNEL); struct ieee80211_channel *chan_2ghz;
if (chans == NULL) { struct ieee80211_channel *chan_5ghz;
DPRINTF(sc, ATH_DBG_FATAL, struct ath9k_channel *c;
"%s: unable to allocate channel table\n", __func__);
return -ENOMEM;
}
/* Fill in ah->ah_channels */
if (!ath9k_regd_init_channels(ah, if (!ath9k_regd_init_channels(ah,
chans,
ATH_CHAN_MAX, ATH_CHAN_MAX,
(u_int *)&nchan, (u32 *)&nchan,
regclassids, regclassids,
ATH_REGCLASSIDS_MAX, ATH_REGCLASSIDS_MAX,
&nregclass, &nregclass,
cc, CTRY_DEFAULT,
ATH9K_MODE_SEL_ALL, ATH9K_MODE_SEL_ALL,
outDoor, false,
xchanMode)) { 1)) {
u_int32_t rd = ah->ah_currentRD; u32 rd = ah->ah_currentRD;
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to collect channel list from hal; " "%s: unable to collect channel list; "
"regdomain likely %u country code %u\n", "regdomain likely %u country code %u\n",
__func__, rd, cc); __func__, rd, CTRY_DEFAULT);
kfree(chans);
return -EINVAL; return -EINVAL;
} }
ath_setup_channel_list(sc, band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
CLIST_UPDATE, band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
chans, chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
nchan, chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
regclassids,
nregclass, for (i = 0; i < nchan; i++) {
CTRY_DEFAULT); c = &ah->ah_channels[i];
if (IS_CHAN_2GHZ(c)) {
chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
chan_2ghz[a].center_freq = c->channel;
chan_2ghz[a].max_power = c->maxTxPower;
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
chan_2ghz[a].flags |=
IEEE80211_CHAN_NO_IBSS;
if (c->channelFlags & CHANNEL_PASSIVE)
chan_2ghz[a].flags |=
IEEE80211_CHAN_PASSIVE_SCAN;
band_2ghz->n_channels = ++a;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 2MHz channel: %d, "
"channelFlags: 0x%x\n",
__func__,
c->channel,
c->channelFlags);
} else if (IS_CHAN_5GHZ(c)) {
chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
chan_5ghz[b].center_freq = c->channel;
chan_5ghz[b].max_power = c->maxTxPower;
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
chan_5ghz[b].flags |=
IEEE80211_CHAN_NO_IBSS;
if (c->channelFlags & CHANNEL_PASSIVE)
chan_5ghz[b].flags |=
IEEE80211_CHAN_PASSIVE_SCAN;
band_5ghz->n_channels = ++b;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 5MHz channel: %d, "
"channelFlags: 0x%x\n",
__func__,
c->channel,
c->channelFlags);
}
}
kfree(chans);
return 0; return 0;
} }
@ -233,29 +262,25 @@ static int ath_getchannels(struct ath_softc *sc,
* exist, the lowest mode (11b) is selected. * exist, the lowest mode (11b) is selected.
*/ */
static enum wireless_mode ath_chan2mode(struct hal_channel *chan) static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
{ {
if ((chan->channelFlags & CHANNEL_A) == CHANNEL_A) if (chan->chanmode == CHANNEL_A)
return WIRELESS_MODE_11a; return WIRELESS_MODE_11a;
else if ((chan->channelFlags & CHANNEL_G) == CHANNEL_G) else if (chan->chanmode == CHANNEL_G)
return WIRELESS_MODE_11g; return WIRELESS_MODE_11g;
else if ((chan->channelFlags & CHANNEL_B) == CHANNEL_B) else if (chan->chanmode == CHANNEL_B)
return WIRELESS_MODE_11b; return WIRELESS_MODE_11b;
else if ((chan->channelFlags & CHANNEL_A_HT20) == CHANNEL_A_HT20) else if (chan->chanmode == CHANNEL_A_HT20)
return WIRELESS_MODE_11NA_HT20; return WIRELESS_MODE_11NA_HT20;
else if ((chan->channelFlags & CHANNEL_G_HT20) == CHANNEL_G_HT20) else if (chan->chanmode == CHANNEL_G_HT20)
return WIRELESS_MODE_11NG_HT20; return WIRELESS_MODE_11NG_HT20;
else if ((chan->channelFlags & CHANNEL_A_HT40PLUS) == else if (chan->chanmode == CHANNEL_A_HT40PLUS)
CHANNEL_A_HT40PLUS)
return WIRELESS_MODE_11NA_HT40PLUS; return WIRELESS_MODE_11NA_HT40PLUS;
else if ((chan->channelFlags & CHANNEL_A_HT40MINUS) == else if (chan->chanmode == CHANNEL_A_HT40MINUS)
CHANNEL_A_HT40MINUS)
return WIRELESS_MODE_11NA_HT40MINUS; return WIRELESS_MODE_11NA_HT40MINUS;
else if ((chan->channelFlags & CHANNEL_G_HT40PLUS) == else if (chan->chanmode == CHANNEL_G_HT40PLUS)
CHANNEL_G_HT40PLUS)
return WIRELESS_MODE_11NG_HT40PLUS; return WIRELESS_MODE_11NG_HT40PLUS;
else if ((chan->channelFlags & CHANNEL_G_HT40MINUS) == else if (chan->chanmode == CHANNEL_G_HT40MINUS)
CHANNEL_G_HT40MINUS)
return WIRELESS_MODE_11NG_HT40MINUS; return WIRELESS_MODE_11NG_HT40MINUS;
/* NB: should not get here */ /* NB: should not get here */
@ -269,7 +294,7 @@ static enum wireless_mode ath_chan2mode(struct hal_channel *chan)
* the current operating mode for the new channel. * the current operating mode for the new channel.
*/ */
static void ath_chan_change(struct ath_softc *sc, struct hal_channel *chan) static void ath_chan_change(struct ath_softc *sc, struct ath9k_channel *chan)
{ {
enum wireless_mode mode; enum wireless_mode mode;
@ -332,8 +357,8 @@ static int ath_stop(struct ath_softc *sc)
void ath_scan_start(struct ath_softc *sc) void ath_scan_start(struct ath_softc *sc)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt; u32 rfilt;
u_int32_t now = (u_int32_t) jiffies_to_msecs(get_timestamp()); u32 now = (u32) jiffies_to_msecs(get_timestamp());
sc->sc_scanning = 1; sc->sc_scanning = 1;
rfilt = ath_calcrxfilter(sc); rfilt = ath_calcrxfilter(sc);
@ -357,8 +382,8 @@ void ath_scan_start(struct ath_softc *sc)
void ath_scan_end(struct ath_softc *sc) void ath_scan_end(struct ath_softc *sc)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt; u32 rfilt;
u_int32_t now = (u_int32_t) jiffies_to_msecs(get_timestamp()); u32 now = (u32) jiffies_to_msecs(get_timestamp());
sc->sc_scanning = 0; sc->sc_scanning = 0;
/* Request for a full reset due to rx packet filter changes */ /* Request for a full reset due to rx packet filter changes */
@ -378,11 +403,11 @@ void ath_scan_end(struct ath_softc *sc)
* by reseting the chip. To accomplish this we must first cleanup any pending * by reseting the chip. To accomplish this we must first cleanup any pending
* DMA, then restart stuff after a la ath_init. * DMA, then restart stuff after a la ath_init.
*/ */
int ath_set_channel(struct ath_softc *sc, struct hal_channel *hchan) int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
bool fastcc = true, stopped; bool fastcc = true, stopped;
enum hal_ht_macmode ht_macmode; enum ath9k_ht_macmode ht_macmode;
if (sc->sc_invalid) /* if the device is invalid or removed */ if (sc->sc_invalid) /* if the device is invalid or removed */
return -EIO; return -EIO;
@ -401,7 +426,7 @@ int ath_set_channel(struct ath_softc *sc, struct hal_channel *hchan)
if (hchan->channel != sc->sc_curchan.channel || if (hchan->channel != sc->sc_curchan.channel ||
hchan->channelFlags != sc->sc_curchan.channelFlags || hchan->channelFlags != sc->sc_curchan.channelFlags ||
sc->sc_update_chainmask || sc->sc_full_reset) { sc->sc_update_chainmask || sc->sc_full_reset) {
enum hal_status status; int status;
/* /*
* This is only performed if the channel settings have * This is only performed if the channel settings have
* actually changed. * actually changed.
@ -580,7 +605,7 @@ int ath_vap_listen(struct ath_softc *sc, int if_id)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
struct ath_vap *avp; struct ath_vap *avp;
u_int32_t rfilt = 0; u32 rfilt = 0;
DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac);
avp = sc->sc_vaps[if_id]; avp = sc->sc_vaps[if_id];
@ -595,12 +620,12 @@ int ath_vap_listen(struct ath_softc *sc, int if_id)
#endif #endif
/* update ratectrl about the new state */ /* update ratectrl about the new state */
ath_rate_newstate(sc, avp, 0); ath_rate_newstate(sc, avp);
rfilt = ath_calcrxfilter(sc); rfilt = ath_calcrxfilter(sc);
ath9k_hw_setrxfilter(ah, rfilt); ath9k_hw_setrxfilter(ah, rfilt);
if (sc->sc_opmode == HAL_M_STA || sc->sc_opmode == HAL_M_IBSS) { if (sc->sc_opmode == ATH9K_M_STA || sc->sc_opmode == ATH9K_M_IBSS) {
memcpy(sc->sc_curbssid, ath_bcast_mac, ETH_ALEN); memcpy(sc->sc_curbssid, ath_bcast_mac, ETH_ALEN);
ath9k_hw_write_associd(ah, sc->sc_curbssid, sc->sc_curaid); ath9k_hw_write_associd(ah, sc->sc_curbssid, sc->sc_curaid);
} else } else
@ -616,8 +641,8 @@ int ath_vap_listen(struct ath_softc *sc, int if_id)
* Disable BMISS interrupt when we're not associated * Disable BMISS interrupt when we're not associated
*/ */
ath9k_hw_set_interrupts(ah, ath9k_hw_set_interrupts(ah,
sc->sc_imask & ~(HAL_INT_SWBA | HAL_INT_BMISS)); sc->sc_imask & ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS));
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
/* need to reconfigure the beacons when it moves to RUN */ /* need to reconfigure the beacons when it moves to RUN */
sc->sc_beacons = 0; sc->sc_beacons = 0;
@ -627,7 +652,7 @@ int ath_vap_listen(struct ath_softc *sc, int if_id)
int ath_vap_attach(struct ath_softc *sc, int ath_vap_attach(struct ath_softc *sc,
int if_id, int if_id,
struct ieee80211_vif *if_data, struct ieee80211_vif *if_data,
enum hal_opmode opmode) enum ath9k_opmode opmode)
{ {
struct ath_vap *avp; struct ath_vap *avp;
@ -638,11 +663,11 @@ int ath_vap_attach(struct ath_softc *sc,
} }
switch (opmode) { switch (opmode) {
case HAL_M_STA: case ATH9K_M_STA:
case HAL_M_IBSS: case ATH9K_M_IBSS:
case HAL_M_MONITOR: case ATH9K_M_MONITOR:
break; break;
case HAL_M_HOSTAP: case ATH9K_M_HOSTAP:
/* XXX not right, beacon buffer is allocated on RUN trans */ /* XXX not right, beacon buffer is allocated on RUN trans */
if (list_empty(&sc->sc_bbuf)) if (list_empty(&sc->sc_bbuf))
return -ENOMEM; return -ENOMEM;
@ -737,12 +762,12 @@ int ath_vap_config(struct ath_softc *sc,
/* Core */ /* Core */
/********/ /********/
int ath_open(struct ath_softc *sc, struct hal_channel *initial_chan) int ath_open(struct ath_softc *sc, struct ath9k_channel *initial_chan)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
enum hal_status status; int status;
int error = 0; int error = 0;
enum hal_ht_macmode ht_macmode = ath_cwm_macmode(sc); enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
DPRINTF(sc, ATH_DBG_CONFIG, "%s: mode %d\n", __func__, sc->sc_opmode); DPRINTF(sc, ATH_DBG_CONFIG, "%s: mode %d\n", __func__, sc->sc_opmode);
@ -801,32 +826,32 @@ int ath_open(struct ath_softc *sc, struct hal_channel *initial_chan)
goto done; goto done;
} }
/* Setup our intr mask. */ /* Setup our intr mask. */
sc->sc_imask = HAL_INT_RX | HAL_INT_TX sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
| HAL_INT_RXEOL | HAL_INT_RXORN | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
| HAL_INT_FATAL | HAL_INT_GLOBAL; | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
if (ah->ah_caps.halGTTSupport) if (ah->ah_caps.halGTTSupport)
sc->sc_imask |= HAL_INT_GTT; sc->sc_imask |= ATH9K_INT_GTT;
if (ah->ah_caps.halHTSupport) if (ah->ah_caps.halHTSupport)
sc->sc_imask |= HAL_INT_CST; sc->sc_imask |= ATH9K_INT_CST;
/* /*
* Enable MIB interrupts when there are hardware phy counters. * Enable MIB interrupts when there are hardware phy counters.
* Note we only do this (at the moment) for station mode. * Note we only do this (at the moment) for station mode.
*/ */
if (ath9k_hw_phycounters(ah) && if (ath9k_hw_phycounters(ah) &&
((sc->sc_opmode == HAL_M_STA) || (sc->sc_opmode == HAL_M_IBSS))) ((sc->sc_opmode == ATH9K_M_STA) || (sc->sc_opmode == ATH9K_M_IBSS)))
sc->sc_imask |= HAL_INT_MIB; sc->sc_imask |= ATH9K_INT_MIB;
/* /*
* Some hardware processes the TIM IE and fires an * Some hardware processes the TIM IE and fires an
* interrupt when the TIM bit is set. For hardware * interrupt when the TIM bit is set. For hardware
* that does, if not overridden by configuration, * that does, if not overridden by configuration,
* enable the TIM interrupt when operating as station. * enable the TIM interrupt when operating as station.
*/ */
if (ah->ah_caps.halEnhancedPmSupport && sc->sc_opmode == HAL_M_STA && if (ah->ah_caps.halEnhancedPmSupport && sc->sc_opmode == ATH9K_M_STA &&
!sc->sc_config.swBeaconProcess) !sc->sc_config.swBeaconProcess)
sc->sc_imask |= HAL_INT_TIM; sc->sc_imask |= ATH9K_INT_TIM;
/* /*
* Don't enable interrupts here as we've not yet built our * Don't enable interrupts here as we've not yet built our
* vap and node data structures, which will be needed as soon * vap and node data structures, which will be needed as soon
@ -849,7 +874,7 @@ done:
* and to reset the hardware when rf gain settings must be reset. * and to reset the hardware when rf gain settings must be reset.
*/ */
static int ath_reset_start(struct ath_softc *sc, u_int32_t flag) static int ath_reset_start(struct ath_softc *sc, u32 flag)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
@ -861,7 +886,7 @@ static int ath_reset_start(struct ath_softc *sc, u_int32_t flag)
return 0; return 0;
} }
static int ath_reset_end(struct ath_softc *sc, u_int32_t flag) static int ath_reset_end(struct ath_softc *sc, u32 flag)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
@ -885,7 +910,7 @@ static int ath_reset_end(struct ath_softc *sc, u_int32_t flag)
/* Restart the txq */ /* Restart the txq */
if (flag & RESET_RETRY_TXQ) { if (flag & RESET_RETRY_TXQ) {
int i; int i;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) { if (ATH_TXQ_SETUP(sc, i)) {
spin_lock_bh(&sc->sc_txq[i].axq_lock); spin_lock_bh(&sc->sc_txq[i].axq_lock);
ath_txq_schedule(sc, &sc->sc_txq[i]); ath_txq_schedule(sc, &sc->sc_txq[i]);
@ -899,9 +924,9 @@ static int ath_reset_end(struct ath_softc *sc, u_int32_t flag)
int ath_reset(struct ath_softc *sc) int ath_reset(struct ath_softc *sc)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
enum hal_status status; int status;
int error = 0; int error = 0;
enum hal_ht_macmode ht_macmode = ath_cwm_macmode(sc); enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
/* NB: indicate channel change so we do a full reset */ /* NB: indicate channel change so we do a full reset */
spin_lock_bh(&sc->sc_resetlock); spin_lock_bh(&sc->sc_resetlock);
@ -949,7 +974,7 @@ irqreturn_t ath_isr(int irq, void *dev)
{ {
struct ath_softc *sc = dev; struct ath_softc *sc = dev;
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
enum hal_int status; enum ath9k_int status;
bool sched = false; bool sched = false;
do { do {
@ -985,18 +1010,18 @@ irqreturn_t ath_isr(int irq, void *dev)
sc->sc_intrstatus = status; sc->sc_intrstatus = status;
if (status & HAL_INT_FATAL) { if (status & ATH9K_INT_FATAL) {
/* need a chip reset */ /* need a chip reset */
sched = true; sched = true;
} else if (status & HAL_INT_RXORN) { } else if (status & ATH9K_INT_RXORN) {
/* need a chip reset */ /* need a chip reset */
sched = true; sched = true;
} else { } else {
if (status & HAL_INT_SWBA) { if (status & ATH9K_INT_SWBA) {
/* schedule a tasklet for beacon handling */ /* schedule a tasklet for beacon handling */
tasklet_schedule(&sc->bcon_tasklet); tasklet_schedule(&sc->bcon_tasklet);
} }
if (status & HAL_INT_RXEOL) { if (status & ATH9K_INT_RXEOL) {
/* /*
* NB: the hardware should re-read the link when * NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work * RXE bit is written, but it doesn't work
@ -1005,20 +1030,20 @@ irqreturn_t ath_isr(int irq, void *dev)
sched = true; sched = true;
} }
if (status & HAL_INT_TXURN) if (status & ATH9K_INT_TXURN)
/* bump tx trigger level */ /* bump tx trigger level */
ath9k_hw_updatetxtriglevel(ah, true); ath9k_hw_updatetxtriglevel(ah, true);
/* XXX: optimize this */ /* XXX: optimize this */
if (status & HAL_INT_RX) if (status & ATH9K_INT_RX)
sched = true; sched = true;
if (status & HAL_INT_TX) if (status & ATH9K_INT_TX)
sched = true; sched = true;
if (status & HAL_INT_BMISS) if (status & ATH9K_INT_BMISS)
sched = true; sched = true;
/* carrier sense timeout */ /* carrier sense timeout */
if (status & HAL_INT_CST) if (status & ATH9K_INT_CST)
sched = true; sched = true;
if (status & HAL_INT_MIB) { if (status & ATH9K_INT_MIB) {
/* /*
* Disable interrupts until we service the MIB * Disable interrupts until we service the MIB
* interrupt; otherwise it will continue to * interrupt; otherwise it will continue to
@ -1033,7 +1058,7 @@ irqreturn_t ath_isr(int irq, void *dev)
ath9k_hw_procmibevent(ah, &sc->sc_halstats); ath9k_hw_procmibevent(ah, &sc->sc_halstats);
ath9k_hw_set_interrupts(ah, sc->sc_imask); ath9k_hw_set_interrupts(ah, sc->sc_imask);
} }
if (status & HAL_INT_TIM_TIMER) { if (status & ATH9K_INT_TIM_TIMER) {
if (!ah->ah_caps.halAutoSleepSupport) { if (!ah->ah_caps.halAutoSleepSupport) {
/* Clear RxAbort bit so that we can /* Clear RxAbort bit so that we can
* receive frames */ * receive frames */
@ -1046,7 +1071,7 @@ irqreturn_t ath_isr(int irq, void *dev)
if (sched) { if (sched) {
/* turn off every interrupt except SWBA */ /* turn off every interrupt except SWBA */
ath9k_hw_set_interrupts(ah, (sc->sc_imask & HAL_INT_SWBA)); ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
tasklet_schedule(&sc->intr_tq); tasklet_schedule(&sc->intr_tq);
} }
@ -1058,20 +1083,21 @@ irqreturn_t ath_isr(int irq, void *dev)
static void ath9k_tasklet(unsigned long data) static void ath9k_tasklet(unsigned long data)
{ {
struct ath_softc *sc = (struct ath_softc *)data; struct ath_softc *sc = (struct ath_softc *)data;
u_int32_t status = sc->sc_intrstatus; u32 status = sc->sc_intrstatus;
if (status & HAL_INT_FATAL) { if (status & ATH9K_INT_FATAL) {
/* need a chip reset */ /* need a chip reset */
ath_internal_reset(sc); ath_internal_reset(sc);
return; return;
} else { } else {
if (status & (HAL_INT_RX | HAL_INT_RXEOL | HAL_INT_RXORN)) { if (status &
(ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
/* XXX: fill me in */ /* XXX: fill me in */
/* /*
if (status & HAL_INT_RXORN) { if (status & ATH9K_INT_RXORN) {
} }
if (status & HAL_INT_RXEOL) { if (status & ATH9K_INT_RXEOL) {
} }
*/ */
spin_lock_bh(&sc->sc_rxflushlock); spin_lock_bh(&sc->sc_rxflushlock);
@ -1079,16 +1105,16 @@ static void ath9k_tasklet(unsigned long data)
spin_unlock_bh(&sc->sc_rxflushlock); spin_unlock_bh(&sc->sc_rxflushlock);
} }
/* XXX: optimize this */ /* XXX: optimize this */
if (status & HAL_INT_TX) if (status & ATH9K_INT_TX)
ath_tx_tasklet(sc); ath_tx_tasklet(sc);
/* XXX: fill me in */ /* XXX: fill me in */
/* /*
if (status & HAL_INT_BMISS) { if (status & ATH9K_INT_BMISS) {
} }
if (status & (HAL_INT_TIM | HAL_INT_DTIMSYNC)) { if (status & (ATH9K_INT_TIM | ATH9K_INT_DTIMSYNC)) {
if (status & HAL_INT_TIM) { if (status & ATH9K_INT_TIM) {
} }
if (status & HAL_INT_DTIMSYNC) { if (status & ATH9K_INT_DTIMSYNC) {
} }
} }
*/ */
@ -1098,13 +1124,13 @@ static void ath9k_tasklet(unsigned long data)
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask); ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
} }
int ath_init(u_int16_t devid, struct ath_softc *sc) int ath_init(u16 devid, struct ath_softc *sc)
{ {
struct ath_hal *ah = NULL; struct ath_hal *ah = NULL;
enum hal_status status; int status;
int error = 0, i; int error = 0, i;
int csz = 0; int csz = 0;
u_int32_t rd; u32 rd;
/* XXX: hardware will not be ready until ath_open() being called */ /* XXX: hardware will not be ready until ath_open() being called */
sc->sc_invalid = 1; sc->sc_invalid = 1;
@ -1154,7 +1180,7 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
* reset the contents on initial power up. * reset the contents on initial power up.
*/ */
for (i = 0; i < sc->sc_keymax; i++) for (i = 0; i < sc->sc_keymax; i++)
ath9k_hw_keyreset(ah, (u_int16_t) i); ath9k_hw_keyreset(ah, (u16) i);
/* /*
* Mark key cache slots associated with global keys * Mark key cache slots associated with global keys
* as in use. If we knew TKIP was not to be used we * as in use. If we knew TKIP was not to be used we
@ -1175,15 +1201,12 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
*/ */
rd = ah->ah_currentRD; rd = ah->ah_currentRD;
error = ath_getchannels(sc, error = ath_setup_channels(sc);
CTRY_DEFAULT,
ath_outdoor,
1);
if (error) if (error)
goto bad; goto bad;
/* default to STA mode */ /* default to STA mode */
sc->sc_opmode = HAL_M_MONITOR; sc->sc_opmode = ATH9K_M_MONITOR;
/* Setup rate tables for all potential media types. */ /* Setup rate tables for all potential media types. */
/* 11g encompasses b,g */ /* 11g encompasses b,g */
@ -1207,7 +1230,7 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
error = -EIO; error = -EIO;
goto bad2; goto bad2;
} }
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); sc->sc_cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
if (sc->sc_cabq == NULL) { if (sc->sc_cabq == NULL) {
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup CAB xmit queue\n", __func__); "%s: unable to setup CAB xmit queue\n", __func__);
@ -1223,7 +1246,7 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
/* Setup data queues */ /* Setup data queues */
/* NB: ensure BK queue is the lowest priority h/w queue */ /* NB: ensure BK queue is the lowest priority h/w queue */
if (!ath_tx_setup(sc, HAL_WME_AC_BK)) { if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for BK traffic\n", "%s: unable to setup xmit queue for BK traffic\n",
__func__); __func__);
@ -1231,21 +1254,21 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
goto bad2; goto bad2;
} }
if (!ath_tx_setup(sc, HAL_WME_AC_BE)) { if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for BE traffic\n", "%s: unable to setup xmit queue for BE traffic\n",
__func__); __func__);
error = -EIO; error = -EIO;
goto bad2; goto bad2;
} }
if (!ath_tx_setup(sc, HAL_WME_AC_VI)) { if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for VI traffic\n", "%s: unable to setup xmit queue for VI traffic\n",
__func__); __func__);
error = -EIO; error = -EIO;
goto bad2; goto bad2;
} }
if (!ath_tx_setup(sc, HAL_WME_AC_VO)) { if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to setup xmit queue for VO traffic\n", "%s: unable to setup xmit queue for VO traffic\n",
__func__); __func__);
@ -1259,7 +1282,8 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
goto bad2; goto bad2;
} }
if (ath9k_hw_getcapability(ah, HAL_CAP_CIPHER, HAL_CIPHER_TKIP, NULL)) { if (ath9k_hw_getcapability(ah, HAL_CAP_CIPHER,
ATH9K_CIPHER_TKIP, NULL)) {
/* /*
* Whether we should enable h/w TKIP MIC. * Whether we should enable h/w TKIP MIC.
* XXX: if we don't support WME TKIP MIC, then we wouldn't * XXX: if we don't support WME TKIP MIC, then we wouldn't
@ -1275,14 +1299,16 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
* With split mic keys the number of stations is limited * With split mic keys the number of stations is limited
* to 27 otherwise 59. * to 27 otherwise 59.
*/ */
if (ath9k_hw_getcapability(ah, HAL_CAP_CIPHER, HAL_CIPHER_TKIP, NULL) if (ath9k_hw_getcapability(ah, HAL_CAP_CIPHER,
&& ath9k_hw_getcapability(ah, HAL_CAP_CIPHER, HAL_CIPHER_MIC, NULL) ATH9K_CIPHER_TKIP, NULL)
&& ath9k_hw_getcapability(ah, HAL_CAP_TKIP_SPLIT, 0, NULL)) && ath9k_hw_getcapability(ah, HAL_CAP_CIPHER,
ATH9K_CIPHER_MIC, NULL)
&& ath9k_hw_getcapability(ah, HAL_CAP_TKIP_SPLIT,
0, NULL))
sc->sc_splitmic = 1; sc->sc_splitmic = 1;
/* turn on mcast key search if possible */ /* turn on mcast key search if possible */
if (ath9k_hw_getcapability(ah, HAL_CAP_MCAST_KEYSRCH, 0, NULL) if (!ath9k_hw_getcapability(ah, HAL_CAP_MCAST_KEYSRCH, 0, NULL))
== HAL_OK)
(void)ath9k_hw_setcapability(ah, HAL_CAP_MCAST_KEYSRCH, 1, (void)ath9k_hw_setcapability(ah, HAL_CAP_MCAST_KEYSRCH, 1,
1, NULL); 1, NULL);
@ -1314,7 +1340,7 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask); ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
ath9k_hw_setbssidmask(ah, sc->sc_bssidmask); ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
} }
sc->sc_slottime = HAL_SLOT_TIME_9; /* default to short slot time */ sc->sc_slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
/* initialize beacon slots */ /* initialize beacon slots */
for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++) for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++)
@ -1331,7 +1357,7 @@ int ath_init(u_int16_t devid, struct ath_softc *sc)
return 0; return 0;
bad2: bad2:
/* cleanup tx queues */ /* cleanup tx queues */
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i)) if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]); ath_tx_cleanupq(sc, &sc->sc_txq[i]);
bad: bad:
@ -1349,10 +1375,10 @@ void ath_deinit(struct ath_softc *sc)
ath_stop(sc); ath_stop(sc);
if (!sc->sc_invalid) if (!sc->sc_invalid)
ath9k_hw_setpower(sc->sc_ah, HAL_PM_AWAKE); ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
ath_rate_detach(sc->sc_rc); ath_rate_detach(sc->sc_rc);
/* cleanup tx queues */ /* cleanup tx queues */
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
if (ATH_TXQ_SETUP(sc, i)) if (ATH_TXQ_SETUP(sc, i))
ath_tx_cleanupq(sc, &sc->sc_txq[i]); ath_tx_cleanupq(sc, &sc->sc_txq[i]);
ath9k_hw_detach(ah); ath9k_hw_detach(ah);
@ -1488,7 +1514,7 @@ void ath_newassoc(struct ath_softc *sc,
/* Encryption */ /* Encryption */
/**************/ /**************/
void ath_key_reset(struct ath_softc *sc, u_int16_t keyix, int freeslot) void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
{ {
ath9k_hw_keyreset(sc->sc_ah, keyix); ath9k_hw_keyreset(sc->sc_ah, keyix);
if (freeslot) if (freeslot)
@ -1496,9 +1522,9 @@ void ath_key_reset(struct ath_softc *sc, u_int16_t keyix, int freeslot)
} }
int ath_keyset(struct ath_softc *sc, int ath_keyset(struct ath_softc *sc,
u_int16_t keyix, u16 keyix,
struct hal_keyval *hk, struct ath9k_keyval *hk,
const u_int8_t mac[ETH_ALEN]) const u8 mac[ETH_ALEN])
{ {
bool status; bool status;
@ -1522,7 +1548,7 @@ int ath_keyset(struct ath_softc *sc,
void ath_update_txpow(struct ath_softc *sc) void ath_update_txpow(struct ath_softc *sc)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
u_int32_t txpow; u32 txpow;
if (sc->sc_curtxpow != sc->sc_config.txpowlimit) { if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit); ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
@ -1534,7 +1560,7 @@ void ath_update_txpow(struct ath_softc *sc)
/* Return the current country and domain information */ /* Return the current country and domain information */
void ath_get_currentCountry(struct ath_softc *sc, void ath_get_currentCountry(struct ath_softc *sc,
struct hal_country_entry *ctry) struct ath9k_country_entry *ctry)
{ {
ath9k_regd_get_current_country(sc->sc_ah, ctry); ath9k_regd_get_current_country(sc->sc_ah, ctry);
@ -1572,8 +1598,8 @@ void ath_slow_ant_div_init(struct ath_antdiv *antdiv,
} }
void ath_slow_ant_div_start(struct ath_antdiv *antdiv, void ath_slow_ant_div_start(struct ath_antdiv *antdiv,
u_int8_t num_antcfg, u8 num_antcfg,
const u_int8_t *bssid) const u8 *bssid)
{ {
antdiv->antdiv_num_antcfg = antdiv->antdiv_num_antcfg =
num_antcfg < ATH_ANT_DIV_MAX_CFG ? num_antcfg < ATH_ANT_DIV_MAX_CFG ?
@ -1594,10 +1620,10 @@ void ath_slow_ant_div_stop(struct ath_antdiv *antdiv)
} }
static int32_t ath_find_max_val(int32_t *val, static int32_t ath_find_max_val(int32_t *val,
u_int8_t num_val, u_int8_t *max_index) u8 num_val, u8 *max_index)
{ {
u_int32_t MaxVal = *val++; u32 MaxVal = *val++;
u_int32_t cur_index = 0; u32 cur_index = 0;
*max_index = 0; *max_index = 0;
while (++cur_index < num_val) { while (++cur_index < num_val) {
@ -1618,8 +1644,8 @@ void ath_slow_ant_div(struct ath_antdiv *antdiv,
{ {
struct ath_softc *sc = antdiv->antdiv_sc; struct ath_softc *sc = antdiv->antdiv_sc;
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
u_int64_t curtsf = 0; u64 curtsf = 0;
u_int8_t bestcfg, curcfg = antdiv->antdiv_curcfg; u8 bestcfg, curcfg = antdiv->antdiv_curcfg;
__le16 fc = hdr->frame_control; __le16 fc = hdr->frame_control;
if (antdiv->antdiv_start && ieee80211_is_beacon(fc) if (antdiv->antdiv_start && ieee80211_is_beacon(fc)
@ -1642,7 +1668,7 @@ void ath_slow_ant_div(struct ath_antdiv *antdiv,
if (curcfg == antdiv->antdiv_num_antcfg) if (curcfg == antdiv->antdiv_num_antcfg)
curcfg = 0; curcfg = 0;
if (HAL_OK == ath9k_hw_select_antconfig(ah, curcfg)) { if (!ath9k_hw_select_antconfig(ah, curcfg)) {
antdiv->antdiv_bestcfg = antdiv->antdiv_curcfg; antdiv->antdiv_bestcfg = antdiv->antdiv_curcfg;
antdiv->antdiv_curcfg = curcfg; antdiv->antdiv_curcfg = curcfg;
antdiv->antdiv_laststatetsf = curtsf; antdiv->antdiv_laststatetsf = curtsf;
@ -1663,14 +1689,14 @@ void ath_slow_ant_div(struct ath_antdiv *antdiv,
if (curcfg == antdiv->antdiv_bestcfg) { if (curcfg == antdiv->antdiv_bestcfg) {
ath_find_max_val(antdiv->antdiv_lastbrssi, ath_find_max_val(antdiv->antdiv_lastbrssi,
antdiv->antdiv_num_antcfg, &bestcfg); antdiv->antdiv_num_antcfg, &bestcfg);
if (HAL_OK == ath9k_hw_select_antconfig(ah, bestcfg)) { if (!ath9k_hw_select_antconfig(ah, bestcfg)) {
antdiv->antdiv_bestcfg = bestcfg; antdiv->antdiv_bestcfg = bestcfg;
antdiv->antdiv_curcfg = bestcfg; antdiv->antdiv_curcfg = bestcfg;
antdiv->antdiv_laststatetsf = curtsf; antdiv->antdiv_laststatetsf = curtsf;
antdiv->antdiv_state = ATH_ANT_DIV_IDLE; antdiv->antdiv_state = ATH_ANT_DIV_IDLE;
} }
} else { } else {
if (HAL_OK == ath9k_hw_select_antconfig(ah, curcfg)) { if (!ath9k_hw_select_antconfig(ah, curcfg)) {
antdiv->antdiv_curcfg = curcfg; antdiv->antdiv_curcfg = curcfg;
antdiv->antdiv_laststatetsf = curtsf; antdiv->antdiv_laststatetsf = curtsf;
antdiv->antdiv_state = ATH_ANT_DIV_SCAN; antdiv->antdiv_state = ATH_ANT_DIV_SCAN;
@ -1730,9 +1756,9 @@ int ath_descdma_setup(struct ath_softc *sc,
* one skipped descriptor per 4K page. * one skipped descriptor per 4K page.
*/ */
if (!(sc->sc_ah->ah_caps.hal4kbSplitTransSupport)) { if (!(sc->sc_ah->ah_caps.hal4kbSplitTransSupport)) {
u_int32_t ndesc_skipped = u32 ndesc_skipped =
ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len); ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
u_int32_t dma_len; u32 dma_len;
while (ndesc_skipped) { while (ndesc_skipped) {
dma_len = ndesc_skipped * sizeof(struct ath_desc); dma_len = ndesc_skipped * sizeof(struct ath_desc);
@ -1752,8 +1778,8 @@ int ath_descdma_setup(struct ath_softc *sc,
} }
ds = dd->dd_desc; ds = dd->dd_desc;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n", DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n",
__func__, dd->dd_name, ds, (u_int32_t) dd->dd_desc_len, __func__, dd->dd_name, ds, (u32) dd->dd_desc_len,
ito64(dd->dd_desc_paddr), /*XXX*/(u_int32_t) dd->dd_desc_len); ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
/* allocate buffers */ /* allocate buffers */
bsize = sizeof(struct ath_buf) * nbuf; bsize = sizeof(struct ath_buf) * nbuf;
@ -1838,40 +1864,40 @@ int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
switch (queue) { switch (queue) {
case 0: case 0:
qnum = sc->sc_haltype2q[HAL_WME_AC_VO]; qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO];
break; break;
case 1: case 1:
qnum = sc->sc_haltype2q[HAL_WME_AC_VI]; qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI];
break; break;
case 2: case 2:
qnum = sc->sc_haltype2q[HAL_WME_AC_BE]; qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
break; break;
case 3: case 3:
qnum = sc->sc_haltype2q[HAL_WME_AC_BK]; qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK];
break; break;
default: default:
qnum = sc->sc_haltype2q[HAL_WME_AC_BE]; qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
break; break;
} }
return qnum; return qnum;
} }
int ath_get_mac80211_qnum(u_int queue, struct ath_softc *sc) int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
{ {
int qnum; int qnum;
switch (queue) { switch (queue) {
case HAL_WME_AC_VO: case ATH9K_WME_AC_VO:
qnum = 0; qnum = 0;
break; break;
case HAL_WME_AC_VI: case ATH9K_WME_AC_VI:
qnum = 1; qnum = 1;
break; break;
case HAL_WME_AC_BE: case ATH9K_WME_AC_BE:
qnum = 2; qnum = 2;
break; break;
case HAL_WME_AC_BK: case ATH9K_WME_AC_BK:
qnum = 3; qnum = 3;
break; break;
default: default:
@ -1890,9 +1916,9 @@ int ath_get_mac80211_qnum(u_int queue, struct ath_softc *sc)
* a full 64-bit TSF using the current h/w TSF. * a full 64-bit TSF using the current h/w TSF.
*/ */
u_int64_t ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp) u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
{ {
u_int64_t tsf; u64 tsf;
tsf = ath9k_hw_gettsf64(sc->sc_ah); tsf = ath9k_hw_gettsf64(sc->sc_ah);
if ((tsf & 0x7fff) < rstamp) if ((tsf & 0x7fff) < rstamp)
@ -1907,7 +1933,7 @@ u_int64_t ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp)
* MIMO technology. * MIMO technology.
*/ */
void ath_setdefantenna(void *context, u_int antenna) void ath_setdefantenna(void *context, u32 antenna)
{ {
struct ath_softc *sc = (struct ath_softc *)context; struct ath_softc *sc = (struct ath_softc *)context;
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;

View File

@ -213,11 +213,11 @@ enum ATH_DEBUG {
/* Per-instance load-time (note: NOT run-time) configurations /* Per-instance load-time (note: NOT run-time) configurations
* for Atheros Device */ * for Atheros Device */
struct ath_config { struct ath_config {
u_int32_t ath_aggr_prot; u32 ath_aggr_prot;
u_int16_t txpowlimit; u16 txpowlimit;
u_int16_t txpowlimit_override; u16 txpowlimit_override;
u_int8_t cabqReadytime; /* Cabq Readytime % */ u8 cabqReadytime; /* Cabq Readytime % */
u_int8_t swBeaconProcess; /* Process received beacons u8 swBeaconProcess; /* Process received beacons
in SW (vs HW) */ in SW (vs HW) */
}; };
@ -269,8 +269,8 @@ chains is due to FF aggregation in the driver. */
struct ath_buf_state { struct ath_buf_state {
int bfs_nframes; /* # frames in aggregate */ int bfs_nframes; /* # frames in aggregate */
u_int16_t bfs_al; /* length of aggregate */ u16 bfs_al; /* length of aggregate */
u_int16_t bfs_frmlen; /* length of frame */ u16 bfs_frmlen; /* length of frame */
int bfs_seqno; /* sequence number */ int bfs_seqno; /* sequence number */
int bfs_tidno; /* tid of this frame */ int bfs_tidno; /* tid of this frame */
int bfs_retries; /* current retries */ int bfs_retries; /* current retries */
@ -289,7 +289,8 @@ struct ath_buf_state {
when set for tx frame */ when set for tx frame */
int bfs_rifsburst_elem; /* RIFS burst/bar */ int bfs_rifsburst_elem; /* RIFS burst/bar */
int bfs_nrifsubframes; /* # of elements in burst */ int bfs_nrifsubframes; /* # of elements in burst */
enum hal_key_type bfs_keytype; /* key type use to encrypt this frame */ /* key type use to encrypt this frame */
enum ath9k_key_type bfs_keytype;
}; };
#define bf_nframes bf_state.bfs_nframes #define bf_nframes bf_state.bfs_nframes
@ -332,8 +333,8 @@ struct ath_buf {
struct ath_desc *bf_desc; /* virtual addr of desc */ struct ath_desc *bf_desc; /* virtual addr of desc */
dma_addr_t bf_daddr; /* physical addr of desc */ dma_addr_t bf_daddr; /* physical addr of desc */
dma_addr_t bf_buf_addr; /* physical addr of data buffer */ dma_addr_t bf_buf_addr; /* physical addr of data buffer */
u_int32_t bf_status; u32 bf_status;
u_int16_t bf_flags; /* tx descriptor flags */ u16 bf_flags; /* tx descriptor flags */
struct ath_buf_state bf_state; /* buffer state */ struct ath_buf_state bf_state; /* buffer state */
dma_addr_t bf_dmacontext; dma_addr_t bf_dmacontext;
}; };
@ -360,7 +361,7 @@ struct ath_descdma {
const char *dd_name; const char *dd_name;
struct ath_desc *dd_desc; /* descriptors */ struct ath_desc *dd_desc; /* descriptors */
dma_addr_t dd_desc_paddr; /* physical addr of dd_desc */ dma_addr_t dd_desc_paddr; /* physical addr of dd_desc */
u_int32_t dd_desc_len; /* size of dd_desc */ u32 dd_desc_len; /* size of dd_desc */
struct ath_buf *dd_bufptr; /* associated buffers */ struct ath_buf *dd_bufptr; /* associated buffers */
dma_addr_t dd_dmacontext; dma_addr_t dd_dmacontext;
}; };
@ -402,13 +403,13 @@ enum ATH_RX_TYPE {
/* per frame rx status block */ /* per frame rx status block */
struct ath_recv_status { struct ath_recv_status {
u_int64_t tsf; /* mac tsf */ u64 tsf; /* mac tsf */
int8_t rssi; /* RSSI (noise floor ajusted) */ int8_t rssi; /* RSSI (noise floor ajusted) */
int8_t rssictl[ATH_MAX_ANTENNA]; /* RSSI (noise floor ajusted) */ int8_t rssictl[ATH_MAX_ANTENNA]; /* RSSI (noise floor ajusted) */
int8_t rssiextn[ATH_MAX_ANTENNA]; /* RSSI (noise floor ajusted) */ int8_t rssiextn[ATH_MAX_ANTENNA]; /* RSSI (noise floor ajusted) */
int8_t abs_rssi; /* absolute RSSI */ int8_t abs_rssi; /* absolute RSSI */
u_int8_t rateieee; /* data rate received (IEEE rate code) */ u8 rateieee; /* data rate received (IEEE rate code) */
u_int8_t ratecode; /* phy rate code */ u8 ratecode; /* phy rate code */
int rateKbps; /* data rate received (Kbps) */ int rateKbps; /* data rate received (Kbps) */
int antenna; /* rx antenna */ int antenna; /* rx antenna */
int flags; /* status of associated skb */ int flags; /* status of associated skb */
@ -442,8 +443,8 @@ struct ath_arx_tid {
int baw_tail; /* tail of block-ack window */ int baw_tail; /* tail of block-ack window */
int seq_reset; /* need to reset start sequence */ int seq_reset; /* need to reset start sequence */
int addba_exchangecomplete; int addba_exchangecomplete;
u_int16_t seq_next; /* next expected sequence */ u16 seq_next; /* next expected sequence */
u_int16_t baw_size; /* block-ack window size */ u16 baw_size; /* block-ack window size */
}; };
/* Per-node receiver aggregate state */ /* Per-node receiver aggregate state */
@ -454,7 +455,7 @@ struct ath_arx {
int ath_startrecv(struct ath_softc *sc); int ath_startrecv(struct ath_softc *sc);
bool ath_stoprecv(struct ath_softc *sc); bool ath_stoprecv(struct ath_softc *sc);
void ath_flushrecv(struct ath_softc *sc); void ath_flushrecv(struct ath_softc *sc);
u_int32_t ath_calcrxfilter(struct ath_softc *sc); u32 ath_calcrxfilter(struct ath_softc *sc);
void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an); void ath_rx_node_init(struct ath_softc *sc, struct ath_node *an);
void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an); void ath_rx_node_free(struct ath_softc *sc, struct ath_node *an);
void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an); void ath_rx_node_cleanup(struct ath_softc *sc, struct ath_node *an);
@ -471,7 +472,7 @@ int ath_rx_input(struct ath_softc *sc,
int ath__rx_indicate(struct ath_softc *sc, int ath__rx_indicate(struct ath_softc *sc,
struct sk_buff *skb, struct sk_buff *skb,
struct ath_recv_status *status, struct ath_recv_status *status,
u_int16_t keyix); u16 keyix);
int ath_rx_subframe(struct ath_node *an, struct sk_buff *skb, int ath_rx_subframe(struct ath_node *an, struct sk_buff *skb,
struct ath_recv_status *status); struct ath_recv_status *status);
@ -520,15 +521,15 @@ enum ATH_SM_PWRSAV{
* hardware queue). * hardware queue).
*/ */
struct ath_txq { struct ath_txq {
u_int axq_qnum; /* hardware q number */ u32 axq_qnum; /* hardware q number */
u_int32_t *axq_link; /* link ptr in last TX desc */ u32 *axq_link; /* link ptr in last TX desc */
struct list_head axq_q; /* transmit queue */ struct list_head axq_q; /* transmit queue */
spinlock_t axq_lock; /* lock on q and link */ spinlock_t axq_lock; /* lock on q and link */
unsigned long axq_lockflags; /* intr state when must cli */ unsigned long axq_lockflags; /* intr state when must cli */
u_int axq_depth; /* queue depth */ u32 axq_depth; /* queue depth */
u_int8_t axq_aggr_depth; /* aggregates queued */ u8 axq_aggr_depth; /* aggregates queued */
u_int32_t axq_totalqueued;/* total ever queued */ u32 axq_totalqueued;/* total ever queued */
u_int axq_intrcnt; /* count to determine u32 axq_intrcnt; /* count to determine
if descriptor should generate if descriptor should generate
int on this txq. */ int on this txq. */
bool stopped; /* Is mac80211 queue bool stopped; /* Is mac80211 queue
@ -550,9 +551,9 @@ struct ath_atx_tid {
struct ath_node *an; /* parent node structure */ struct ath_node *an; /* parent node structure */
struct ath_atx_ac *ac; /* parent access category */ struct ath_atx_ac *ac; /* parent access category */
struct ath_buf *tx_buf[ATH_TID_MAX_BUFS];/* active tx frames */ struct ath_buf *tx_buf[ATH_TID_MAX_BUFS];/* active tx frames */
u_int16_t seq_start; /* starting seq of BA window */ u16 seq_start; /* starting seq of BA window */
u_int16_t seq_next; /* next seq to be used */ u16 seq_next; /* next seq to be used */
u_int16_t baw_size; /* BA window size */ u16 baw_size; /* BA window size */
int tidno; /* TID number */ int tidno; /* TID number */
int baw_head; /* first un-acked tx buffer */ int baw_head; /* first un-acked tx buffer */
int baw_tail; /* next unused tx buffer slot */ int baw_tail; /* next unused tx buffer slot */
@ -560,7 +561,7 @@ struct ath_atx_tid {
int paused; /* TID is paused */ int paused; /* TID is paused */
int cleanup_inprogress; /* aggr of this TID is int cleanup_inprogress; /* aggr of this TID is
being teared down */ being teared down */
u_int32_t addba_exchangecomplete:1; /* ADDBA state */ u32 addba_exchangecomplete:1; /* ADDBA state */
int32_t addba_exchangeinprogress; int32_t addba_exchangeinprogress;
int addba_exchangeattempts; int addba_exchangeattempts;
}; };
@ -585,21 +586,21 @@ struct ath_tx_control {
struct ath_node *an; /* destination to sent to */ struct ath_node *an; /* destination to sent to */
int if_id; /* only valid for cab traffic */ int if_id; /* only valid for cab traffic */
int qnum; /* h/w queue number */ int qnum; /* h/w queue number */
u_int ht:1; /* if it can be transmitted using HT */ u32 ht:1; /* if it can be transmitted using HT */
u_int ps:1; /* if one or more stations are in PS mode */ u32 ps:1; /* if one or more stations are in PS mode */
u_int use_minrate:1; /* if this frame should transmitted using u32 use_minrate:1; /* if this frame should transmitted using
minimum rate */ minimum rate */
enum hal_pkt_type atype; /* Atheros packet type */ enum ath9k_pkt_type atype; /* Atheros packet type */
enum hal_key_type keytype; /* key type */ enum ath9k_key_type keytype; /* key type */
u_int flags; /* HAL flags */ u32 flags; /* HAL flags */
u_int16_t seqno; /* sequence number */ u16 seqno; /* sequence number */
u_int16_t tidno; /* tid number */ u16 tidno; /* tid number */
u_int16_t txpower; /* transmit power */ u16 txpower; /* transmit power */
u_int16_t frmlen; /* frame length */ u16 frmlen; /* frame length */
u_int32_t keyix; /* key index */ u32 keyix; /* key index */
int min_rate; /* minimum rate */ int min_rate; /* minimum rate */
int mcast_rate; /* multicast rate */ int mcast_rate; /* multicast rate */
u_int16_t nextfraglen; /* next fragment length */ u16 nextfraglen; /* next fragment length */
/* below is set only by ath_dev */ /* below is set only by ath_dev */
struct ath_softc *dev; /* device handle */ struct ath_softc *dev; /* device handle */
dma_addr_t dmacontext; dma_addr_t dmacontext;
@ -627,7 +628,7 @@ struct ath_tx_stat {
#define ATH_TX_CHAIN_RSSI_VALID 0x01 #define ATH_TX_CHAIN_RSSI_VALID 0x01
/* if extn chain rssis are valid */ /* if extn chain rssis are valid */
#define ATH_TX_RSSI_EXTN_VALID 0x02 #define ATH_TX_RSSI_EXTN_VALID 0x02
u_int32_t airtime; /* time on air per final tx rate */ u32 airtime; /* time on air per final tx rate */
}; };
struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype); struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype);
@ -644,12 +645,12 @@ void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq);
int ath_tx_init(struct ath_softc *sc, int nbufs); int ath_tx_init(struct ath_softc *sc, int nbufs);
int ath_tx_cleanup(struct ath_softc *sc); int ath_tx_cleanup(struct ath_softc *sc);
int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype); int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype);
int ath_txq_update(struct ath_softc *sc, int qnum, struct hal_txq_info *q); int ath_txq_update(struct ath_softc *sc, int qnum, struct ath9k_txq_info *q);
int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb); int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb);
void ath_tx_tasklet(struct ath_softc *sc); void ath_tx_tasklet(struct ath_softc *sc);
u_int32_t ath_txq_depth(struct ath_softc *sc, int qnum); u32 ath_txq_depth(struct ath_softc *sc, int qnum);
u_int32_t ath_txq_aggr_depth(struct ath_softc *sc, int qnum); u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum);
void ath_notify_txq_status(struct ath_softc *sc, u_int16_t queue_depth); void ath_notify_txq_status(struct ath_softc *sc, u16 queue_depth);
void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
struct ath_xmit_status *tx_status, struct ath_node *an); struct ath_xmit_status *tx_status, struct ath_node *an);
@ -733,8 +734,8 @@ struct ath_node {
atomic_t an_refcnt; atomic_t an_refcnt;
struct ath_chainmask_sel an_chainmask_sel; struct ath_chainmask_sel an_chainmask_sel;
struct ath_node_aggr an_aggr; /* A-MPDU aggregation state */ struct ath_node_aggr an_aggr; /* A-MPDU aggregation state */
u_int8_t an_smmode; /* SM Power save mode */ u8 an_smmode; /* SM Power save mode */
u_int8_t an_flags; u8 an_flags;
u8 an_addr[ETH_ALEN]; u8 an_addr[ETH_ALEN];
}; };
@ -743,9 +744,9 @@ void ath_tx_resume_tid(struct ath_softc *sc,
enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc, enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc,
struct ath_node *an, u8 tidno); struct ath_node *an, u8 tidno);
void ath_tx_aggr_teardown(struct ath_softc *sc, void ath_tx_aggr_teardown(struct ath_softc *sc,
struct ath_node *an, u_int8_t tidno); struct ath_node *an, u8 tidno);
void ath_rx_aggr_teardown(struct ath_softc *sc, void ath_rx_aggr_teardown(struct ath_softc *sc,
struct ath_node *an, u_int8_t tidno); struct ath_node *an, u8 tidno);
int ath_rx_aggr_start(struct ath_softc *sc, int ath_rx_aggr_start(struct ath_softc *sc,
const u8 *addr, const u8 *addr,
u16 tid, u16 tid,
@ -763,11 +764,11 @@ int ath_tx_aggr_stop(struct ath_softc *sc,
void ath_newassoc(struct ath_softc *sc, void ath_newassoc(struct ath_softc *sc,
struct ath_node *node, int isnew, int isuapsd); struct ath_node *node, int isnew, int isuapsd);
struct ath_node *ath_node_attach(struct ath_softc *sc, struct ath_node *ath_node_attach(struct ath_softc *sc,
u_int8_t addr[ETH_ALEN], int if_id); u8 addr[ETH_ALEN], int if_id);
void ath_node_detach(struct ath_softc *sc, struct ath_node *an, bool bh_flag); void ath_node_detach(struct ath_softc *sc, struct ath_node *an, bool bh_flag);
struct ath_node *ath_node_get(struct ath_softc *sc, u_int8_t addr[ETH_ALEN]); struct ath_node *ath_node_get(struct ath_softc *sc, u8 addr[ETH_ALEN]);
void ath_node_put(struct ath_softc *sc, struct ath_node *an, bool bh_flag); void ath_node_put(struct ath_softc *sc, struct ath_node *an, bool bh_flag);
struct ath_node *ath_node_find(struct ath_softc *sc, u_int8_t *addr); struct ath_node *ath_node_find(struct ath_softc *sc, u8 *addr);
/*******************/ /*******************/
/* Beacon Handling */ /* Beacon Handling */
@ -789,22 +790,22 @@ struct ath_node *ath_node_find(struct ath_softc *sc, u_int8_t *addr);
/* beacon configuration */ /* beacon configuration */
struct ath_beacon_config { struct ath_beacon_config {
u_int16_t beacon_interval; u16 beacon_interval;
u_int16_t listen_interval; u16 listen_interval;
u_int16_t dtim_period; u16 dtim_period;
u_int16_t bmiss_timeout; u16 bmiss_timeout;
u_int8_t dtim_count; u8 dtim_count;
u_int8_t tim_offset; u8 tim_offset;
union { union {
u_int64_t last_tsf; u64 last_tsf;
u_int8_t last_tstamp[8]; u8 last_tstamp[8];
} u; /* last received beacon/probe response timestamp of this BSS. */ } u; /* last received beacon/probe response timestamp of this BSS. */
}; };
/* offsets in a beacon frame for /* offsets in a beacon frame for
* quick acess of beacon content by low-level driver */ * quick acess of beacon content by low-level driver */
struct ath_beacon_offset { struct ath_beacon_offset {
u_int8_t *bo_tim; /* start of atim/dtim */ u8 *bo_tim; /* start of atim/dtim */
}; };
void ath9k_beacon_tasklet(unsigned long data); void ath9k_beacon_tasklet(unsigned long data);
@ -851,15 +852,15 @@ int ath_update_beacon(struct ath_softc *sc,
/* VAP configuration (from protocol layer) */ /* VAP configuration (from protocol layer) */
struct ath_vap_config { struct ath_vap_config {
u_int32_t av_fixed_rateset; u32 av_fixed_rateset;
u_int32_t av_fixed_retryset; u32 av_fixed_retryset;
}; };
/* driver-specific vap state */ /* driver-specific vap state */
struct ath_vap { struct ath_vap {
struct ieee80211_vif *av_if_data; /* interface(vap) struct ieee80211_vif *av_if_data; /* interface(vap)
instance from 802.11 protocal layer */ instance from 802.11 protocal layer */
enum hal_opmode av_opmode; /* VAP operational mode */ enum ath9k_opmode av_opmode; /* VAP operational mode */
struct ath_buf *av_bcbuf; /* beacon buffer */ struct ath_buf *av_bcbuf; /* beacon buffer */
struct ath_beacon_offset av_boff; /* dynamic update state */ struct ath_beacon_offset av_boff; /* dynamic update state */
struct ath_tx_control av_btxctl; /* tx control information struct ath_tx_control av_btxctl; /* tx control information
@ -869,12 +870,13 @@ struct ath_vap {
transmit queue */ transmit queue */
struct ath_vap_config av_config; /* vap configuration struct ath_vap_config av_config; /* vap configuration
parameters from 802.11 protocol layer*/ parameters from 802.11 protocol layer*/
struct ath_rate_node *rc_node;
}; };
int ath_vap_attach(struct ath_softc *sc, int ath_vap_attach(struct ath_softc *sc,
int if_id, int if_id,
struct ieee80211_vif *if_data, struct ieee80211_vif *if_data,
enum hal_opmode opmode); enum ath9k_opmode opmode);
int ath_vap_detach(struct ath_softc *sc, int if_id); int ath_vap_detach(struct ath_softc *sc, int if_id);
int ath_vap_config(struct ath_softc *sc, int ath_vap_config(struct ath_softc *sc,
int if_id, struct ath_vap_config *if_config); int if_id, struct ath_vap_config *if_config);
@ -895,28 +897,28 @@ enum ATH_ANT_DIV_STATE{
struct ath_antdiv { struct ath_antdiv {
struct ath_softc *antdiv_sc; struct ath_softc *antdiv_sc;
u_int8_t antdiv_start; u8 antdiv_start;
enum ATH_ANT_DIV_STATE antdiv_state; enum ATH_ANT_DIV_STATE antdiv_state;
u_int8_t antdiv_num_antcfg; u8 antdiv_num_antcfg;
u_int8_t antdiv_curcfg; u8 antdiv_curcfg;
u_int8_t antdiv_bestcfg; u8 antdiv_bestcfg;
int32_t antdivf_rssitrig; int32_t antdivf_rssitrig;
int32_t antdiv_lastbrssi[ATH_ANT_DIV_MAX_CFG]; int32_t antdiv_lastbrssi[ATH_ANT_DIV_MAX_CFG];
u_int64_t antdiv_lastbtsf[ATH_ANT_DIV_MAX_CFG]; u64 antdiv_lastbtsf[ATH_ANT_DIV_MAX_CFG];
u_int64_t antdiv_laststatetsf; u64 antdiv_laststatetsf;
u_int8_t antdiv_bssid[ETH_ALEN]; u8 antdiv_bssid[ETH_ALEN];
}; };
void ath_slow_ant_div_init(struct ath_antdiv *antdiv, void ath_slow_ant_div_init(struct ath_antdiv *antdiv,
struct ath_softc *sc, int32_t rssitrig); struct ath_softc *sc, int32_t rssitrig);
void ath_slow_ant_div_start(struct ath_antdiv *antdiv, void ath_slow_ant_div_start(struct ath_antdiv *antdiv,
u_int8_t num_antcfg, u8 num_antcfg,
const u_int8_t *bssid); const u8 *bssid);
void ath_slow_ant_div_stop(struct ath_antdiv *antdiv); void ath_slow_ant_div_stop(struct ath_antdiv *antdiv);
void ath_slow_ant_div(struct ath_antdiv *antdiv, void ath_slow_ant_div(struct ath_antdiv *antdiv,
struct ieee80211_hdr *wh, struct ieee80211_hdr *wh,
struct ath_rx_status *rx_stats); struct ath_rx_status *rx_stats);
void ath_setdefantenna(void *sc, u_int antenna); void ath_setdefantenna(void *sc, u32 antenna);
/********************/ /********************/
/* Main driver core */ /* Main driver core */
@ -947,7 +949,6 @@ void ath_setdefantenna(void *sc, u_int antenna);
* up to ATH_KEYMAX entries (could dynamically allocate state). * up to ATH_KEYMAX entries (could dynamically allocate state).
*/ */
#define ATH_KEYMAX 128 /* max key cache size we handle */ #define ATH_KEYMAX 128 /* max key cache size we handle */
#define ATH_KEYBYTES (ATH_KEYMAX/NBBY) /* storage space in bytes */
#define RESET_RETRY_TXQ 0x00000001 #define RESET_RETRY_TXQ 0x00000001
#define ATH_IF_ID_ANY 0xff #define ATH_IF_ID_ANY 0xff
@ -984,12 +985,6 @@ enum PROT_MODE {
PROT_M_CTSONLY PROT_M_CTSONLY
}; };
enum ieee80211_clist_cmd {
CLIST_UPDATE,
CLIST_DFS_UPDATE,
CLIST_NEW_COUNTRY
};
enum RATE_TYPE { enum RATE_TYPE {
NORMAL_RATE = 0, NORMAL_RATE = 0,
HALF_RATE, HALF_RATE,
@ -997,10 +992,10 @@ enum RATE_TYPE {
}; };
struct ath_ht_info { struct ath_ht_info {
enum hal_ht_macmode tx_chan_width; enum ath9k_ht_macmode tx_chan_width;
u_int16_t maxampdu; u16 maxampdu;
u_int8_t mpdudensity; u8 mpdudensity;
u_int8_t ext_chan_offset; u8 ext_chan_offset;
}; };
struct ath_softc { struct ath_softc {
@ -1014,52 +1009,52 @@ struct ath_softc {
int sc_debug; /* Debug masks */ int sc_debug; /* Debug masks */
struct ath_hal *sc_ah; /* HAL Instance */ struct ath_hal *sc_ah; /* HAL Instance */
struct ath_rate_softc *sc_rc; /* tx rate control support */ struct ath_rate_softc *sc_rc; /* tx rate control support */
u_int32_t sc_intrstatus; /* HAL_STATUS */ u32 sc_intrstatus; /* HAL_STATUS */
enum hal_opmode sc_opmode; /* current operating mode */ enum ath9k_opmode sc_opmode; /* current operating mode */
/* Properties, Config */ /* Properties, Config */
u_int8_t sc_invalid; /* being detached */ u8 sc_invalid; /* being detached */
u_int8_t sc_beacons; /* beacons running */ u8 sc_beacons; /* beacons running */
u_int8_t sc_scanning; /* scanning active */ u8 sc_scanning; /* scanning active */
u_int8_t sc_txaggr; /* enable 11n tx aggregation */ u8 sc_txaggr; /* enable 11n tx aggregation */
u_int8_t sc_rxaggr; /* enable 11n rx aggregation */ u8 sc_rxaggr; /* enable 11n rx aggregation */
u_int8_t sc_update_chainmask; /* change chain mask */ u8 sc_update_chainmask; /* change chain mask */
u_int8_t sc_full_reset; /* force full reset */ u8 sc_full_reset; /* force full reset */
enum wireless_mode sc_curmode; /* current phy mode */ enum wireless_mode sc_curmode; /* current phy mode */
u_int16_t sc_curtxpow; /* current tx power limit */ u16 sc_curtxpow; /* current tx power limit */
u_int16_t sc_curaid; /* current association id */ u16 sc_curaid; /* current association id */
u_int8_t sc_curbssid[ETH_ALEN]; u8 sc_curbssid[ETH_ALEN];
u_int8_t sc_myaddr[ETH_ALEN]; u8 sc_myaddr[ETH_ALEN];
enum PROT_MODE sc_protmode; /* protection mode */ enum PROT_MODE sc_protmode; /* protection mode */
u_int8_t sc_mcastantenna;/* Multicast antenna number */ u8 sc_mcastantenna;/* Multicast antenna number */
u_int8_t sc_txantenna; /* data tx antenna u8 sc_txantenna; /* data tx antenna
(fixed or auto) */ (fixed or auto) */
u_int8_t sc_nbcnvaps; /* # of vaps sending beacons */ u8 sc_nbcnvaps; /* # of vaps sending beacons */
u_int16_t sc_nvaps; /* # of active virtual ap's */ u16 sc_nvaps; /* # of active virtual ap's */
struct ath_vap *sc_vaps[ATH_BCBUF]; /* interface id struct ath_vap *sc_vaps[ATH_BCBUF]; /* interface id
to avp map */ to avp map */
enum hal_int sc_imask; /* interrupt mask copy */ enum ath9k_int sc_imask; /* interrupt mask copy */
u_int8_t sc_bssidmask[ETH_ALEN]; u8 sc_bssidmask[ETH_ALEN];
u_int8_t sc_defant; /* current default antenna */ u8 sc_defant; /* current default antenna */
u_int8_t sc_rxotherant; /* rx's on non-default antenna*/ u8 sc_rxotherant; /* rx's on non-default antenna*/
u_int16_t sc_cachelsz; /* cache line size */ u16 sc_cachelsz; /* cache line size */
int sc_slotupdate; /* slot to next advance fsm */ int sc_slotupdate; /* slot to next advance fsm */
int sc_slottime; /* slot time */ int sc_slottime; /* slot time */
u_int8_t sc_noreset; u8 sc_noreset;
int sc_bslot[ATH_BCBUF];/* beacon xmit slots */ int sc_bslot[ATH_BCBUF];/* beacon xmit slots */
struct hal_node_stats sc_halstats; /* station-mode rssi stats */ struct ath9k_node_stats sc_halstats; /* station-mode rssi stats */
struct list_head node_list; struct list_head node_list;
struct ath_ht_info sc_ht_info; struct ath_ht_info sc_ht_info;
int16_t sc_noise_floor; /* signal noise floor in dBm */ int16_t sc_noise_floor; /* signal noise floor in dBm */
enum hal_ht_extprotspacing sc_ht_extprotspacing; enum ath9k_ht_extprotspacing sc_ht_extprotspacing;
u_int8_t sc_tx_chainmask; u8 sc_tx_chainmask;
u_int8_t sc_rx_chainmask; u8 sc_rx_chainmask;
u_int8_t sc_rxchaindetect_ref; u8 sc_rxchaindetect_ref;
u_int8_t sc_rxchaindetect_thresh5GHz; u8 sc_rxchaindetect_thresh5GHz;
u_int8_t sc_rxchaindetect_thresh2GHz; u8 sc_rxchaindetect_thresh2GHz;
u_int8_t sc_rxchaindetect_delta5GHz; u8 sc_rxchaindetect_delta5GHz;
u_int8_t sc_rxchaindetect_delta2GHz; u8 sc_rxchaindetect_delta2GHz;
u_int32_t sc_rtsaggrlimit; /* Chipset specific u32 sc_rtsaggrlimit; /* Chipset specific
aggr limit */ aggr limit */
u32 sc_flags; u32 sc_flags;
#ifdef CONFIG_SLOW_ANT_DIV #ifdef CONFIG_SLOW_ANT_DIV
@ -1073,56 +1068,56 @@ struct ath_softc {
} sc_updateslot; /* slot time update fsm */ } sc_updateslot; /* slot time update fsm */
/* Crypto */ /* Crypto */
u_int sc_keymax; /* size of key cache */ u32 sc_keymax; /* size of key cache */
DECLARE_BITMAP (sc_keymap, ATH_KEYBYTES);/* key use bit map */ DECLARE_BITMAP (sc_keymap, ATH_KEYMAX);/* key use bit map */
u_int8_t sc_splitmic; /* split TKIP MIC keys */ u8 sc_splitmic; /* split TKIP MIC keys */
int sc_keytype; /* type of the key being used */ int sc_keytype; /* type of the key being used */
/* RX */ /* RX */
struct list_head sc_rxbuf; /* receive buffer */ struct list_head sc_rxbuf; /* receive buffer */
struct ath_descdma sc_rxdma; /* RX descriptors */ struct ath_descdma sc_rxdma; /* RX descriptors */
int sc_rxbufsize; /* rx size based on mtu */ int sc_rxbufsize; /* rx size based on mtu */
u_int32_t *sc_rxlink; /* link ptr in last RX desc */ u32 *sc_rxlink; /* link ptr in last RX desc */
u_int32_t sc_rxflush; /* rx flush in progress */ u32 sc_rxflush; /* rx flush in progress */
u_int64_t sc_lastrx; /* tsf of last rx'd frame */ u64 sc_lastrx; /* tsf of last rx'd frame */
/* TX */ /* TX */
struct list_head sc_txbuf; /* transmit buffer */ struct list_head sc_txbuf; /* transmit buffer */
struct ath_txq sc_txq[HAL_NUM_TX_QUEUES]; struct ath_txq sc_txq[ATH9K_NUM_TX_QUEUES];
struct ath_descdma sc_txdma; /* TX descriptors */ struct ath_descdma sc_txdma; /* TX descriptors */
u_int sc_txqsetup; /* h/w queues setup */ u32 sc_txqsetup; /* h/w queues setup */
u_int sc_txintrperiod;/* tx interrupt batching */ u32 sc_txintrperiod;/* tx interrupt batching */
int sc_haltype2q[HAL_WME_AC_VO+1]; /* HAL WME int sc_haltype2q[ATH9K_WME_AC_VO+1]; /* HAL WME
AC -> h/w qnum */ AC -> h/w qnum */
u_int32_t sc_ant_tx[8]; /* recent tx frames/antenna */ u32 sc_ant_tx[8]; /* recent tx frames/antenna */
/* Beacon */ /* Beacon */
struct hal_txq_info sc_beacon_qi; /* adhoc only: beacon struct ath9k_txq_info sc_beacon_qi; /* adhoc only: beacon
queue parameters */ queue parameters */
struct ath_descdma sc_bdma; /* beacon descriptors */ struct ath_descdma sc_bdma; /* beacon descriptors */
struct ath_txq *sc_cabq; /* tx q for cab frames */ struct ath_txq *sc_cabq; /* tx q for cab frames */
struct list_head sc_bbuf; /* beacon buffers */ struct list_head sc_bbuf; /* beacon buffers */
u_int sc_bhalq; /* HAL q for outgoing beacons */ u32 sc_bhalq; /* HAL q for outgoing beacons */
u_int sc_bmisscount; /* missed beacon transmits */ u32 sc_bmisscount; /* missed beacon transmits */
u_int32_t ast_be_xmit; /* beacons transmitted */ u32 ast_be_xmit; /* beacons transmitted */
/* Rate */ /* Rate */
struct ieee80211_rate rates[IEEE80211_NUM_BANDS][ATH_RATE_MAX]; struct ieee80211_rate rates[IEEE80211_NUM_BANDS][ATH_RATE_MAX];
const struct hal_rate_table *sc_rates[WIRELESS_MODE_MAX]; const struct ath9k_rate_table *sc_rates[WIRELESS_MODE_MAX];
const struct hal_rate_table *sc_currates; /* current rate table */ const struct ath9k_rate_table *sc_currates; /* current rate table */
u_int8_t sc_rixmap[256]; /* IEEE to h/w u8 sc_rixmap[256]; /* IEEE to h/w
rate table ix */ rate table ix */
u_int8_t sc_minrateix; /* min h/w rate index */ u8 sc_minrateix; /* min h/w rate index */
u_int8_t sc_protrix; /* protection rate index */ u8 sc_protrix; /* protection rate index */
struct { struct {
u_int32_t rateKbps; /* transfer rate in kbs */ u32 rateKbps; /* transfer rate in kbs */
u_int8_t ieeerate; /* IEEE rate */ u8 ieeerate; /* IEEE rate */
} sc_hwmap[256]; /* h/w rate ix mappings */ } sc_hwmap[256]; /* h/w rate ix mappings */
/* Channel, Band */ /* Channel, Band */
struct ieee80211_channel channels[IEEE80211_NUM_BANDS][ATH_CHAN_MAX]; struct ieee80211_channel channels[IEEE80211_NUM_BANDS][ATH_CHAN_MAX];
struct ieee80211_supported_band sbands[IEEE80211_NUM_BANDS]; struct ieee80211_supported_band sbands[IEEE80211_NUM_BANDS];
struct hal_channel sc_curchan; /* current h/w channel */ struct ath9k_channel sc_curchan; /* current h/w channel */
/* Locks */ /* Locks */
spinlock_t sc_rxflushlock; /* lock of RX flush */ spinlock_t sc_rxflushlock; /* lock of RX flush */
@ -1132,46 +1127,39 @@ struct ath_softc {
spinlock_t node_lock; spinlock_t node_lock;
}; };
int ath_init(u_int16_t devid, struct ath_softc *sc); int ath_init(u16 devid, struct ath_softc *sc);
void ath_deinit(struct ath_softc *sc); void ath_deinit(struct ath_softc *sc);
int ath_open(struct ath_softc *sc, struct hal_channel *initial_chan); int ath_open(struct ath_softc *sc, struct ath9k_channel *initial_chan);
int ath_suspend(struct ath_softc *sc); int ath_suspend(struct ath_softc *sc);
irqreturn_t ath_isr(int irq, void *dev); irqreturn_t ath_isr(int irq, void *dev);
int ath_reset(struct ath_softc *sc); int ath_reset(struct ath_softc *sc);
void ath_scan_start(struct ath_softc *sc); void ath_scan_start(struct ath_softc *sc);
void ath_scan_end(struct ath_softc *sc); void ath_scan_end(struct ath_softc *sc);
int ath_set_channel(struct ath_softc *sc, struct hal_channel *hchan); int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan);
void ath_setup_channel_list(struct ath_softc *sc,
enum ieee80211_clist_cmd cmd,
const struct hal_channel *chans,
int nchan,
const u_int8_t *regclassids,
u_int nregclass,
int countrycode);
void ath_setup_rate(struct ath_softc *sc, void ath_setup_rate(struct ath_softc *sc,
enum wireless_mode wMode, enum wireless_mode wMode,
enum RATE_TYPE type, enum RATE_TYPE type,
const struct hal_rate_table *rt); const struct ath9k_rate_table *rt);
/*********************/ /*********************/
/* Utility Functions */ /* Utility Functions */
/*********************/ /*********************/
void ath_key_reset(struct ath_softc *sc, u_int16_t keyix, int freeslot); void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot);
int ath_keyset(struct ath_softc *sc, int ath_keyset(struct ath_softc *sc,
u_int16_t keyix, u16 keyix,
struct hal_keyval *hk, struct ath9k_keyval *hk,
const u_int8_t mac[ETH_ALEN]); const u8 mac[ETH_ALEN]);
int ath_get_hal_qnum(u16 queue, struct ath_softc *sc); int ath_get_hal_qnum(u16 queue, struct ath_softc *sc);
int ath_get_mac80211_qnum(u_int queue, struct ath_softc *sc); int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc);
void ath_setslottime(struct ath_softc *sc); void ath_setslottime(struct ath_softc *sc);
void ath_update_txpow(struct ath_softc *sc); void ath_update_txpow(struct ath_softc *sc);
int ath_cabq_update(struct ath_softc *); int ath_cabq_update(struct ath_softc *);
void ath_get_currentCountry(struct ath_softc *sc, void ath_get_currentCountry(struct ath_softc *sc,
struct hal_country_entry *ctry); struct ath9k_country_entry *ctry);
u_int64_t ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp); u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp);
void ath_internal_reset(struct ath_softc *sc); void ath_internal_reset(struct ath_softc *sc);
u_int32_t ath_chan2flags(struct ieee80211_channel *chan, struct ath_softc *sc); u32 ath_chan2flags(struct ieee80211_channel *chan, struct ath_softc *sc);
dma_addr_t ath_skb_map_single(struct ath_softc *sc, dma_addr_t ath_skb_map_single(struct ath_softc *sc,
struct sk_buff *skb, struct sk_buff *skb,
int direction, int direction,
@ -1180,7 +1168,7 @@ void ath_skb_unmap_single(struct ath_softc *sc,
struct sk_buff *skb, struct sk_buff *skb,
int direction, int direction,
dma_addr_t *pa); dma_addr_t *pa);
void ath_mcast_merge(struct ath_softc *sc, u_int32_t mfilt[2]); void ath_mcast_merge(struct ath_softc *sc, u32 mfilt[2]);
enum hal_ht_macmode ath_cwm_macmode(struct ath_softc *sc); enum ath9k_ht_macmode ath_cwm_macmode(struct ath_softc *sc);
#endif /* CORE_H */ #endif /* CORE_H */

File diff suppressed because it is too large Load Diff

View File

@ -21,43 +21,43 @@
#include <linux/delay.h> #include <linux/delay.h>
struct ar5416_desc { struct ar5416_desc {
u_int32_t ds_link; u32 ds_link;
u_int32_t ds_data; u32 ds_data;
u_int32_t ds_ctl0; u32 ds_ctl0;
u_int32_t ds_ctl1; u32 ds_ctl1;
union { union {
struct { struct {
u_int32_t ctl2; u32 ctl2;
u_int32_t ctl3; u32 ctl3;
u_int32_t ctl4; u32 ctl4;
u_int32_t ctl5; u32 ctl5;
u_int32_t ctl6; u32 ctl6;
u_int32_t ctl7; u32 ctl7;
u_int32_t ctl8; u32 ctl8;
u_int32_t ctl9; u32 ctl9;
u_int32_t ctl10; u32 ctl10;
u_int32_t ctl11; u32 ctl11;
u_int32_t status0; u32 status0;
u_int32_t status1; u32 status1;
u_int32_t status2; u32 status2;
u_int32_t status3; u32 status3;
u_int32_t status4; u32 status4;
u_int32_t status5; u32 status5;
u_int32_t status6; u32 status6;
u_int32_t status7; u32 status7;
u_int32_t status8; u32 status8;
u_int32_t status9; u32 status9;
} tx; } tx;
struct { struct {
u_int32_t status0; u32 status0;
u_int32_t status1; u32 status1;
u_int32_t status2; u32 status2;
u_int32_t status3; u32 status3;
u_int32_t status4; u32 status4;
u_int32_t status5; u32 status5;
u_int32_t status6; u32 status6;
u_int32_t status7; u32 status7;
u_int32_t status8; u32 status8;
} rx; } rx;
} u; } u;
} __packed; } __packed;
@ -326,13 +326,13 @@ struct ar5416_desc {
#define set11nPktDurRTSCTS(_series, _index) \ #define set11nPktDurRTSCTS(_series, _index) \
(SM((_series)[_index].PktDuration, AR_PacketDur##_index) | \ (SM((_series)[_index].PktDuration, AR_PacketDur##_index) | \
((_series)[_index].RateFlags & HAL_RATESERIES_RTS_CTS ? \ ((_series)[_index].RateFlags & ATH9K_RATESERIES_RTS_CTS ? \
AR_RTSCTSQual##_index : 0)) AR_RTSCTSQual##_index : 0))
#define set11nRateFlags(_series, _index) \ #define set11nRateFlags(_series, _index) \
(((_series)[_index].RateFlags & HAL_RATESERIES_2040 ? \ (((_series)[_index].RateFlags & ATH9K_RATESERIES_2040 ? \
AR_2040_##_index : 0) \ AR_2040_##_index : 0) \
|((_series)[_index].RateFlags & HAL_RATESERIES_HALFGI ? \ |((_series)[_index].RateFlags & ATH9K_RATESERIES_HALFGI ? \
AR_GI##_index : 0) \ AR_GI##_index : 0) \
|SM((_series)[_index].ChSel, AR_ChainSel##_index)) |SM((_series)[_index].ChSel, AR_ChainSel##_index))
@ -350,27 +350,27 @@ struct ar5416_desc {
#define CCK_OFDM_GAIN_DELTA 15 #define CCK_OFDM_GAIN_DELTA 15
struct ar5416AniState { struct ar5416AniState {
struct hal_channel c; struct ath9k_channel c;
u_int8_t noiseImmunityLevel; u8 noiseImmunityLevel;
u_int8_t spurImmunityLevel; u8 spurImmunityLevel;
u_int8_t firstepLevel; u8 firstepLevel;
u_int8_t ofdmWeakSigDetectOff; u8 ofdmWeakSigDetectOff;
u_int8_t cckWeakSigThreshold; u8 cckWeakSigThreshold;
u_int32_t listenTime; u32 listenTime;
u_int32_t ofdmTrigHigh; u32 ofdmTrigHigh;
u_int32_t ofdmTrigLow; u32 ofdmTrigLow;
int32_t cckTrigHigh; int32_t cckTrigHigh;
int32_t cckTrigLow; int32_t cckTrigLow;
int32_t rssiThrLow; int32_t rssiThrLow;
int32_t rssiThrHigh; int32_t rssiThrHigh;
u_int32_t noiseFloor; u32 noiseFloor;
u_int32_t txFrameCount; u32 txFrameCount;
u_int32_t rxFrameCount; u32 rxFrameCount;
u_int32_t cycleCount; u32 cycleCount;
u_int32_t ofdmPhyErrCount; u32 ofdmPhyErrCount;
u_int32_t cckPhyErrCount; u32 cckPhyErrCount;
u_int32_t ofdmPhyErrBase; u32 ofdmPhyErrBase;
u_int32_t cckPhyErrBase; u32 cckPhyErrBase;
int16_t pktRssi[2]; int16_t pktRssi[2];
int16_t ofdmErrRssi[2]; int16_t ofdmErrRssi[2];
int16_t cckErrRssi[2]; int16_t cckErrRssi[2];
@ -384,23 +384,23 @@ struct ar5416AniState {
((AH5416(ah)->ah_procPhyErr & HAL_PROCESS_ANI)) ((AH5416(ah)->ah_procPhyErr & HAL_PROCESS_ANI))
struct ar5416Stats { struct ar5416Stats {
u_int32_t ast_ani_niup; u32 ast_ani_niup;
u_int32_t ast_ani_nidown; u32 ast_ani_nidown;
u_int32_t ast_ani_spurup; u32 ast_ani_spurup;
u_int32_t ast_ani_spurdown; u32 ast_ani_spurdown;
u_int32_t ast_ani_ofdmon; u32 ast_ani_ofdmon;
u_int32_t ast_ani_ofdmoff; u32 ast_ani_ofdmoff;
u_int32_t ast_ani_cckhigh; u32 ast_ani_cckhigh;
u_int32_t ast_ani_ccklow; u32 ast_ani_ccklow;
u_int32_t ast_ani_stepup; u32 ast_ani_stepup;
u_int32_t ast_ani_stepdown; u32 ast_ani_stepdown;
u_int32_t ast_ani_ofdmerrs; u32 ast_ani_ofdmerrs;
u_int32_t ast_ani_cckerrs; u32 ast_ani_cckerrs;
u_int32_t ast_ani_reset; u32 ast_ani_reset;
u_int32_t ast_ani_lzero; u32 ast_ani_lzero;
u_int32_t ast_ani_lneg; u32 ast_ani_lneg;
struct hal_mib_stats ast_mibstats; struct ath9k_mib_stats ast_mibstats;
struct hal_node_stats ast_nodestats; struct ath9k_node_stats ast_nodestats;
}; };
#define AR5416_OPFLAGS_11A 0x01 #define AR5416_OPFLAGS_11A 0x01
@ -495,100 +495,100 @@ enum ar5416_rates {
}; };
struct base_eep_header { struct base_eep_header {
u_int16_t length; u16 length;
u_int16_t checksum; u16 checksum;
u_int16_t version; u16 version;
u_int8_t opCapFlags; u8 opCapFlags;
u_int8_t eepMisc; u8 eepMisc;
u_int16_t regDmn[2]; u16 regDmn[2];
u_int8_t macAddr[6]; u8 macAddr[6];
u_int8_t rxMask; u8 rxMask;
u_int8_t txMask; u8 txMask;
u_int16_t rfSilent; u16 rfSilent;
u_int16_t blueToothOptions; u16 blueToothOptions;
u_int16_t deviceCap; u16 deviceCap;
u_int32_t binBuildNumber; u32 binBuildNumber;
u_int8_t deviceType; u8 deviceType;
u_int8_t pwdclkind; u8 pwdclkind;
u_int8_t futureBase[32]; u8 futureBase[32];
} __packed; } __packed;
struct spur_chan { struct spur_chan {
u_int16_t spurChan; u16 spurChan;
u_int8_t spurRangeLow; u8 spurRangeLow;
u_int8_t spurRangeHigh; u8 spurRangeHigh;
} __packed; } __packed;
struct modal_eep_header { struct modal_eep_header {
u_int32_t antCtrlChain[AR5416_MAX_CHAINS]; u32 antCtrlChain[AR5416_MAX_CHAINS];
u_int32_t antCtrlCommon; u32 antCtrlCommon;
u_int8_t antennaGainCh[AR5416_MAX_CHAINS]; u8 antennaGainCh[AR5416_MAX_CHAINS];
u_int8_t switchSettling; u8 switchSettling;
u_int8_t txRxAttenCh[AR5416_MAX_CHAINS]; u8 txRxAttenCh[AR5416_MAX_CHAINS];
u_int8_t rxTxMarginCh[AR5416_MAX_CHAINS]; u8 rxTxMarginCh[AR5416_MAX_CHAINS];
u_int8_t adcDesiredSize; u8 adcDesiredSize;
u_int8_t pgaDesiredSize; u8 pgaDesiredSize;
u_int8_t xlnaGainCh[AR5416_MAX_CHAINS]; u8 xlnaGainCh[AR5416_MAX_CHAINS];
u_int8_t txEndToXpaOff; u8 txEndToXpaOff;
u_int8_t txEndToRxOn; u8 txEndToRxOn;
u_int8_t txFrameToXpaOn; u8 txFrameToXpaOn;
u_int8_t thresh62; u8 thresh62;
u_int8_t noiseFloorThreshCh[AR5416_MAX_CHAINS]; u8 noiseFloorThreshCh[AR5416_MAX_CHAINS];
u_int8_t xpdGain; u8 xpdGain;
u_int8_t xpd; u8 xpd;
u_int8_t iqCalICh[AR5416_MAX_CHAINS]; u8 iqCalICh[AR5416_MAX_CHAINS];
u_int8_t iqCalQCh[AR5416_MAX_CHAINS]; u8 iqCalQCh[AR5416_MAX_CHAINS];
u_int8_t pdGainOverlap; u8 pdGainOverlap;
u_int8_t ob; u8 ob;
u_int8_t db; u8 db;
u_int8_t xpaBiasLvl; u8 xpaBiasLvl;
u_int8_t pwrDecreaseFor2Chain; u8 pwrDecreaseFor2Chain;
u_int8_t pwrDecreaseFor3Chain; u8 pwrDecreaseFor3Chain;
u_int8_t txFrameToDataStart; u8 txFrameToDataStart;
u_int8_t txFrameToPaOn; u8 txFrameToPaOn;
u_int8_t ht40PowerIncForPdadc; u8 ht40PowerIncForPdadc;
u_int8_t bswAtten[AR5416_MAX_CHAINS]; u8 bswAtten[AR5416_MAX_CHAINS];
u_int8_t bswMargin[AR5416_MAX_CHAINS]; u8 bswMargin[AR5416_MAX_CHAINS];
u_int8_t swSettleHt40; u8 swSettleHt40;
u_int8_t xatten2Db[AR5416_MAX_CHAINS]; u8 xatten2Db[AR5416_MAX_CHAINS];
u_int8_t xatten2Margin[AR5416_MAX_CHAINS]; u8 xatten2Margin[AR5416_MAX_CHAINS];
u_int8_t ob_ch1; u8 ob_ch1;
u_int8_t db_ch1; u8 db_ch1;
u_int8_t useAnt1:1, u8 useAnt1:1,
force_xpaon:1, force_xpaon:1,
local_bias:1, local_bias:1,
femBandSelectUsed:1, xlnabufin:1, xlnaisel:2, xlnabufmode:1; femBandSelectUsed:1, xlnabufin:1, xlnaisel:2, xlnabufmode:1;
u_int8_t futureModalar9280; u8 futureModalar9280;
u_int16_t xpaBiasLvlFreq[3]; u16 xpaBiasLvlFreq[3];
u_int8_t futureModal[6]; u8 futureModal[6];
struct spur_chan spurChans[AR5416_EEPROM_MODAL_SPURS]; struct spur_chan spurChans[AR5416_EEPROM_MODAL_SPURS];
} __packed; } __packed;
struct cal_data_per_freq { struct cal_data_per_freq {
u_int8_t pwrPdg[AR5416_NUM_PD_GAINS][AR5416_PD_GAIN_ICEPTS]; u8 pwrPdg[AR5416_NUM_PD_GAINS][AR5416_PD_GAIN_ICEPTS];
u_int8_t vpdPdg[AR5416_NUM_PD_GAINS][AR5416_PD_GAIN_ICEPTS]; u8 vpdPdg[AR5416_NUM_PD_GAINS][AR5416_PD_GAIN_ICEPTS];
} __packed; } __packed;
struct cal_target_power_leg { struct cal_target_power_leg {
u_int8_t bChannel; u8 bChannel;
u_int8_t tPow2x[4]; u8 tPow2x[4];
} __packed; } __packed;
struct cal_target_power_ht { struct cal_target_power_ht {
u_int8_t bChannel; u8 bChannel;
u_int8_t tPow2x[8]; u8 tPow2x[8];
} __packed; } __packed;
#ifdef __BIG_ENDIAN_BITFIELD #ifdef __BIG_ENDIAN_BITFIELD
struct cal_ctl_edges { struct cal_ctl_edges {
u_int8_t bChannel; u8 bChannel;
u_int8_t flag:2, tPower:6; u8 flag:2, tPower:6;
} __packed; } __packed;
#else #else
struct cal_ctl_edges { struct cal_ctl_edges {
u_int8_t bChannel; u8 bChannel;
u_int8_t tPower:6, flag:2; u8 tPower:6, flag:2;
} __packed; } __packed;
#endif #endif
@ -599,10 +599,10 @@ struct cal_ctl_data {
struct ar5416_eeprom { struct ar5416_eeprom {
struct base_eep_header baseEepHeader; struct base_eep_header baseEepHeader;
u_int8_t custData[64]; u8 custData[64];
struct modal_eep_header modalHeader[2]; struct modal_eep_header modalHeader[2];
u_int8_t calFreqPier5G[AR5416_NUM_5G_CAL_PIERS]; u8 calFreqPier5G[AR5416_NUM_5G_CAL_PIERS];
u_int8_t calFreqPier2G[AR5416_NUM_2G_CAL_PIERS]; u8 calFreqPier2G[AR5416_NUM_2G_CAL_PIERS];
struct cal_data_per_freq struct cal_data_per_freq
calPierData5G[AR5416_MAX_CHAINS][AR5416_NUM_5G_CAL_PIERS]; calPierData5G[AR5416_MAX_CHAINS][AR5416_NUM_5G_CAL_PIERS];
struct cal_data_per_freq struct cal_data_per_freq
@ -621,19 +621,19 @@ struct ar5416_eeprom {
calTargetPower2GHT20[AR5416_NUM_2G_20_TARGET_POWERS]; calTargetPower2GHT20[AR5416_NUM_2G_20_TARGET_POWERS];
struct cal_target_power_ht struct cal_target_power_ht
calTargetPower2GHT40[AR5416_NUM_2G_40_TARGET_POWERS]; calTargetPower2GHT40[AR5416_NUM_2G_40_TARGET_POWERS];
u_int8_t ctlIndex[AR5416_NUM_CTLS]; u8 ctlIndex[AR5416_NUM_CTLS];
struct cal_ctl_data ctlData[AR5416_NUM_CTLS]; struct cal_ctl_data ctlData[AR5416_NUM_CTLS];
u_int8_t padding; u8 padding;
} __packed; } __packed;
struct ar5416IniArray { struct ar5416IniArray {
u_int32_t *ia_array; u32 *ia_array;
u_int32_t ia_rows; u32 ia_rows;
u_int32_t ia_columns; u32 ia_columns;
}; };
#define INIT_INI_ARRAY(iniarray, array, rows, columns) do { \ #define INIT_INI_ARRAY(iniarray, array, rows, columns) do { \
(iniarray)->ia_array = (u_int32_t *)(array); \ (iniarray)->ia_array = (u32 *)(array); \
(iniarray)->ia_rows = (rows); \ (iniarray)->ia_rows = (rows); \
(iniarray)->ia_columns = (columns); \ (iniarray)->ia_columns = (columns); \
} while (0) } while (0)
@ -681,10 +681,10 @@ enum hal_cal_state {
struct hal_percal_data { struct hal_percal_data {
enum hal_cal_types calType; enum hal_cal_types calType;
u_int32_t calNumSamples; u32 calNumSamples;
u_int32_t calCountMax; u32 calCountMax;
void (*calCollect) (struct ath_hal *); void (*calCollect) (struct ath_hal *);
void (*calPostProc) (struct ath_hal *, u_int8_t); void (*calPostProc) (struct ath_hal *, u8);
}; };
struct hal_cal_list { struct hal_cal_list {
@ -696,25 +696,25 @@ struct hal_cal_list {
struct ath_hal_5416 { struct ath_hal_5416 {
struct ath_hal ah; struct ath_hal ah;
struct ar5416_eeprom ah_eeprom; struct ar5416_eeprom ah_eeprom;
u_int8_t ah_macaddr[ETH_ALEN]; u8 ah_macaddr[ETH_ALEN];
u_int8_t ah_bssid[ETH_ALEN]; u8 ah_bssid[ETH_ALEN];
u_int8_t ah_bssidmask[ETH_ALEN]; u8 ah_bssidmask[ETH_ALEN];
u_int16_t ah_assocId; u16 ah_assocId;
int16_t ah_curchanRadIndex; int16_t ah_curchanRadIndex;
u_int32_t ah_maskReg; u32 ah_maskReg;
struct ar5416Stats ah_stats; struct ar5416Stats ah_stats;
u_int32_t ah_txDescMask; u32 ah_txDescMask;
u_int32_t ah_txOkInterruptMask; u32 ah_txOkInterruptMask;
u_int32_t ah_txErrInterruptMask; u32 ah_txErrInterruptMask;
u_int32_t ah_txDescInterruptMask; u32 ah_txDescInterruptMask;
u_int32_t ah_txEolInterruptMask; u32 ah_txEolInterruptMask;
u_int32_t ah_txUrnInterruptMask; u32 ah_txUrnInterruptMask;
struct hal_tx_queue_info ah_txq[HAL_NUM_TX_QUEUES]; struct ath9k_tx_queue_info ah_txq[ATH9K_NUM_TX_QUEUES];
enum hal_power_mode ah_powerMode; enum ath9k_power_mode ah_powerMode;
bool ah_chipFullSleep; bool ah_chipFullSleep;
u_int32_t ah_atimWindow; u32 ah_atimWindow;
enum hal_ant_setting ah_diversityControl; enum ath9k_ant_setting ah_diversityControl;
u_int16_t ah_antennaSwitchSwap; u16 ah_antennaSwitchSwap;
enum hal_cal_types ah_suppCals; enum hal_cal_types ah_suppCals;
struct hal_cal_list ah_iqCalData; struct hal_cal_list ah_iqCalData;
struct hal_cal_list ah_adcGainCalData; struct hal_cal_list ah_adcGainCalData;
@ -735,73 +735,73 @@ struct ath_hal_5416 {
#define ah_totalAdcDcOffsetQOddPhase ah_Meas2.sign #define ah_totalAdcDcOffsetQOddPhase ah_Meas2.sign
#define ah_totalAdcDcOffsetQEvenPhase ah_Meas3.sign #define ah_totalAdcDcOffsetQEvenPhase ah_Meas3.sign
union { union {
u_int32_t unsign[AR5416_MAX_CHAINS]; u32 unsign[AR5416_MAX_CHAINS];
int32_t sign[AR5416_MAX_CHAINS]; int32_t sign[AR5416_MAX_CHAINS];
} ah_Meas0; } ah_Meas0;
union { union {
u_int32_t unsign[AR5416_MAX_CHAINS]; u32 unsign[AR5416_MAX_CHAINS];
int32_t sign[AR5416_MAX_CHAINS]; int32_t sign[AR5416_MAX_CHAINS];
} ah_Meas1; } ah_Meas1;
union { union {
u_int32_t unsign[AR5416_MAX_CHAINS]; u32 unsign[AR5416_MAX_CHAINS];
int32_t sign[AR5416_MAX_CHAINS]; int32_t sign[AR5416_MAX_CHAINS];
} ah_Meas2; } ah_Meas2;
union { union {
u_int32_t unsign[AR5416_MAX_CHAINS]; u32 unsign[AR5416_MAX_CHAINS];
int32_t sign[AR5416_MAX_CHAINS]; int32_t sign[AR5416_MAX_CHAINS];
} ah_Meas3; } ah_Meas3;
u_int16_t ah_CalSamples; u16 ah_CalSamples;
u_int32_t ah_tx6PowerInHalfDbm; u32 ah_tx6PowerInHalfDbm;
u_int32_t ah_staId1Defaults; u32 ah_staId1Defaults;
u_int32_t ah_miscMode; u32 ah_miscMode;
bool ah_tpcEnabled; bool ah_tpcEnabled;
u_int32_t ah_beaconInterval; u32 ah_beaconInterval;
enum { enum {
AUTO_32KHZ, AUTO_32KHZ,
USE_32KHZ, USE_32KHZ,
DONT_USE_32KHZ, DONT_USE_32KHZ,
} ah_enable32kHzClock; } ah_enable32kHzClock;
u_int32_t *ah_analogBank0Data; u32 *ah_analogBank0Data;
u_int32_t *ah_analogBank1Data; u32 *ah_analogBank1Data;
u_int32_t *ah_analogBank2Data; u32 *ah_analogBank2Data;
u_int32_t *ah_analogBank3Data; u32 *ah_analogBank3Data;
u_int32_t *ah_analogBank6Data; u32 *ah_analogBank6Data;
u_int32_t *ah_analogBank6TPCData; u32 *ah_analogBank6TPCData;
u_int32_t *ah_analogBank7Data; u32 *ah_analogBank7Data;
u_int32_t *ah_addac5416_21; u32 *ah_addac5416_21;
u_int32_t *ah_bank6Temp; u32 *ah_bank6Temp;
u_int32_t ah_ofdmTxPower; u32 ah_ofdmTxPower;
int16_t ah_txPowerIndexOffset; int16_t ah_txPowerIndexOffset;
u_int ah_slottime; u32 ah_slottime;
u_int ah_acktimeout; u32 ah_acktimeout;
u_int ah_ctstimeout; u32 ah_ctstimeout;
u_int ah_globaltxtimeout; u32 ah_globaltxtimeout;
u_int8_t ah_gBeaconRate; u8 ah_gBeaconRate;
u_int32_t ah_gpioSelect; u32 ah_gpioSelect;
u_int32_t ah_polarity; u32 ah_polarity;
u_int32_t ah_gpioBit; u32 ah_gpioBit;
bool ah_eepEnabled; bool ah_eepEnabled;
u_int32_t ah_procPhyErr; u32 ah_procPhyErr;
bool ah_hasHwPhyCounters; bool ah_hasHwPhyCounters;
u_int32_t ah_aniPeriod; u32 ah_aniPeriod;
struct ar5416AniState *ah_curani; struct ar5416AniState *ah_curani;
struct ar5416AniState ah_ani[255]; struct ar5416AniState ah_ani[255];
int ah_totalSizeDesired[5]; int ah_totalSizeDesired[5];
int ah_coarseHigh[5]; int ah_coarseHigh[5];
int ah_coarseLow[5]; int ah_coarseLow[5];
int ah_firpwr[5]; int ah_firpwr[5];
u_int16_t ah_ratesArray[16]; u16 ah_ratesArray[16];
u_int32_t ah_intrTxqs; u32 ah_intrTxqs;
bool ah_intrMitigation; bool ah_intrMitigation;
u_int32_t ah_cycleCount; u32 ah_cycleCount;
u_int32_t ah_ctlBusy; u32 ah_ctlBusy;
u_int32_t ah_extBusy; u32 ah_extBusy;
enum hal_ht_extprotspacing ah_extprotspacing; enum ath9k_ht_extprotspacing ah_extprotspacing;
u_int8_t ah_txchainmask; u8 ah_txchainmask;
u_int8_t ah_rxchainmask; u8 ah_rxchainmask;
int ah_hwp; int ah_hwp;
void __iomem *ah_cal_mem; void __iomem *ah_cal_mem;
enum hal_ani_cmd ah_ani_function; enum ath9k_ani_cmd ah_ani_function;
struct ar5416IniArray ah_iniModes; struct ar5416IniArray ah_iniModes;
struct ar5416IniArray ah_iniCommon; struct ar5416IniArray ah_iniCommon;
struct ar5416IniArray ah_iniBank0; struct ar5416IniArray ah_iniBank0;
@ -853,8 +853,8 @@ struct ath_hal_5416 {
#define HT40_CHANNEL_CENTER_SHIFT 10 #define HT40_CHANNEL_CENTER_SHIFT 10
#define ar5416CheckOpMode(_opmode) \ #define ar5416CheckOpMode(_opmode) \
((_opmode == HAL_M_STA) || (_opmode == HAL_M_IBSS) || \ ((_opmode == ATH9K_M_STA) || (_opmode == ATH9K_M_IBSS) || \
(_opmode == HAL_M_HOSTAP) || (_opmode == HAL_M_MONITOR)) (_opmode == ATH9K_M_HOSTAP) || (_opmode == ATH9K_M_MONITOR))
#define AR5416_EEPROM_MAGIC_OFFSET 0x0 #define AR5416_EEPROM_MAGIC_OFFSET 0x0
@ -894,18 +894,18 @@ struct ath_hal_5416 {
#define HAL_SPUR_IMMUNE_MAX 7 #define HAL_SPUR_IMMUNE_MAX 7
#define HAL_FIRST_STEP_MAX 2 #define HAL_FIRST_STEP_MAX 2
#define HAL_ANI_OFDM_TRIG_HIGH 500 #define ATH9K_ANI_OFDM_TRIG_HIGH 500
#define HAL_ANI_OFDM_TRIG_LOW 200 #define ATH9K_ANI_OFDM_TRIG_LOW 200
#define HAL_ANI_CCK_TRIG_HIGH 200 #define ATH9K_ANI_CCK_TRIG_HIGH 200
#define HAL_ANI_CCK_TRIG_LOW 100 #define ATH9K_ANI_CCK_TRIG_LOW 100
#define HAL_ANI_NOISE_IMMUNE_LVL 4 #define ATH9K_ANI_NOISE_IMMUNE_LVL 4
#define HAL_ANI_USE_OFDM_WEAK_SIG true #define ATH9K_ANI_USE_OFDM_WEAK_SIG true
#define HAL_ANI_CCK_WEAK_SIG_THR false #define ATH9K_ANI_CCK_WEAK_SIG_THR false
#define HAL_ANI_SPUR_IMMUNE_LVL 7 #define ATH9K_ANI_SPUR_IMMUNE_LVL 7
#define HAL_ANI_FIRSTEP_LVL 0 #define ATH9K_ANI_FIRSTEP_LVL 0
#define HAL_ANI_RSSI_THR_HIGH 40 #define ATH9K_ANI_RSSI_THR_HIGH 40
#define HAL_ANI_RSSI_THR_LOW 7 #define ATH9K_ANI_RSSI_THR_LOW 7
#define HAL_ANI_PERIOD 100 #define ATH9K_ANI_PERIOD 100
#define AR_GPIOD_MASK 0x00001FFF #define AR_GPIOD_MASK 0x00001FFF
#define AR_GPIO_BIT(_gpio) (1 << (_gpio)) #define AR_GPIO_BIT(_gpio) (1 << (_gpio))
@ -916,7 +916,7 @@ struct ath_hal_5416 {
((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
#define BEACON_RSSI(ahp) \ #define BEACON_RSSI(ahp) \
HAL_EP_RND(ahp->ah_stats.ast_nodestats.ns_avgbrssi, \ HAL_EP_RND(ahp->ah_stats.ast_nodestats.ns_avgbrssi, \
HAL_RSSI_EP_MULTIPLIER) ATH9K_RSSI_EP_MULTIPLIER)
#define ah_mibStats ah_stats.ast_mibstats #define ah_mibStats ah_stats.ast_mibstats
@ -963,7 +963,7 @@ struct ath_hal_5416 {
#define OFDM_PLCP_BITS_QUARTER 22 #define OFDM_PLCP_BITS_QUARTER 22
#define OFDM_SYMBOL_TIME_QUARTER 16 #define OFDM_SYMBOL_TIME_QUARTER 16
u_int32_t ath9k_hw_get_eeprom(struct ath_hal_5416 *ahp, u32 ath9k_hw_get_eeprom(struct ath_hal_5416 *ahp,
enum eeprom_param param); enum eeprom_param param);
#endif #endif

View File

@ -14,7 +14,7 @@
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/ */
static const u_int32_t ar5416Modes_9100[][6] = { static const u32 ar5416Modes_9100[][6] = {
{ 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 }, { 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 },
{ 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 }, { 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 },
{ 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 }, { 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 },
@ -78,7 +78,7 @@ static const u_int32_t ar5416Modes_9100[][6] = {
{ 0x0000a334, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, { 0x0000a334, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },
}; };
static const u_int32_t ar5416Common_9100[][2] = { static const u32 ar5416Common_9100[][2] = {
{ 0x0000000c, 0x00000000 }, { 0x0000000c, 0x00000000 },
{ 0x00000030, 0x00020015 }, { 0x00000030, 0x00020015 },
{ 0x00000034, 0x00000005 }, { 0x00000034, 0x00000005 },
@ -456,12 +456,12 @@ static const u_int32_t ar5416Common_9100[][2] = {
{ 0x0000a3e0, 0x000001ce }, { 0x0000a3e0, 0x000001ce },
}; };
static const u_int32_t ar5416Bank0_9100[][2] = { static const u32 ar5416Bank0_9100[][2] = {
{ 0x000098b0, 0x1e5795e5 }, { 0x000098b0, 0x1e5795e5 },
{ 0x000098e0, 0x02008020 }, { 0x000098e0, 0x02008020 },
}; };
static const u_int32_t ar5416BB_RfGain_9100[][3] = { static const u32 ar5416BB_RfGain_9100[][3] = {
{ 0x00009a00, 0x00000000, 0x00000000 }, { 0x00009a00, 0x00000000, 0x00000000 },
{ 0x00009a04, 0x00000040, 0x00000040 }, { 0x00009a04, 0x00000040, 0x00000040 },
{ 0x00009a08, 0x00000080, 0x00000080 }, { 0x00009a08, 0x00000080, 0x00000080 },
@ -528,21 +528,21 @@ static const u_int32_t ar5416BB_RfGain_9100[][3] = {
{ 0x00009afc, 0x000000f9, 0x000000f9 }, { 0x00009afc, 0x000000f9, 0x000000f9 },
}; };
static const u_int32_t ar5416Bank1_9100[][2] = { static const u32 ar5416Bank1_9100[][2] = {
{ 0x000098b0, 0x02108421 }, { 0x000098b0, 0x02108421 },
{ 0x000098ec, 0x00000008 }, { 0x000098ec, 0x00000008 },
}; };
static const u_int32_t ar5416Bank2_9100[][2] = { static const u32 ar5416Bank2_9100[][2] = {
{ 0x000098b0, 0x0e73ff17 }, { 0x000098b0, 0x0e73ff17 },
{ 0x000098e0, 0x00000420 }, { 0x000098e0, 0x00000420 },
}; };
static const u_int32_t ar5416Bank3_9100[][3] = { static const u32 ar5416Bank3_9100[][3] = {
{ 0x000098f0, 0x01400018, 0x01c00018 }, { 0x000098f0, 0x01400018, 0x01c00018 },
}; };
static const u_int32_t ar5416Bank6_9100[][3] = { static const u32 ar5416Bank6_9100[][3] = {
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
@ -579,7 +579,7 @@ static const u_int32_t ar5416Bank6_9100[][3] = {
{ 0x000098d0, 0x0000000f, 0x0010000f }, { 0x000098d0, 0x0000000f, 0x0010000f },
}; };
static const u_int32_t ar5416Bank6TPC_9100[][3] = { static const u32 ar5416Bank6TPC_9100[][3] = {
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
@ -615,13 +615,13 @@ static const u_int32_t ar5416Bank6TPC_9100[][3] = {
{ 0x000098d0, 0x0000000f, 0x0010000f }, { 0x000098d0, 0x0000000f, 0x0010000f },
}; };
static const u_int32_t ar5416Bank7_9100[][2] = { static const u32 ar5416Bank7_9100[][2] = {
{ 0x0000989c, 0x00000500 }, { 0x0000989c, 0x00000500 },
{ 0x0000989c, 0x00000800 }, { 0x0000989c, 0x00000800 },
{ 0x000098cc, 0x0000000e }, { 0x000098cc, 0x0000000e },
}; };
static const u_int32_t ar5416Addac_9100[][2] = { static const u32 ar5416Addac_9100[][2] = {
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
{0x0000989c, 0x00000003 }, {0x0000989c, 0x00000003 },
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
@ -661,7 +661,7 @@ static const u_int32_t ar5416Addac_9100[][2] = {
{0x000098c4, 0x00000000 }, {0x000098c4, 0x00000000 },
}; };
static const u_int32_t ar5416Modes[][6] = { static const u32 ar5416Modes[][6] = {
{ 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 }, { 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 },
{ 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 }, { 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 },
{ 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 }, { 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 },
@ -735,7 +735,7 @@ static const u_int32_t ar5416Modes[][6] = {
{ 0x0000a334, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, { 0x0000a334, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },
}; };
static const u_int32_t ar5416Common[][2] = { static const u32 ar5416Common[][2] = {
{ 0x0000000c, 0x00000000 }, { 0x0000000c, 0x00000000 },
{ 0x00000030, 0x00020015 }, { 0x00000030, 0x00020015 },
{ 0x00000034, 0x00000005 }, { 0x00000034, 0x00000005 },
@ -1109,12 +1109,12 @@ static const u_int32_t ar5416Common[][2] = {
{ 0x0000a3e0, 0x000001ce }, { 0x0000a3e0, 0x000001ce },
}; };
static const u_int32_t ar5416Bank0[][2] = { static const u32 ar5416Bank0[][2] = {
{ 0x000098b0, 0x1e5795e5 }, { 0x000098b0, 0x1e5795e5 },
{ 0x000098e0, 0x02008020 }, { 0x000098e0, 0x02008020 },
}; };
static const u_int32_t ar5416BB_RfGain[][3] = { static const u32 ar5416BB_RfGain[][3] = {
{ 0x00009a00, 0x00000000, 0x00000000 }, { 0x00009a00, 0x00000000, 0x00000000 },
{ 0x00009a04, 0x00000040, 0x00000040 }, { 0x00009a04, 0x00000040, 0x00000040 },
{ 0x00009a08, 0x00000080, 0x00000080 }, { 0x00009a08, 0x00000080, 0x00000080 },
@ -1181,21 +1181,21 @@ static const u_int32_t ar5416BB_RfGain[][3] = {
{ 0x00009afc, 0x000000f9, 0x000000f9 }, { 0x00009afc, 0x000000f9, 0x000000f9 },
}; };
static const u_int32_t ar5416Bank1[][2] = { static const u32 ar5416Bank1[][2] = {
{ 0x000098b0, 0x02108421}, { 0x000098b0, 0x02108421},
{ 0x000098ec, 0x00000008}, { 0x000098ec, 0x00000008},
}; };
static const u_int32_t ar5416Bank2[][2] = { static const u32 ar5416Bank2[][2] = {
{ 0x000098b0, 0x0e73ff17}, { 0x000098b0, 0x0e73ff17},
{ 0x000098e0, 0x00000420}, { 0x000098e0, 0x00000420},
}; };
static const u_int32_t ar5416Bank3[][3] = { static const u32 ar5416Bank3[][3] = {
{ 0x000098f0, 0x01400018, 0x01c00018 }, { 0x000098f0, 0x01400018, 0x01c00018 },
}; };
static const u_int32_t ar5416Bank6[][3] = { static const u32 ar5416Bank6[][3] = {
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
@ -1233,7 +1233,7 @@ static const u_int32_t ar5416Bank6[][3] = {
}; };
static const u_int32_t ar5416Bank6TPC[][3] = { static const u32 ar5416Bank6TPC[][3] = {
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
@ -1270,13 +1270,13 @@ static const u_int32_t ar5416Bank6TPC[][3] = {
{ 0x000098d0, 0x0000000f, 0x0010000f }, { 0x000098d0, 0x0000000f, 0x0010000f },
}; };
static const u_int32_t ar5416Bank7[][2] = { static const u32 ar5416Bank7[][2] = {
{ 0x0000989c, 0x00000500 }, { 0x0000989c, 0x00000500 },
{ 0x0000989c, 0x00000800 }, { 0x0000989c, 0x00000800 },
{ 0x000098cc, 0x0000000e }, { 0x000098cc, 0x0000000e },
}; };
static const u_int32_t ar5416Addac[][2] = { static const u32 ar5416Addac[][2] = {
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
@ -1312,7 +1312,7 @@ static const u_int32_t ar5416Addac[][2] = {
}; };
static const u_int32_t ar5416Modes_9160[][6] = { static const u32 ar5416Modes_9160[][6] = {
{ 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 }, { 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 },
{ 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 }, { 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 },
{ 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 }, { 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 },
@ -1376,7 +1376,7 @@ static const u_int32_t ar5416Modes_9160[][6] = {
{ 0x0000a334, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, { 0x0000a334, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },
}; };
static const u_int32_t ar5416Common_9160[][2] = { static const u32 ar5416Common_9160[][2] = {
{ 0x0000000c, 0x00000000 }, { 0x0000000c, 0x00000000 },
{ 0x00000030, 0x00020015 }, { 0x00000030, 0x00020015 },
{ 0x00000034, 0x00000005 }, { 0x00000034, 0x00000005 },
@ -1755,12 +1755,12 @@ static const u_int32_t ar5416Common_9160[][2] = {
{ 0x0000a3e0, 0x000001ce }, { 0x0000a3e0, 0x000001ce },
}; };
static const u_int32_t ar5416Bank0_9160[][2] = { static const u32 ar5416Bank0_9160[][2] = {
{ 0x000098b0, 0x1e5795e5 }, { 0x000098b0, 0x1e5795e5 },
{ 0x000098e0, 0x02008020 }, { 0x000098e0, 0x02008020 },
}; };
static const u_int32_t ar5416BB_RfGain_9160[][3] = { static const u32 ar5416BB_RfGain_9160[][3] = {
{ 0x00009a00, 0x00000000, 0x00000000 }, { 0x00009a00, 0x00000000, 0x00000000 },
{ 0x00009a04, 0x00000040, 0x00000040 }, { 0x00009a04, 0x00000040, 0x00000040 },
{ 0x00009a08, 0x00000080, 0x00000080 }, { 0x00009a08, 0x00000080, 0x00000080 },
@ -1827,21 +1827,21 @@ static const u_int32_t ar5416BB_RfGain_9160[][3] = {
{ 0x00009afc, 0x000000f9, 0x000000f9 }, { 0x00009afc, 0x000000f9, 0x000000f9 },
}; };
static const u_int32_t ar5416Bank1_9160[][2] = { static const u32 ar5416Bank1_9160[][2] = {
{ 0x000098b0, 0x02108421 }, { 0x000098b0, 0x02108421 },
{ 0x000098ec, 0x00000008 }, { 0x000098ec, 0x00000008 },
}; };
static const u_int32_t ar5416Bank2_9160[][2] = { static const u32 ar5416Bank2_9160[][2] = {
{ 0x000098b0, 0x0e73ff17 }, { 0x000098b0, 0x0e73ff17 },
{ 0x000098e0, 0x00000420 }, { 0x000098e0, 0x00000420 },
}; };
static const u_int32_t ar5416Bank3_9160[][3] = { static const u32 ar5416Bank3_9160[][3] = {
{ 0x000098f0, 0x01400018, 0x01c00018 }, { 0x000098f0, 0x01400018, 0x01c00018 },
}; };
static const u_int32_t ar5416Bank6_9160[][3] = { static const u32 ar5416Bank6_9160[][3] = {
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
@ -1878,7 +1878,7 @@ static const u_int32_t ar5416Bank6_9160[][3] = {
{ 0x000098d0, 0x0000000f, 0x0010000f }, { 0x000098d0, 0x0000000f, 0x0010000f },
}; };
static const u_int32_t ar5416Bank6TPC_9160[][3] = { static const u32 ar5416Bank6TPC_9160[][3] = {
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
{ 0x0000989c, 0x00000000, 0x00000000 }, { 0x0000989c, 0x00000000, 0x00000000 },
@ -1914,14 +1914,14 @@ static const u_int32_t ar5416Bank6TPC_9160[][3] = {
{ 0x000098d0, 0x0000000f, 0x0010000f }, { 0x000098d0, 0x0000000f, 0x0010000f },
}; };
static const u_int32_t ar5416Bank7_9160[][2] = { static const u32 ar5416Bank7_9160[][2] = {
{ 0x0000989c, 0x00000500 }, { 0x0000989c, 0x00000500 },
{ 0x0000989c, 0x00000800 }, { 0x0000989c, 0x00000800 },
{ 0x000098cc, 0x0000000e }, { 0x000098cc, 0x0000000e },
}; };
static u_int32_t ar5416Addac_9160[][2] = { static u32 ar5416Addac_9160[][2] = {
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
@ -1957,7 +1957,7 @@ static u_int32_t ar5416Addac_9160[][2] = {
}; };
static u_int32_t ar5416Addac_91601_1[][2] = { static u32 ar5416Addac_91601_1[][2] = {
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
{0x0000989c, 0x00000000 }, {0x0000989c, 0x00000000 },
@ -1994,7 +1994,7 @@ static u_int32_t ar5416Addac_91601_1[][2] = {
static const u_int32_t ar9280Modes_9280[][6] = { static const u32 ar9280Modes_9280[][6] = {
{ 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 }, { 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 },
{ 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 }, { 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 },
{ 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 }, { 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 },
@ -2196,7 +2196,7 @@ static const u_int32_t ar9280Modes_9280[][6] = {
{ 0x0000788c, 0x00010000, 0x00010000, 0x00110000, 0x00110000, 0x00110000 }, { 0x0000788c, 0x00010000, 0x00010000, 0x00110000, 0x00110000, 0x00110000 },
}; };
static const u_int32_t ar9280Common_9280[][2] = { static const u32 ar9280Common_9280[][2] = {
{ 0x0000000c, 0x00000000 }, { 0x0000000c, 0x00000000 },
{ 0x00000030, 0x00020015 }, { 0x00000030, 0x00020015 },
{ 0x00000034, 0x00000005 }, { 0x00000034, 0x00000005 },
@ -2546,7 +2546,7 @@ static const u_int32_t ar9280Common_9280[][2] = {
static const u_int32_t ar9280Modes_9280_2[][6] = { static const u32 ar9280Modes_9280_2[][6] = {
{ 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 }, { 0x00001030, 0x00000230, 0x00000460, 0x000002c0, 0x00000160, 0x000001e0 },
{ 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 }, { 0x00001070, 0x00000168, 0x000002d0, 0x00000318, 0x0000018c, 0x000001e0 },
{ 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 }, { 0x000010b0, 0x00000e60, 0x00001cc0, 0x00007c70, 0x00003e38, 0x00001180 },
@ -2750,7 +2750,7 @@ static const u_int32_t ar9280Modes_9280_2[][6] = {
{ 0x00007894, 0x5a508000, 0x5a508000, 0x5a508000, 0x5a508000, 0x5a508000 }, { 0x00007894, 0x5a508000, 0x5a508000, 0x5a508000, 0x5a508000, 0x5a508000 },
}; };
static const u_int32_t ar9280Common_9280_2[][2] = { static const u32 ar9280Common_9280_2[][2] = {
{ 0x0000000c, 0x00000000 }, { 0x0000000c, 0x00000000 },
{ 0x00000030, 0x00020015 }, { 0x00000030, 0x00020015 },
{ 0x00000034, 0x00000005 }, { 0x00000034, 0x00000005 },
@ -3098,7 +3098,7 @@ static const u_int32_t ar9280Common_9280_2[][2] = {
{ 0x00007898, 0x2a850160 }, { 0x00007898, 0x2a850160 },
}; };
static const u_int32_t ar9280Modes_fast_clock_9280_2[][3] = { static const u32 ar9280Modes_fast_clock_9280_2[][3] = {
{ 0x00001030, 0x00000268, 0x000004d0 }, { 0x00001030, 0x00000268, 0x000004d0 },
{ 0x00001070, 0x0000018c, 0x00000318 }, { 0x00001070, 0x0000018c, 0x00000318 },
{ 0x000010b0, 0x00000fd0, 0x00001fa0 }, { 0x000010b0, 0x00000fd0, 0x00001fa0 },
@ -3117,7 +3117,7 @@ static const u_int32_t ar9280Modes_fast_clock_9280_2[][3] = {
static const u_int32_t ar9280PciePhy_clkreq_off_L1_9280[][2] = { static const u32 ar9280PciePhy_clkreq_off_L1_9280[][2] = {
{0x00004040, 0x9248fd00 }, {0x00004040, 0x9248fd00 },
{0x00004040, 0x24924924 }, {0x00004040, 0x24924924 },
{0x00004040, 0xa8000019 }, {0x00004040, 0xa8000019 },
@ -3132,7 +3132,7 @@ static const u_int32_t ar9280PciePhy_clkreq_off_L1_9280[][2] = {
static const u_int32_t ar9280PciePhy_clkreq_always_on_L1_9280[][2] = { static const u32 ar9280PciePhy_clkreq_always_on_L1_9280[][2] = {
{0x00004040, 0x9248fd00 }, {0x00004040, 0x9248fd00 },
{0x00004040, 0x24924924 }, {0x00004040, 0x24924924 },
{0x00004040, 0xa8000019 }, {0x00004040, 0xa8000019 },

View File

@ -41,44 +41,60 @@ static struct pci_device_id ath_pci_id_table[] __devinitdata = {
{ 0 } { 0 }
}; };
static int test_update_chan(enum ieee80211_band band, static int ath_get_channel(struct ath_softc *sc,
const struct hal_channel *chan, struct ieee80211_channel *chan)
struct ath_softc *sc)
{ {
int i; int i;
for (i = 0; i < sc->sbands[band].n_channels; i++) { for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
if (sc->channels[band][i].center_freq == chan->channel) if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
return 1; return i;
} }
return 0; return -1;
} }
static int ath_check_chanflags(struct ieee80211_channel *chan, static u32 ath_get_extchanmode(struct ath_softc *sc,
u_int32_t mode, struct ieee80211_channel *chan)
struct ath_softc *sc)
{ {
struct ieee80211_hw *hw = sc->hw; u32 chanmode = 0;
struct ieee80211_supported_band *band; u8 ext_chan_offset = sc->sc_ht_info.ext_chan_offset;
struct ieee80211_channel *band_channel; enum ath9k_ht_macmode tx_chan_width = sc->sc_ht_info.tx_chan_width;
int i;
band = hw->wiphy->bands[chan->band]; switch (chan->band) {
case IEEE80211_BAND_2GHZ:
for (i = 0; i < band->n_channels; i++) { if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_NONE) &&
band_channel = &band->channels[i]; (tx_chan_width == ATH9K_HT_MACMODE_20))
chanmode = CHANNEL_G_HT20;
if ((band_channel->center_freq == chan->center_freq) && if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_ABOVE) &&
((band_channel->hw_value & mode) == mode)) (tx_chan_width == ATH9K_HT_MACMODE_2040))
return 1; chanmode = CHANNEL_G_HT40PLUS;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_BELOW) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_G_HT40MINUS;
break;
case IEEE80211_BAND_5GHZ:
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_NONE) &&
(tx_chan_width == ATH9K_HT_MACMODE_20))
chanmode = CHANNEL_A_HT20;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_ABOVE) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_A_HT40PLUS;
if ((ext_chan_offset == IEEE80211_HT_IE_CHA_SEC_BELOW) &&
(tx_chan_width == ATH9K_HT_MACMODE_2040))
chanmode = CHANNEL_A_HT40MINUS;
break;
default:
break;
} }
return 0;
return chanmode;
} }
static int ath_setkey_tkip(struct ath_softc *sc, static int ath_setkey_tkip(struct ath_softc *sc,
struct ieee80211_key_conf *key, struct ieee80211_key_conf *key,
struct hal_keyval *hk, struct ath9k_keyval *hk,
const u8 *addr) const u8 *addr)
{ {
u8 *key_rxmic = NULL; u8 *key_rxmic = NULL;
@ -123,7 +139,7 @@ static int ath_key_config(struct ath_softc *sc,
struct ieee80211_key_conf *key) struct ieee80211_key_conf *key)
{ {
struct ieee80211_vif *vif; struct ieee80211_vif *vif;
struct hal_keyval hk; struct ath9k_keyval hk;
const u8 *mac = NULL; const u8 *mac = NULL;
int ret = 0; int ret = 0;
enum ieee80211_if_types opmode; enum ieee80211_if_types opmode;
@ -132,13 +148,13 @@ static int ath_key_config(struct ath_softc *sc,
switch (key->alg) { switch (key->alg) {
case ALG_WEP: case ALG_WEP:
hk.kv_type = HAL_CIPHER_WEP; hk.kv_type = ATH9K_CIPHER_WEP;
break; break;
case ALG_TKIP: case ALG_TKIP:
hk.kv_type = HAL_CIPHER_TKIP; hk.kv_type = ATH9K_CIPHER_TKIP;
break; break;
case ALG_CCMP: case ALG_CCMP:
hk.kv_type = HAL_CIPHER_AES_CCM; hk.kv_type = ATH9K_CIPHER_AES_CCM;
break; break;
default: default:
return -EINVAL; return -EINVAL;
@ -266,10 +282,11 @@ static void ath9k_rx_prepare(struct ath_softc *sc,
rx_status->mactime = status->tsf; rx_status->mactime = status->tsf;
rx_status->band = curchan->band; rx_status->band = curchan->band;
rx_status->freq = curchan->center_freq; rx_status->freq = curchan->center_freq;
rx_status->signal = (status->rssi * 64) / 100;
rx_status->noise = ATH_DEFAULT_NOISE_FLOOR; rx_status->noise = ATH_DEFAULT_NOISE_FLOOR;
rx_status->signal = rx_status->noise + status->rssi;
rx_status->rate_idx = ath_rate2idx(sc, (status->rateKbps / 100)); rx_status->rate_idx = ath_rate2idx(sc, (status->rateKbps / 100));
rx_status->antenna = status->antenna; rx_status->antenna = status->antenna;
rx_status->qual = status->rssi * 100 / 64;
if (status->flags & ATH_RX_MIC_ERROR) if (status->flags & ATH_RX_MIC_ERROR)
rx_status->flag |= RX_FLAG_MMIC_ERROR; rx_status->flag |= RX_FLAG_MMIC_ERROR;
@ -279,7 +296,7 @@ static void ath9k_rx_prepare(struct ath_softc *sc,
rx_status->flag |= RX_FLAG_TSFT; rx_status->flag |= RX_FLAG_TSFT;
} }
static u_int8_t parse_mpdudensity(u_int8_t mpdudensity) static u8 parse_mpdudensity(u8 mpdudensity)
{ {
/* /*
* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
@ -318,19 +335,24 @@ static int ath9k_start(struct ieee80211_hw *hw)
{ {
struct ath_softc *sc = hw->priv; struct ath_softc *sc = hw->priv;
struct ieee80211_channel *curchan = hw->conf.channel; struct ieee80211_channel *curchan = hw->conf.channel;
struct hal_channel hchan; int error = 0, pos;
int error = 0;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Starting driver with " DPRINTF(sc, ATH_DBG_CONFIG, "%s: Starting driver with "
"initial channel: %d MHz\n", __func__, curchan->center_freq); "initial channel: %d MHz\n", __func__, curchan->center_freq);
/* setup initial channel */ /* setup initial channel */
hchan.channel = curchan->center_freq; pos = ath_get_channel(sc, curchan);
hchan.channelFlags = ath_chan2flags(curchan, sc); if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
return -EINVAL;
}
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
/* open ath_dev */ /* open ath_dev */
error = ath_open(sc, &hchan); error = ath_open(sc, &sc->sc_ah->ah_channels[pos]);
if (error) { if (error) {
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to complete ath_open\n", __func__); "%s: Unable to complete ath_open\n", __func__);
@ -399,10 +421,10 @@ static int ath9k_add_interface(struct ieee80211_hw *hw,
switch (conf->type) { switch (conf->type) {
case IEEE80211_IF_TYPE_STA: case IEEE80211_IF_TYPE_STA:
ic_opmode = HAL_M_STA; ic_opmode = ATH9K_M_STA;
break; break;
case IEEE80211_IF_TYPE_IBSS: case IEEE80211_IF_TYPE_IBSS:
ic_opmode = HAL_M_IBSS; ic_opmode = ATH9K_M_IBSS;
break; break;
default: default:
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
@ -447,17 +469,17 @@ static void ath9k_remove_interface(struct ieee80211_hw *hw,
#endif #endif
/* Update ratectrl */ /* Update ratectrl */
ath_rate_newstate(sc, avp, 0); ath_rate_newstate(sc, avp);
/* Reclaim beacon resources */ /* Reclaim beacon resources */
if (sc->sc_opmode == HAL_M_HOSTAP || sc->sc_opmode == HAL_M_IBSS) { if (sc->sc_opmode == ATH9K_M_HOSTAP || sc->sc_opmode == ATH9K_M_IBSS) {
ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq); ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
ath_beacon_return(sc, avp); ath_beacon_return(sc, avp);
} }
/* Set interrupt mask */ /* Set interrupt mask */
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask & ~HAL_INT_GLOBAL); ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask & ~ATH9K_INT_GLOBAL);
sc->sc_beacons = 0; sc->sc_beacons = 0;
error = ath_vap_detach(sc, 0); error = ath_vap_detach(sc, 0);
@ -472,18 +494,24 @@ static int ath9k_config(struct ieee80211_hw *hw,
{ {
struct ath_softc *sc = hw->priv; struct ath_softc *sc = hw->priv;
struct ieee80211_channel *curchan = hw->conf.channel; struct ieee80211_channel *curchan = hw->conf.channel;
struct hal_channel hchan; int pos;
DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n", DPRINTF(sc, ATH_DBG_CONFIG, "%s: Set channel: %d MHz\n",
__func__, __func__,
curchan->center_freq); curchan->center_freq);
hchan.channel = curchan->center_freq; pos = ath_get_channel(sc, curchan);
hchan.channelFlags = ath_chan2flags(curchan, sc); if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
return -EINVAL;
}
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
sc->sc_config.txpowlimit = 2 * conf->power_level; sc->sc_config.txpowlimit = 2 * conf->power_level;
/* set h/w channel */ /* set h/w channel */
if (ath_set_channel(sc, &hchan) < 0) if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to set channel\n", DPRINTF(sc, ATH_DBG_FATAL, "%s: Unable to set channel\n",
__func__); __func__);
@ -496,7 +524,7 @@ static int ath9k_config_interface(struct ieee80211_hw *hw,
{ {
struct ath_softc *sc = hw->priv; struct ath_softc *sc = hw->priv;
struct ath_vap *avp; struct ath_vap *avp;
u_int32_t rfilt = 0; u32 rfilt = 0;
int error, i; int error, i;
DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac);
@ -513,7 +541,7 @@ static int ath9k_config_interface(struct ieee80211_hw *hw,
case IEEE80211_IF_TYPE_STA: case IEEE80211_IF_TYPE_STA:
case IEEE80211_IF_TYPE_IBSS: case IEEE80211_IF_TYPE_IBSS:
/* Update ratectrl about the new state */ /* Update ratectrl about the new state */
ath_rate_newstate(sc, avp, 0); ath_rate_newstate(sc, avp);
/* Set rx filter */ /* Set rx filter */
rfilt = ath_calcrxfilter(sc); rfilt = ath_calcrxfilter(sc);
@ -541,9 +569,9 @@ static int ath9k_config_interface(struct ieee80211_hw *hw,
/* Disable BMISS interrupt when we're not associated */ /* Disable BMISS interrupt when we're not associated */
ath9k_hw_set_interrupts(sc->sc_ah, ath9k_hw_set_interrupts(sc->sc_ah,
sc->sc_imask & sc->sc_imask &
~(HAL_INT_SWBA | HAL_INT_BMISS)); ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS));
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
DPRINTF(sc, ATH_DBG_CONFIG, DPRINTF(sc, ATH_DBG_CONFIG,
"%s: RX filter 0x%x bssid %s aid 0x%x\n", "%s: RX filter 0x%x bssid %s aid 0x%x\n",
@ -581,9 +609,9 @@ static int ath9k_config_interface(struct ieee80211_hw *hw,
/* Check for WLAN_CAPABILITY_PRIVACY ? */ /* Check for WLAN_CAPABILITY_PRIVACY ? */
if ((avp->av_opmode != IEEE80211_IF_TYPE_STA)) { if ((avp->av_opmode != IEEE80211_IF_TYPE_STA)) {
for (i = 0; i < IEEE80211_WEP_NKID; i++) for (i = 0; i < IEEE80211_WEP_NKID; i++)
if (ath9k_hw_keyisvalid(sc->sc_ah, (u_int16_t)i)) if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
ath9k_hw_keysetmac(sc->sc_ah, ath9k_hw_keysetmac(sc->sc_ah,
(u_int16_t)i, (u16)i,
sc->sc_curbssid); sc->sc_curbssid);
} }
@ -672,7 +700,7 @@ static int ath9k_conf_tx(struct ieee80211_hw *hw,
const struct ieee80211_tx_queue_params *params) const struct ieee80211_tx_queue_params *params)
{ {
struct ath_softc *sc = hw->priv; struct ath_softc *sc = hw->priv;
struct hal_txq_info qi; struct ath9k_txq_info qi;
int ret = 0, qnum; int ret = 0, qnum;
if (queue >= WME_NUM_AC) if (queue >= WME_NUM_AC)
@ -728,7 +756,7 @@ static int ath9k_set_key(struct ieee80211_hw *hw,
case DISABLE_KEY: case DISABLE_KEY:
ath_key_delete(sc, key); ath_key_delete(sc, key);
clear_bit(key->keyidx, sc->sc_keymap); clear_bit(key->keyidx, sc->sc_keymap);
sc->sc_keytype = HAL_CIPHER_CLR; sc->sc_keytype = ATH9K_CIPHER_CLR;
break; break;
default: default:
ret = -EINVAL; ret = -EINVAL;
@ -752,9 +780,9 @@ static void ath9k_ht_conf(struct ath_softc *sc,
IEEE80211_HT_CAP_40MHZ_INTOLERANT) && IEEE80211_HT_CAP_40MHZ_INTOLERANT) &&
(bss_conf->ht_bss_conf->bss_cap & (bss_conf->ht_bss_conf->bss_cap &
IEEE80211_HT_IE_CHA_WIDTH)) IEEE80211_HT_IE_CHA_WIDTH))
ht_info->tx_chan_width = HAL_HT_MACMODE_2040; ht_info->tx_chan_width = ATH9K_HT_MACMODE_2040;
else else
ht_info->tx_chan_width = HAL_HT_MACMODE_20; ht_info->tx_chan_width = ATH9K_HT_MACMODE_20;
ath9k_hw_set11nmac2040(sc->sc_ah, ht_info->tx_chan_width); ath9k_hw_set11nmac2040(sc->sc_ah, ht_info->tx_chan_width);
ht_info->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR + ht_info->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
@ -772,8 +800,8 @@ static void ath9k_bss_assoc_info(struct ath_softc *sc,
{ {
struct ieee80211_hw *hw = sc->hw; struct ieee80211_hw *hw = sc->hw;
struct ieee80211_channel *curchan = hw->conf.channel; struct ieee80211_channel *curchan = hw->conf.channel;
struct hal_channel hchan;
struct ath_vap *avp; struct ath_vap *avp;
int pos;
DECLARE_MAC_BUF(mac); DECLARE_MAC_BUF(mac);
if (bss_conf->assoc) { if (bss_conf->assoc) {
@ -788,11 +816,8 @@ static void ath9k_bss_assoc_info(struct ath_softc *sc,
return; return;
} }
/* Update ratectrl about the new state */
ath_rate_newstate(sc, avp, 1);
/* New association, store aid */ /* New association, store aid */
if (avp->av_opmode == HAL_M_STA) { if (avp->av_opmode == ATH9K_M_STA) {
sc->sc_curaid = bss_conf->aid; sc->sc_curaid = bss_conf->aid;
ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid, ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
sc->sc_curaid); sc->sc_curaid);
@ -820,14 +845,30 @@ static void ath9k_bss_assoc_info(struct ath_softc *sc,
__func__, __func__,
curchan->center_freq); curchan->center_freq);
hchan.channel = curchan->center_freq; pos = ath_get_channel(sc, curchan);
hchan.channelFlags = ath_chan2flags(curchan, sc); if (pos == -1) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Invalid channel\n", __func__);
return;
}
if (hw->conf.ht_conf.ht_supported)
sc->sc_ah->ah_channels[pos].chanmode =
ath_get_extchanmode(sc, curchan);
else
sc->sc_ah->ah_channels[pos].chanmode =
(curchan->band == IEEE80211_BAND_2GHZ) ?
CHANNEL_G : CHANNEL_A;
/* set h/w channel */ /* set h/w channel */
if (ath_set_channel(sc, &hchan) < 0) if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0)
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to set channel\n", "%s: Unable to set channel\n",
__func__); __func__);
ath_rate_newstate(sc, avp);
/* Update ratectrl about the new state */
ath_rc_node_update(hw, avp->rc_node);
} else { } else {
DPRINTF(sc, ATH_DBG_CONFIG, DPRINTF(sc, ATH_DBG_CONFIG,
"%s: Bss Info DISSOC\n", __func__); "%s: Bss Info DISSOC\n", __func__);
@ -880,7 +921,7 @@ static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
static u64 ath9k_get_tsf(struct ieee80211_hw *hw) static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
{ {
u_int64_t tsf; u64 tsf;
struct ath_softc *sc = hw->priv; struct ath_softc *sc = hw->priv;
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
@ -974,143 +1015,6 @@ static struct ieee80211_ops ath9k_ops = {
.ampdu_action = ath9k_ampdu_action .ampdu_action = ath9k_ampdu_action
}; };
u_int32_t ath_chan2flags(struct ieee80211_channel *chan,
struct ath_softc *sc)
{
struct ieee80211_hw *hw = sc->hw;
struct ath_ht_info *ht_info = &sc->sc_ht_info;
if (sc->sc_scanning) {
if (chan->band == IEEE80211_BAND_5GHZ) {
if (ath_check_chanflags(chan, CHANNEL_A_HT20, sc))
return CHANNEL_A_HT20;
else
return CHANNEL_A;
} else {
if (ath_check_chanflags(chan, CHANNEL_G_HT20, sc))
return CHANNEL_G_HT20;
else if (ath_check_chanflags(chan, CHANNEL_G, sc))
return CHANNEL_G;
else
return CHANNEL_B;
}
} else {
if (chan->band == IEEE80211_BAND_2GHZ) {
if (!hw->conf.ht_conf.ht_supported) {
if (ath_check_chanflags(chan, CHANNEL_G, sc))
return CHANNEL_G;
else
return CHANNEL_B;
}
if ((ht_info->ext_chan_offset ==
IEEE80211_HT_IE_CHA_SEC_NONE) &&
(ht_info->tx_chan_width == HAL_HT_MACMODE_20))
return CHANNEL_G_HT20;
if ((ht_info->ext_chan_offset ==
IEEE80211_HT_IE_CHA_SEC_ABOVE) &&
(ht_info->tx_chan_width == HAL_HT_MACMODE_2040))
return CHANNEL_G_HT40PLUS;
if ((ht_info->ext_chan_offset ==
IEEE80211_HT_IE_CHA_SEC_BELOW) &&
(ht_info->tx_chan_width == HAL_HT_MACMODE_2040))
return CHANNEL_G_HT40MINUS;
return CHANNEL_B;
} else {
if (!hw->conf.ht_conf.ht_supported)
return CHANNEL_A;
if ((ht_info->ext_chan_offset ==
IEEE80211_HT_IE_CHA_SEC_NONE) &&
(ht_info->tx_chan_width == HAL_HT_MACMODE_20))
return CHANNEL_A_HT20;
if ((ht_info->ext_chan_offset ==
IEEE80211_HT_IE_CHA_SEC_ABOVE) &&
(ht_info->tx_chan_width == HAL_HT_MACMODE_2040))
return CHANNEL_A_HT40PLUS;
if ((ht_info->ext_chan_offset ==
IEEE80211_HT_IE_CHA_SEC_BELOW) &&
(ht_info->tx_chan_width == HAL_HT_MACMODE_2040))
return CHANNEL_A_HT40MINUS;
return CHANNEL_A;
}
}
}
void ath_setup_channel_list(struct ath_softc *sc,
enum ieee80211_clist_cmd cmd,
const struct hal_channel *chans,
int nchan,
const u_int8_t *regclassids,
u_int nregclass,
int countrycode)
{
const struct hal_channel *c;
int i, a = 0, b = 0, flags;
if (countrycode == CTRY_DEFAULT) {
for (i = 0; i < nchan; i++) {
c = &chans[i];
flags = 0;
/* XXX: Ah! make more readable, and
* idententation friendly */
if (IS_CHAN_2GHZ(c) &&
!test_update_chan(IEEE80211_BAND_2GHZ, c, sc)) {
sc->channels[IEEE80211_BAND_2GHZ][a].band =
IEEE80211_BAND_2GHZ;
sc->channels[IEEE80211_BAND_2GHZ][a].
center_freq =
c->channel;
sc->channels[IEEE80211_BAND_2GHZ][a].max_power =
c->maxTxPower;
sc->channels[IEEE80211_BAND_2GHZ][a].hw_value =
c->channelFlags;
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
flags |= IEEE80211_CHAN_NO_IBSS;
if (IS_CHAN_PASSIVE(c))
flags |= IEEE80211_CHAN_PASSIVE_SCAN;
sc->channels[IEEE80211_BAND_2GHZ][a].flags =
flags;
sc->sbands[IEEE80211_BAND_2GHZ].n_channels++;
a++;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 2MHz channel: %d, "
"channelFlags: 0x%x\n",
__func__,
c->channel,
c->channelFlags);
} else if (IS_CHAN_5GHZ(c) &&
!test_update_chan(IEEE80211_BAND_5GHZ, c, sc)) {
sc->channels[IEEE80211_BAND_5GHZ][b].band =
IEEE80211_BAND_5GHZ;
sc->channels[IEEE80211_BAND_5GHZ][b].
center_freq =
c->channel;
sc->channels[IEEE80211_BAND_5GHZ][b].max_power =
c->maxTxPower;
sc->channels[IEEE80211_BAND_5GHZ][b].hw_value =
c->channelFlags;
if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
flags |= IEEE80211_CHAN_NO_IBSS;
if (IS_CHAN_PASSIVE(c))
flags |= IEEE80211_CHAN_PASSIVE_SCAN;
sc->channels[IEEE80211_BAND_5GHZ][b].
flags = flags;
sc->sbands[IEEE80211_BAND_5GHZ].n_channels++;
b++;
DPRINTF(sc, ATH_DBG_CONFIG,
"%s: 5MHz channel: %d, "
"channelFlags: 0x%x\n",
__func__,
c->channel,
c->channelFlags);
}
}
}
}
void ath_get_beaconconfig(struct ath_softc *sc, void ath_get_beaconconfig(struct ath_softc *sc,
int if_id, int if_id,
struct ath_beacon_config *conf) struct ath_beacon_config *conf)
@ -1168,7 +1072,7 @@ void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
int ath__rx_indicate(struct ath_softc *sc, int ath__rx_indicate(struct ath_softc *sc,
struct sk_buff *skb, struct sk_buff *skb,
struct ath_recv_status *status, struct ath_recv_status *status,
u_int16_t keyix) u16 keyix)
{ {
struct ieee80211_hw *hw = sc->hw; struct ieee80211_hw *hw = sc->hw;
struct ath_node *an = NULL; struct ath_node *an = NULL;
@ -1191,7 +1095,7 @@ int ath__rx_indicate(struct ath_softc *sc,
/* Prepare rx status */ /* Prepare rx status */
ath9k_rx_prepare(sc, skb, status, &rx_status); ath9k_rx_prepare(sc, skb, status, &rx_status);
if (!(keyix == HAL_RXKEYIX_INVALID) && if (!(keyix == ATH9K_RXKEYIX_INVALID) &&
!(status->flags & ATH_RX_DECRYPT_ERROR)) { !(status->flags & ATH_RX_DECRYPT_ERROR)) {
rx_status.flag |= RX_FLAG_DECRYPTED; rx_status.flag |= RX_FLAG_DECRYPTED;
} else if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED) } else if ((le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_PROTECTED)
@ -1236,7 +1140,7 @@ int ath_rx_subframe(struct ath_node *an,
return 0; return 0;
} }
enum hal_ht_macmode ath_cwm_macmode(struct ath_softc *sc) enum ath9k_ht_macmode ath_cwm_macmode(struct ath_softc *sc)
{ {
return sc->sc_ht_info.tx_chan_width; return sc->sc_ht_info.tx_chan_width;
} }
@ -1244,7 +1148,7 @@ enum hal_ht_macmode ath_cwm_macmode(struct ath_softc *sc)
void ath_setup_rate(struct ath_softc *sc, void ath_setup_rate(struct ath_softc *sc,
enum wireless_mode wMode, enum wireless_mode wMode,
enum RATE_TYPE type, enum RATE_TYPE type,
const struct hal_rate_table *rt) const struct ath9k_rate_table *rt)
{ {
int i, maxrates, a = 0, b = 0; int i, maxrates, a = 0, b = 0;
struct ieee80211_supported_band *band_2ghz; struct ieee80211_supported_band *band_2ghz;
@ -1335,7 +1239,7 @@ static int ath_detach(struct ath_softc *sc)
return 0; return 0;
} }
static int ath_attach(u_int16_t devid, static int ath_attach(u16 devid,
struct ath_softc *sc) struct ath_softc *sc)
{ {
struct ieee80211_hw *hw = sc->hw; struct ieee80211_hw *hw = sc->hw;
@ -1432,7 +1336,7 @@ static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
struct ath_softc *sc; struct ath_softc *sc;
struct ieee80211_hw *hw; struct ieee80211_hw *hw;
const char *athname; const char *athname;
u_int8_t csz; u8 csz;
u32 val; u32 val;
int ret = 0; int ret = 0;
@ -1459,7 +1363,7 @@ static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
* DMA to work so force a reasonable value here if it * DMA to work so force a reasonable value here if it
* comes up zero. * comes up zero.
*/ */
csz = L1_CACHE_BYTES / sizeof(u_int32_t); csz = L1_CACHE_BYTES / sizeof(u32);
pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
} }
/* /*
@ -1499,6 +1403,9 @@ static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
goto bad2; goto bad2;
} }
hw->flags = IEEE80211_HW_SIGNAL_DBM |
IEEE80211_HW_NOISE_DBM;
SET_IEEE80211_DEV(hw, &pdev->dev); SET_IEEE80211_DEV(hw, &pdev->dev);
pci_set_drvdata(pdev, hw); pci_set_drvdata(pdev, hw);

View File

@ -20,7 +20,7 @@
#include "phy.h" #include "phy.h"
void void
ath9k_hw_write_regs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, ath9k_hw_write_regs(struct ath_hal *ah, u32 modesIndex, u32 freqIndex,
int regWrites) int regWrites)
{ {
struct ath_hal_5416 *ahp = AH5416(ah); struct ath_hal_5416 *ahp = AH5416(ah);
@ -29,20 +29,20 @@ ath9k_hw_write_regs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
} }
bool bool
ath9k_hw_set_channel(struct ath_hal *ah, struct hal_channel_internal *chan) ath9k_hw_set_channel(struct ath_hal *ah, struct ath9k_channel *chan)
{ {
u_int32_t channelSel = 0; u32 channelSel = 0;
u_int32_t bModeSynth = 0; u32 bModeSynth = 0;
u_int32_t aModeRefSel = 0; u32 aModeRefSel = 0;
u_int32_t reg32 = 0; u32 reg32 = 0;
u_int16_t freq; u16 freq;
struct chan_centers centers; struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers); ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center; freq = centers.synth_center;
if (freq < 4800) { if (freq < 4800) {
u_int32_t txctl; u32 txctl;
if (((freq - 2192) % 5) == 0) { if (((freq - 2192) % 5) == 0) {
channelSel = ((freq - 672) * 2 - 3040) / 10; channelSel = ((freq - 672) * 2 - 3040) / 10;
@ -105,12 +105,12 @@ ath9k_hw_set_channel(struct ath_hal *ah, struct hal_channel_internal *chan)
bool bool
ath9k_hw_ar9280_set_channel(struct ath_hal *ah, ath9k_hw_ar9280_set_channel(struct ath_hal *ah,
struct hal_channel_internal *chan) struct ath9k_channel *chan)
{ {
u_int16_t bMode, fracMode, aModeRefSel = 0; u16 bMode, fracMode, aModeRefSel = 0;
u_int32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
struct chan_centers centers; struct chan_centers centers;
u_int32_t refDivA = 24; u32 refDivA = 24;
ath9k_hw_get_channel_centers(ah, chan, &centers); ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center; freq = centers.synth_center;
@ -119,7 +119,7 @@ ath9k_hw_ar9280_set_channel(struct ath_hal *ah,
reg32 &= 0xc0000000; reg32 &= 0xc0000000;
if (freq < 4800) { if (freq < 4800) {
u_int32_t txctl; u32 txctl;
bMode = 1; bMode = 1;
fracMode = 1; fracMode = 1;
@ -175,11 +175,11 @@ ath9k_hw_ar9280_set_channel(struct ath_hal *ah,
} }
static void static void
ath9k_phy_modify_rx_buffer(u_int32_t *rfBuf, u_int32_t reg32, ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
u_int32_t numBits, u_int32_t firstBit, u32 numBits, u32 firstBit,
u_int32_t column) u32 column)
{ {
u_int32_t tmp32, mask, arrayEntry, lastBit; u32 tmp32, mask, arrayEntry, lastBit;
int32_t bitPosition, bitsLeft; int32_t bitPosition, bitsLeft;
tmp32 = ath9k_hw_reverse_bits(reg32, numBits); tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
@ -202,14 +202,14 @@ ath9k_phy_modify_rx_buffer(u_int32_t *rfBuf, u_int32_t reg32,
} }
bool bool
ath9k_hw_set_rf_regs(struct ath_hal *ah, struct hal_channel_internal *chan, ath9k_hw_set_rf_regs(struct ath_hal *ah, struct ath9k_channel *chan,
u_int16_t modesIndex) u16 modesIndex)
{ {
struct ath_hal_5416 *ahp = AH5416(ah); struct ath_hal_5416 *ahp = AH5416(ah);
u_int32_t eepMinorRev; u32 eepMinorRev;
u_int32_t ob5GHz = 0, db5GHz = 0; u32 ob5GHz = 0, db5GHz = 0;
u_int32_t ob2GHz = 0, db2GHz = 0; u32 ob2GHz = 0, db2GHz = 0;
int regWrites = 0; int regWrites = 0;
if (AR_SREV_9280_10_OR_LATER(ah)) if (AR_SREV_9280_10_OR_LATER(ah))
@ -312,47 +312,32 @@ ath9k_hw_rfdetach(struct ath_hal *ah)
} }
} }
bool bool ath9k_hw_init_rf(struct ath_hal *ah, int *status)
ath9k_hw_get_chip_power_limits(struct ath_hal *ah,
struct hal_channel *chans, u_int32_t nchans)
{
bool retVal = true;
int i;
for (i = 0; i < nchans; i++) {
chans[i].maxTxPower = AR5416_MAX_RATE_POWER;
chans[i].minTxPower = AR5416_MAX_RATE_POWER;
}
return retVal;
}
bool ath9k_hw_init_rf(struct ath_hal *ah, enum hal_status *status)
{ {
struct ath_hal_5416 *ahp = AH5416(ah); struct ath_hal_5416 *ahp = AH5416(ah);
if (!AR_SREV_9280_10_OR_LATER(ah)) { if (!AR_SREV_9280_10_OR_LATER(ah)) {
ahp->ah_analogBank0Data = ahp->ah_analogBank0Data =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniBank0.ia_rows), GFP_KERNEL); ahp->ah_iniBank0.ia_rows), GFP_KERNEL);
ahp->ah_analogBank1Data = ahp->ah_analogBank1Data =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniBank1.ia_rows), GFP_KERNEL); ahp->ah_iniBank1.ia_rows), GFP_KERNEL);
ahp->ah_analogBank2Data = ahp->ah_analogBank2Data =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniBank2.ia_rows), GFP_KERNEL); ahp->ah_iniBank2.ia_rows), GFP_KERNEL);
ahp->ah_analogBank3Data = ahp->ah_analogBank3Data =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniBank3.ia_rows), GFP_KERNEL); ahp->ah_iniBank3.ia_rows), GFP_KERNEL);
ahp->ah_analogBank6Data = ahp->ah_analogBank6Data =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniBank6.ia_rows), GFP_KERNEL); ahp->ah_iniBank6.ia_rows), GFP_KERNEL);
ahp->ah_analogBank6TPCData = ahp->ah_analogBank6TPCData =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniBank6TPC.ia_rows), GFP_KERNEL); ahp->ah_iniBank6TPC.ia_rows), GFP_KERNEL);
ahp->ah_analogBank7Data = ahp->ah_analogBank7Data =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniBank7.ia_rows), GFP_KERNEL); ahp->ah_iniBank7.ia_rows), GFP_KERNEL);
if (ahp->ah_analogBank0Data == NULL if (ahp->ah_analogBank0Data == NULL
@ -365,30 +350,30 @@ bool ath9k_hw_init_rf(struct ath_hal *ah, enum hal_status *status)
DPRINTF(ah->ah_sc, ATH_DBG_FATAL, DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"%s: cannot allocate RF banks\n", "%s: cannot allocate RF banks\n",
__func__); __func__);
*status = HAL_ENOMEM; *status = -ENOMEM;
return false; return false;
} }
ahp->ah_addac5416_21 = ahp->ah_addac5416_21 =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniAddac.ia_rows * ahp->ah_iniAddac.ia_rows *
ahp->ah_iniAddac.ia_columns), GFP_KERNEL); ahp->ah_iniAddac.ia_columns), GFP_KERNEL);
if (ahp->ah_addac5416_21 == NULL) { if (ahp->ah_addac5416_21 == NULL) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL, DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"%s: cannot allocate ah_addac5416_21\n", "%s: cannot allocate ah_addac5416_21\n",
__func__); __func__);
*status = HAL_ENOMEM; *status = -ENOMEM;
return false; return false;
} }
ahp->ah_bank6Temp = ahp->ah_bank6Temp =
kzalloc((sizeof(u_int32_t) * kzalloc((sizeof(u32) *
ahp->ah_iniBank6.ia_rows), GFP_KERNEL); ahp->ah_iniBank6.ia_rows), GFP_KERNEL);
if (ahp->ah_bank6Temp == NULL) { if (ahp->ah_bank6Temp == NULL) {
DPRINTF(ah->ah_sc, ATH_DBG_FATAL, DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
"%s: cannot allocate ah_bank6Temp\n", "%s: cannot allocate ah_bank6Temp\n",
__func__); __func__);
*status = HAL_ENOMEM; *status = -ENOMEM;
return false; return false;
} }
} }
@ -397,27 +382,27 @@ bool ath9k_hw_init_rf(struct ath_hal *ah, enum hal_status *status)
} }
void void
ath9k_hw_decrease_chain_power(struct ath_hal *ah, struct hal_channel *chan) ath9k_hw_decrease_chain_power(struct ath_hal *ah, struct ath9k_channel *chan)
{ {
int i, regWrites = 0; int i, regWrites = 0;
struct ath_hal_5416 *ahp = AH5416(ah); struct ath_hal_5416 *ahp = AH5416(ah);
u_int32_t bank6SelMask; u32 bank6SelMask;
u_int32_t *bank6Temp = ahp->ah_bank6Temp; u32 *bank6Temp = ahp->ah_bank6Temp;
switch (ahp->ah_diversityControl) { switch (ahp->ah_diversityControl) {
case HAL_ANT_FIXED_A: case ATH9K_ANT_FIXED_A:
bank6SelMask = bank6SelMask =
(ahp-> (ahp->
ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_0 : ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_0 :
REDUCE_CHAIN_1; REDUCE_CHAIN_1;
break; break;
case HAL_ANT_FIXED_B: case ATH9K_ANT_FIXED_B:
bank6SelMask = bank6SelMask =
(ahp-> (ahp->
ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_1 : ah_antennaSwitchSwap & ANTSWAP_AB) ? REDUCE_CHAIN_1 :
REDUCE_CHAIN_0; REDUCE_CHAIN_0;
break; break;
case HAL_ANT_VARIABLE: case ATH9K_ANT_VARIABLE:
return; return;
break; break;
default: default:

View File

@ -18,19 +18,19 @@
#define PHY_H #define PHY_H
bool ath9k_hw_ar9280_set_channel(struct ath_hal *ah, bool ath9k_hw_ar9280_set_channel(struct ath_hal *ah,
struct hal_channel_internal struct ath9k_channel
*chan); *chan);
bool ath9k_hw_set_channel(struct ath_hal *ah, bool ath9k_hw_set_channel(struct ath_hal *ah,
struct hal_channel_internal *chan); struct ath9k_channel *chan);
void ath9k_hw_write_regs(struct ath_hal *ah, u_int modesIndex, void ath9k_hw_write_regs(struct ath_hal *ah, u32 modesIndex,
u_int freqIndex, int regWrites); u32 freqIndex, int regWrites);
bool ath9k_hw_set_rf_regs(struct ath_hal *ah, bool ath9k_hw_set_rf_regs(struct ath_hal *ah,
struct hal_channel_internal *chan, struct ath9k_channel *chan,
u_int16_t modesIndex); u16 modesIndex);
void ath9k_hw_decrease_chain_power(struct ath_hal *ah, void ath9k_hw_decrease_chain_power(struct ath_hal *ah,
struct hal_channel *chan); struct ath9k_channel *chan);
bool ath9k_hw_init_rf(struct ath_hal *ah, bool ath9k_hw_init_rf(struct ath_hal *ah,
enum hal_status *status); int *status);
#define AR_PHY_BASE 0x9800 #define AR_PHY_BASE 0x9800
#define AR_PHY(_n) (AR_PHY_BASE + ((_n)<<2)) #define AR_PHY(_n) (AR_PHY_BASE + ((_n)<<2))

View File

@ -22,7 +22,7 @@
#include "core.h" #include "core.h"
#include "../net/mac80211/rate.h" #include "../net/mac80211/rate.h"
static u_int32_t tx_triglevel_max; static u32 tx_triglevel_max;
static struct ath_rate_table ar5416_11na_ratetable = { static struct ath_rate_table ar5416_11na_ratetable = {
42, 42,
@ -159,13 +159,13 @@ static struct ath_rate_table ar5416_11na_ratetable = {
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
}; };
/* TRUE_ALL - valid for 20/40/Legacy, /* TRUE_ALL - valid for 20/40/Legacy,
* TRUE - Legacy only, * TRUE - Legacy only,
* TRUE_20 - HT 20 only, * TRUE_20 - HT 20 only,
* TRUE_40 - HT 40 only */ * TRUE_40 - HT 40 only */
/* 4ms frame limit not used for NG mode. The values filled /* 4ms frame limit not used for NG mode. The values filled
* for HT are the 64K max aggregate limit */ * for HT are the 64K max aggregate limit */
static struct ath_rate_table ar5416_11ng_ratetable = { static struct ath_rate_table ar5416_11ng_ratetable = {
46, 46,
@ -541,19 +541,17 @@ static inline int8_t median(int8_t a, int8_t b, int8_t c)
} }
static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl) struct ath_tx_ratectrl *rate_ctrl)
{ {
u_int8_t i, j, idx, idx_next; u8 i, j, idx, idx_next;
for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) { for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) {
for (j = 0; j <= i-1; j++) { for (j = 0; j <= i-1; j++) {
idx = rate_ctrl->valid_rate_index[j]; idx = rate_ctrl->valid_rate_index[j];
idx_next = rate_ctrl->valid_rate_index[j+1]; idx_next = rate_ctrl->valid_rate_index[j+1];
if (rate_table->info[idx].ratekbps > if (rate_table->info[idx].ratekbps >
rate_table->info[idx_next].ratekbps) { rate_table->info[idx_next].ratekbps) {
rate_ctrl->valid_rate_index[j] = idx_next; rate_ctrl->valid_rate_index[j] = idx_next;
rate_ctrl->valid_rate_index[j+1] = idx; rate_ctrl->valid_rate_index[j+1] = idx;
} }
@ -565,34 +563,34 @@ static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl) static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl)
{ {
u_int8_t i; u8 i;
for (i = 0; i < rate_ctrl->rate_table_size; i++) for (i = 0; i < rate_ctrl->rate_table_size; i++)
rate_ctrl->valid_rate_index[i] = FALSE; rate_ctrl->valid_rate_index[i] = FALSE;
} }
static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl, static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl,
u_int8_t index, int valid_tx_rate) u8 index, int valid_tx_rate)
{ {
ASSERT(index <= rate_ctrl->rate_table_size); ASSERT(index <= rate_ctrl->rate_table_size);
rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE; rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE;
} }
static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl, static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl,
u_int8_t index) u8 index)
{ {
ASSERT(index <= rate_ctrl->rate_table_size); ASSERT(index <= rate_ctrl->rate_table_size);
return rate_ctrl->valid_rate_index[index]; return rate_ctrl->valid_rate_index[index];
} }
/* Iterators for valid_txrate_mask */ /* Iterators for valid_txrate_mask */
static inline int ath_rc_get_nextvalid_txrate( static inline int
const struct ath_rate_table *rate_table, ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl, struct ath_tx_ratectrl *rate_ctrl,
u_int8_t cur_valid_txrate, u8 cur_valid_txrate,
u_int8_t *next_idx) u8 *next_idx)
{ {
u_int8_t i; u8 i;
for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) { for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) {
if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
@ -608,7 +606,7 @@ static inline int ath_rc_get_nextvalid_txrate(
/* Return true only for single stream */ /* Return true only for single stream */
static int ath_rc_valid_phyrate(u_int32_t phy, u_int32_t capflag, int ignore_cw) static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
{ {
if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG)) if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG))
return FALSE; return FALSE;
@ -624,10 +622,10 @@ static int ath_rc_valid_phyrate(u_int32_t phy, u_int32_t capflag, int ignore_cw)
return TRUE; return TRUE;
} }
static inline int ath_rc_get_nextlowervalid_txrate( static inline int
const struct ath_rate_table *rate_table, ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl, struct ath_tx_ratectrl *rate_ctrl,
u_int8_t cur_valid_txrate, u_int8_t *next_idx) u8 cur_valid_txrate, u8 *next_idx)
{ {
int8_t i; int8_t i;
@ -643,13 +641,14 @@ static inline int ath_rc_get_nextlowervalid_txrate(
/* /*
* Initialize the Valid Rate Index from valid entries in Rate Table * Initialize the Valid Rate Index from valid entries in Rate Table
*/ */
static u_int8_t ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv, static u8
const struct ath_rate_table *rate_table, ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
u_int32_t capflag) const struct ath_rate_table *rate_table,
u32 capflag)
{ {
struct ath_tx_ratectrl *rate_ctrl; struct ath_tx_ratectrl *rate_ctrl;
u_int8_t i, hi = 0; u8 i, hi = 0;
u_int32_t valid; u32 valid;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
for (i = 0; i < rate_table->rate_cnt; i++) { for (i = 0; i < rate_table->rate_cnt; i++) {
@ -657,8 +656,8 @@ static u_int8_t ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
rate_table->info[i].valid_single_stream : rate_table->info[i].valid_single_stream :
rate_table->info[i].valid); rate_table->info[i].valid);
if (valid == TRUE) { if (valid == TRUE) {
u_int32_t phy = rate_table->info[i].phy; u32 phy = rate_table->info[i].phy;
u_int8_t valid_rate_count = 0; u8 valid_rate_count = 0;
if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
continue; continue;
@ -677,21 +676,22 @@ static u_int8_t ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
/* /*
* Initialize the Valid Rate Index from Rate Set * Initialize the Valid Rate Index from Rate Set
*/ */
static u_int8_t ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv, static u8
const struct ath_rate_table *rate_table, ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
struct ath_rateset *rateset, const struct ath_rate_table *rate_table,
u_int32_t capflag) struct ath_rateset *rateset,
u32 capflag)
{ {
/* XXX: Clean me up and make identation friendly */ /* XXX: Clean me up and make identation friendly */
u_int8_t i, j, hi = 0; u8 i, j, hi = 0;
struct ath_tx_ratectrl *rate_ctrl = struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv); (struct ath_tx_ratectrl *)(ath_rc_priv);
/* Use intersection of working rates and valid rates */ /* Use intersection of working rates and valid rates */
for (i = 0; i < rateset->rs_nrates; i++) { for (i = 0; i < rateset->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) { for (j = 0; j < rate_table->rate_cnt; j++) {
u_int32_t phy = rate_table->info[j].phy; u32 phy = rate_table->info[j].phy;
u_int32_t valid = (ath_rc_priv->single_stream ? u32 valid = (ath_rc_priv->single_stream ?
rate_table->info[j].valid_single_stream : rate_table->info[j].valid_single_stream :
rate_table->info[j].valid); rate_table->info[j].valid);
@ -707,7 +707,7 @@ static u_int8_t ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
WLAN_RC_CAP_MODE(capflag)) && WLAN_RC_CAP_MODE(capflag)) &&
!WLAN_RC_PHY_HT(phy)) { !WLAN_RC_PHY_HT(phy)) {
u_int8_t valid_rate_count = 0; u8 valid_rate_count = 0;
if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
continue; continue;
@ -726,19 +726,20 @@ static u_int8_t ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
return hi; return hi;
} }
static u_int8_t ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv, static u8
const struct ath_rate_table *rate_table, ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv,
u_int8_t *mcs_set, u_int32_t capflag) const struct ath_rate_table *rate_table,
u8 *mcs_set, u32 capflag)
{ {
u_int8_t i, j, hi = 0; u8 i, j, hi = 0;
struct ath_tx_ratectrl *rate_ctrl = struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv); (struct ath_tx_ratectrl *)(ath_rc_priv);
/* Use intersection of working rates and valid rates */ /* Use intersection of working rates and valid rates */
for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) { for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) { for (j = 0; j < rate_table->rate_cnt; j++) {
u_int32_t phy = rate_table->info[j].phy; u32 phy = rate_table->info[j].phy;
u_int32_t valid = (ath_rc_priv->single_stream ? u32 valid = (ath_rc_priv->single_stream ?
rate_table->info[j].valid_single_stream : rate_table->info[j].valid_single_stream :
rate_table->info[j].valid); rate_table->info[j].valid);
@ -785,8 +786,8 @@ struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah)
} }
static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp, static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp,
struct ath_rate_softc *rsc, struct ath_rate_softc *rsc,
gfp_t gfp) gfp_t gfp)
{ {
struct ath_rate_node *anode; struct ath_rate_node *anode;
@ -796,6 +797,8 @@ static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp,
anode->avp = avp; anode->avp = avp;
anode->asc = rsc; anode->asc = rsc;
avp->rc_node = anode;
return anode; return anode;
} }
@ -811,8 +814,8 @@ void ath_rate_detach(struct ath_rate_softc *asc)
kfree(asc); kfree(asc);
} }
u_int8_t ath_rate_findrateix(struct ath_softc *sc, u8 ath_rate_findrateix(struct ath_softc *sc,
u_int8_t dot11rate) u8 dot11rate)
{ {
const struct ath_rate_table *ratetable; const struct ath_rate_table *ratetable;
struct ath_rate_softc *rsc = sc->sc_rc; struct ath_rate_softc *rsc = sc->sc_rc;
@ -824,10 +827,10 @@ u_int8_t ath_rate_findrateix(struct ath_softc *sc,
return 0; return 0;
for (i = 0; i < ratetable->rate_cnt; i++) { for (i = 0; i < ratetable->rate_cnt; i++) {
if ((ratetable->info[i].dot11rate & 0x7f) == if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f))
(dot11rate & 0x7f))
return i; return i;
} }
return 0; return 0;
} }
@ -837,7 +840,7 @@ u_int8_t ath_rate_findrateix(struct ath_softc *sc,
* with an AP. Otherwise this gets called, for example, when * with an AP. Otherwise this gets called, for example, when
* the we transition to run state when operating as an AP. * the we transition to run state when operating as an AP.
*/ */
void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp, int up) void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp)
{ {
struct ath_rate_softc *asc = sc->sc_rc; struct ath_rate_softc *asc = sc->sc_rc;
@ -862,24 +865,25 @@ void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp, int up)
} }
} }
static u_int8_t ath_rc_ratefind_ht(struct ath_softc *sc, static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv, struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table, const struct ath_rate_table *rate_table,
int probe_allowed, int *is_probing, int is_retry) int probe_allowed, int *is_probing,
int is_retry)
{ {
u_int32_t dt, best_thruput, this_thruput, now_msec; u32 dt, best_thruput, this_thruput, now_msec;
u_int8_t rate, next_rate, best_rate, maxindex, minindex; u8 rate, next_rate, best_rate, maxindex, minindex;
int8_t rssi_last, rssi_reduce = 0, index = 0; int8_t rssi_last, rssi_reduce = 0, index = 0;
struct ath_tx_ratectrl *rate_ctrl = NULL; struct ath_tx_ratectrl *rate_ctrl = NULL;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ? rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ?
(ath_rc_priv) : NULL); (ath_rc_priv) : NULL);
*is_probing = FALSE; *is_probing = FALSE;
rssi_last = median(rate_ctrl->rssi_last, rssi_last = median(rate_ctrl->rssi_last,
rate_ctrl->rssi_last_prev, rate_ctrl->rssi_last_prev,
rate_ctrl->rssi_last_prev2); rate_ctrl->rssi_last_prev2);
/* /*
* Age (reduce) last ack rssi based on how old it is. * Age (reduce) last ack rssi based on how old it is.
@ -896,7 +900,7 @@ static u_int8_t ath_rc_ratefind_ht(struct ath_softc *sc,
if (dt >= 185) if (dt >= 185)
rssi_reduce = 10; rssi_reduce = 10;
else if (dt >= 25) else if (dt >= 25)
rssi_reduce = (u_int8_t)((dt - 25) >> 4); rssi_reduce = (u8)((dt - 25) >> 4);
/* Now reduce rssi_last by rssi_reduce */ /* Now reduce rssi_last by rssi_reduce */
if (rssi_last < rssi_reduce) if (rssi_last < rssi_reduce)
@ -910,20 +914,19 @@ static u_int8_t ath_rc_ratefind_ht(struct ath_softc *sc,
*/ */
best_thruput = 0; best_thruput = 0;
maxindex = rate_ctrl->max_valid_rate-1; maxindex = rate_ctrl->max_valid_rate-1;
minindex = 0;
best_rate = minindex;
minindex = 0;
best_rate = minindex;
/* /*
* Try the higher rate first. It will reduce memory moving time * Try the higher rate first. It will reduce memory moving time
* if we have very good channel characteristics. * if we have very good channel characteristics.
*/ */
for (index = maxindex; index >= minindex ; index--) { for (index = maxindex; index >= minindex ; index--) {
u_int8_t per_thres; u8 per_thres;
rate = rate_ctrl->valid_rate_index[index]; rate = rate_ctrl->valid_rate_index[index];
if (rate > rate_ctrl->rate_max_phy) if (rate > rate_ctrl->rate_max_phy)
continue; continue;
@ -967,21 +970,20 @@ static u_int8_t ath_rc_ratefind_ht(struct ath_softc *sc,
*/ */
if (rate >= rate_ctrl->rate_max_phy && probe_allowed) { if (rate >= rate_ctrl->rate_max_phy && probe_allowed) {
rate = rate_ctrl->rate_max_phy; rate = rate_ctrl->rate_max_phy;
/* Probe the next allowed phy state */ /* Probe the next allowed phy state */
/* FIXME:XXXX Check to make sure ratMax is checked properly */ /* FIXME:XXXX Check to make sure ratMax is checked properly */
if (ath_rc_get_nextvalid_txrate(rate_table, if (ath_rc_get_nextvalid_txrate(rate_table,
rate_ctrl, rate, &next_rate) && rate_ctrl, rate, &next_rate) &&
(now_msec - rate_ctrl->probe_time > (now_msec - rate_ctrl->probe_time >
rate_table->probe_interval) && rate_table->probe_interval) &&
(rate_ctrl->hw_maxretry_pktcnt >= 1)) { (rate_ctrl->hw_maxretry_pktcnt >= 1)) {
rate = next_rate; rate = next_rate;
rate_ctrl->probe_rate = rate; rate_ctrl->probe_rate = rate;
rate_ctrl->probe_time = now_msec; rate_ctrl->probe_time = now_msec;
rate_ctrl->hw_maxretry_pktcnt = 0; rate_ctrl->hw_maxretry_pktcnt = 0;
*is_probing = TRUE; *is_probing = TRUE;
} }
} }
@ -1002,29 +1004,32 @@ static u_int8_t ath_rc_ratefind_ht(struct ath_softc *sc,
} }
static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table , static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table ,
struct ath_rc_series *series, u_int8_t tries, u_int8_t rix, struct ath_rc_series *series,
int rtsctsenable) u8 tries,
u8 rix,
int rtsctsenable)
{ {
series->tries = tries; series->tries = tries;
series->flags = (rtsctsenable? ATH_RC_RTSCTS_FLAG : 0) | series->flags = (rtsctsenable? ATH_RC_RTSCTS_FLAG : 0) |
(WLAN_RC_PHY_DS(rate_table->info[rix].phy) ? (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ?
ATH_RC_DS_FLAG : 0) | ATH_RC_DS_FLAG : 0) |
(WLAN_RC_PHY_40(rate_table->info[rix].phy) ? (WLAN_RC_PHY_40(rate_table->info[rix].phy) ?
ATH_RC_CW40_FLAG : 0) | ATH_RC_CW40_FLAG : 0) |
(WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ? (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ?
ATH_RC_SGI_FLAG : 0); ATH_RC_SGI_FLAG : 0);
series->rix = rate_table->info[rix].base_index; series->rix = rate_table->info[rix].base_index;
series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen; series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen;
} }
static u_int8_t ath_rc_rate_getidx(struct ath_softc *sc, static u8 ath_rc_rate_getidx(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv, struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table, const struct ath_rate_table *rate_table,
u_int8_t rix, u_int16_t stepdown, u_int16_t min_rate) u8 rix, u16 stepdown,
u16 min_rate)
{ {
u_int32_t j; u32 j;
u_int8_t nextindex; u8 nextindex;
struct ath_tx_ratectrl *rate_ctrl = struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv); (struct ath_tx_ratectrl *)(ath_rc_priv);
@ -1049,11 +1054,12 @@ static u_int8_t ath_rc_rate_getidx(struct ath_softc *sc,
} }
static void ath_rc_ratefind(struct ath_softc *sc, static void ath_rc_ratefind(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv, struct ath_rate_node *ath_rc_priv,
int num_tries, int num_rates, unsigned int rcflag, int num_tries, int num_rates, unsigned int rcflag,
struct ath_rc_series series[], int *is_probe, int is_retry) struct ath_rc_series series[], int *is_probe,
int is_retry)
{ {
u_int8_t try_per_rate = 0, i = 0, rix, nrix; u8 try_per_rate = 0, i = 0, rix, nrix;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table; struct ath_rate_table *rate_table;
@ -1087,10 +1093,10 @@ static void ath_rc_ratefind(struct ath_softc *sc,
/* Fill in the other rates for multirate retry */ /* Fill in the other rates for multirate retry */
for ( ; i < num_rates; i++) { for ( ; i < num_rates; i++) {
u_int8_t try_num; u8 try_num;
u_int8_t min_rate; u8 min_rate;
try_num = ((i + 1) == num_rates) ? try_num = ((i + 1) == num_rates) ?
num_tries - (try_per_rate * i) : try_per_rate ; num_tries - (try_per_rate * i) : try_per_rate ;
min_rate = (((i + 1) == num_rates) && min_rate = (((i + 1) == num_rates) &&
(rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0; (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0;
@ -1120,8 +1126,8 @@ static void ath_rc_ratefind(struct ath_softc *sc,
if ((sc->sc_curmode == WIRELESS_MODE_11NG_HT20) || if ((sc->sc_curmode == WIRELESS_MODE_11NG_HT20) ||
(sc->sc_curmode == WIRELESS_MODE_11NG_HT40PLUS) || (sc->sc_curmode == WIRELESS_MODE_11NG_HT40PLUS) ||
(sc->sc_curmode == WIRELESS_MODE_11NG_HT40MINUS)) { (sc->sc_curmode == WIRELESS_MODE_11NG_HT40MINUS)) {
u_int8_t dot11rate = rate_table->info[rix].dot11rate; u8 dot11rate = rate_table->info[rix].dot11rate;
u_int8_t phy = rate_table->info[rix].phy; u8 phy = rate_table->info[rix].phy;
if (i == 4 && if (i == 4 &&
((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
(dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
@ -1135,19 +1141,16 @@ static void ath_rc_ratefind(struct ath_softc *sc,
/* /*
* Return the Tx rate series. * Return the Tx rate series.
*/ */
void ath_rate_findrate(struct ath_softc *sc, void ath_rate_findrate(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv, struct ath_rate_node *ath_rc_priv,
int num_tries, int num_tries,
int num_rates, int num_rates,
unsigned int rcflag, unsigned int rcflag,
struct ath_rc_series series[], struct ath_rc_series series[],
int *is_probe, int *is_probe,
int is_retry int is_retry)
)
{ {
struct ath_vap *avp = ath_rc_priv->avp; struct ath_vap *avp = ath_rc_priv->avp;
DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
if (!num_rates || !num_tries) if (!num_rates || !num_tries)
@ -1159,8 +1162,8 @@ void ath_rate_findrate(struct ath_softc *sc,
} else { } else {
/* Fixed rate */ /* Fixed rate */
int idx; int idx;
u_int8_t flags; u8 flags;
u_int32_t rix; u32 rix;
struct ath_rate_softc *asc = ath_rc_priv->asc; struct ath_rate_softc *asc = ath_rc_priv->asc;
struct ath_rate_table *rate_table; struct ath_rate_table *rate_table;
@ -1169,7 +1172,7 @@ void ath_rate_findrate(struct ath_softc *sc,
for (idx = 0; idx < 4; idx++) { for (idx = 0; idx < 4; idx++) {
unsigned int mcs; unsigned int mcs;
u_int8_t series_rix = 0; u8 series_rix = 0;
series[idx].tries = series[idx].tries =
IEEE80211_RATE_IDX_ENTRY( IEEE80211_RATE_IDX_ENTRY(
@ -1222,14 +1225,14 @@ static void ath_rc_update_ht(struct ath_softc *sc,
int tx_rate, int xretries, int retries) int tx_rate, int xretries, int retries)
{ {
struct ath_tx_ratectrl *rate_ctrl; struct ath_tx_ratectrl *rate_ctrl;
u_int32_t now_msec = jiffies_to_msecs(jiffies); u32 now_msec = jiffies_to_msecs(jiffies);
int state_change = FALSE, rate, count; int state_change = FALSE, rate, count;
u_int8_t last_per; u8 last_per;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table = struct ath_rate_table *rate_table =
(struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
static u_int32_t nretry_to_per_lookup[10] = { static u32 nretry_to_per_lookup[10] = {
100 * 0 / 1, 100 * 0 / 1,
100 * 1 / 4, 100 * 1 / 4,
100 * 1 / 2, 100 * 1 / 2,
@ -1265,7 +1268,6 @@ static void ath_rc_update_ht(struct ath_softc *sc,
rate_ctrl->state[tx_rate].per += 30; rate_ctrl->state[tx_rate].per += 30;
if (rate_ctrl->state[tx_rate].per > 100) if (rate_ctrl->state[tx_rate].per > 100)
rate_ctrl->state[tx_rate].per = 100; rate_ctrl->state[tx_rate].per = 100;
} else { } else {
/* xretries == 2 */ /* xretries == 2 */
count = sizeof(nretry_to_per_lookup) / count = sizeof(nretry_to_per_lookup) /
@ -1274,7 +1276,7 @@ static void ath_rc_update_ht(struct ath_softc *sc,
retries = count - 1; retries = count - 1;
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */ /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
rate_ctrl->state[tx_rate].per = rate_ctrl->state[tx_rate].per =
(u_int8_t)(rate_ctrl->state[tx_rate].per - (u8)(rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) + (rate_ctrl->state[tx_rate].per >> 3) +
((100) >> 3)); ((100) >> 3));
} }
@ -1285,7 +1287,6 @@ static void ath_rc_update_ht(struct ath_softc *sc,
rate_ctrl->probe_rate = 0; rate_ctrl->probe_rate = 0;
} else { /* xretries == 0 */ } else { /* xretries == 0 */
/* Update the PER. */ /* Update the PER. */
/* Make sure it doesn't index out of array's bounds. */ /* Make sure it doesn't index out of array's bounds. */
count = sizeof(nretry_to_per_lookup) / count = sizeof(nretry_to_per_lookup) /
@ -1308,7 +1309,7 @@ static void ath_rc_update_ht(struct ath_softc *sc,
*/ */
if (info_priv->n_frames > 0) if (info_priv->n_frames > 0)
rate_ctrl->state[tx_rate].per rate_ctrl->state[tx_rate].per
= (u_int8_t) = (u8)
(rate_ctrl->state[tx_rate].per - (rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) + (rate_ctrl->state[tx_rate].per >> 3) +
((100*(retries*info_priv->n_frames + ((100*(retries*info_priv->n_frames +
@ -1318,7 +1319,7 @@ static void ath_rc_update_ht(struct ath_softc *sc,
} else { } else {
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */ /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
rate_ctrl->state[tx_rate].per = (u_int8_t) rate_ctrl->state[tx_rate].per = (u8)
(rate_ctrl->state[tx_rate].per - (rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) + (rate_ctrl->state[tx_rate].per >> 3) +
(nretry_to_per_lookup[retries] >> 3)); (nretry_to_per_lookup[retries] >> 3));
@ -1326,8 +1327,8 @@ static void ath_rc_update_ht(struct ath_softc *sc,
rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev; rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev;
rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last; rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last;
rate_ctrl->rssi_last = info_priv->tx.ts_rssi; rate_ctrl->rssi_last = info_priv->tx.ts_rssi;
rate_ctrl->rssi_time = now_msec; rate_ctrl->rssi_time = now_msec;
/* /*
* If we got at most one retry then increase the max rate if * If we got at most one retry then increase the max rate if
@ -1346,7 +1347,7 @@ static void ath_rc_update_ht(struct ath_softc *sc,
*/ */
rate_ctrl->probe_rate = 0; rate_ctrl->probe_rate = 0;
} else { } else {
u_int8_t probe_rate = 0; u8 probe_rate = 0;
rate_ctrl->rate_max_phy = rate_ctrl->probe_rate; rate_ctrl->rate_max_phy = rate_ctrl->probe_rate;
probe_rate = rate_ctrl->probe_rate; probe_rate = rate_ctrl->probe_rate;
@ -1427,7 +1428,6 @@ static void ath_rc_update_ht(struct ath_softc *sc,
} }
} }
/* For all cases */ /* For all cases */
/* /*
@ -1438,7 +1438,7 @@ static void ath_rc_update_ht(struct ath_softc *sc,
rate_table->info[tx_rate].ratekbps <= rate_table->info[tx_rate].ratekbps <=
rate_table->info[rate_ctrl->rate_max_phy].ratekbps) { rate_table->info[rate_ctrl->rate_max_phy].ratekbps) {
ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl, ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl,
(u_int8_t) tx_rate, &rate_ctrl->rate_max_phy); (u8) tx_rate, &rate_ctrl->rate_max_phy);
/* Don't probe for a little while. */ /* Don't probe for a little while. */
rate_ctrl->probe_time = now_msec; rate_ctrl->probe_time = now_msec;
@ -1555,16 +1555,16 @@ static void ath_rc_update_ht(struct ath_softc *sc,
* the status of previous frames. * the status of previous frames.
*/ */
static void ath_rc_update(struct ath_softc *sc, static void ath_rc_update(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv, struct ath_rate_node *ath_rc_priv,
struct ath_tx_info_priv *info_priv, int final_ts_idx, struct ath_tx_info_priv *info_priv, int final_ts_idx,
int xretries, int long_retry) int xretries, int long_retry)
{ {
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table; struct ath_rate_table *rate_table;
struct ath_tx_ratectrl *rate_ctrl; struct ath_tx_ratectrl *rate_ctrl;
struct ath_rc_series rcs[4]; struct ath_rc_series rcs[4];
u_int8_t flags; u8 flags;
u_int32_t series = 0, rix; u32 series = 0, rix;
memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0])); memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0]));
rate_table = (struct ath_rate_table *) rate_table = (struct ath_rate_table *)
@ -1577,7 +1577,6 @@ static void ath_rc_update(struct ath_softc *sc,
* are intermediate rate failures to be processed. * are intermediate rate failures to be processed.
*/ */
if (final_ts_idx != 0) { if (final_ts_idx != 0) {
/* Process intermediate rates that failed.*/ /* Process intermediate rates that failed.*/
for (series = 0; series < final_ts_idx ; series++) { for (series = 0; series < final_ts_idx ; series++) {
if (rcs[series].tries != 0) { if (rcs[series].tries != 0) {
@ -1641,10 +1640,10 @@ static void ath_rc_update(struct ath_softc *sc,
/* /*
* Process a tx descriptor for a completed transmit (success or failure). * Process a tx descriptor for a completed transmit (success or failure).
*/ */
static void ath_rate_tx_complete(struct ath_softc *sc, static void ath_rate_tx_complete(struct ath_softc *sc,
struct ath_node *an, struct ath_rate_node *rc_priv, struct ath_node *an,
struct ath_tx_info_priv *info_priv) struct ath_rate_node *rc_priv,
struct ath_tx_info_priv *info_priv)
{ {
int final_ts_idx = info_priv->tx.ts_rateindex; int final_ts_idx = info_priv->tx.ts_rateindex;
int tx_status = 0, is_underrun = 0; int tx_status = 0, is_underrun = 0;
@ -1678,8 +1677,8 @@ static void ath_rate_tx_complete(struct ath_softc *sc,
tx_status = 1; tx_status = 1;
ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status, ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status,
(is_underrun) ? ATH_11N_TXMAXTRY (is_underrun) ? ATH_11N_TXMAXTRY :
:info_priv->tx.ts_longretry); info_priv->tx.ts_longretry);
} }
@ -1692,18 +1691,18 @@ static void ath_rate_tx_complete(struct ath_softc *sc,
* It will determine which rates are valid for use. * It will determine which rates are valid for use.
*/ */
static void ath_rc_sib_update(struct ath_softc *sc, static void ath_rc_sib_update(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv, struct ath_rate_node *ath_rc_priv,
u_int32_t capflag, int keep_state, u32 capflag, int keep_state,
struct ath_rateset *negotiated_rates, struct ath_rateset *negotiated_rates,
struct ath_rateset *negotiated_htrates) struct ath_rateset *negotiated_htrates)
{ {
struct ath_rate_table *rate_table = NULL; struct ath_rate_table *rate_table = NULL;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rateset *rateset = negotiated_rates; struct ath_rateset *rateset = negotiated_rates;
u_int8_t *ht_mcs = (u_int8_t *)negotiated_htrates; u8 *ht_mcs = (u8 *)negotiated_htrates;
struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *) struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *)
(ath_rc_priv); (ath_rc_priv);
u_int8_t i, j, k, hi = 0, hthi = 0; u8 i, j, k, hi = 0, hthi = 0;
rate_table = (struct ath_rate_table *) rate_table = (struct ath_rate_table *)
asc->hw_rate_table[sc->sc_curmode]; asc->hw_rate_table[sc->sc_curmode];
@ -1716,7 +1715,7 @@ static void ath_rc_sib_update(struct ath_softc *sc,
for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) { for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) {
rate_ctrl->state[i].rssi_thres = rate_ctrl->state[i].rssi_thres =
rate_table->info[i].rssi_ack_validmin; rate_table->info[i].rssi_ack_validmin;
rate_ctrl->state[i].per = 0; rate_ctrl->state[i].per = 0;
} }
/* Determine the valid rates */ /* Determine the valid rates */
@ -1739,10 +1738,12 @@ static void ath_rc_sib_update(struct ath_softc *sc,
} else { } else {
/* Use intersection of working rates and valid rates */ /* Use intersection of working rates and valid rates */
hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table, hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table,
rateset, capflag); rateset, capflag);
if (capflag & WLAN_RC_HT_FLAG) { if (capflag & WLAN_RC_HT_FLAG) {
hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv, hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv,
rate_table, ht_mcs, capflag); rate_table,
ht_mcs,
capflag);
} }
hi = A_MAX(hi, hthi); hi = A_MAX(hi, hthi);
} }
@ -1758,7 +1759,7 @@ static void ath_rc_sib_update(struct ath_softc *sc,
} }
if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE) if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE)
|| !rate_ctrl->valid_phy_ratecnt[i]) || !rate_ctrl->valid_phy_ratecnt[i])
continue; continue;
rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1]; rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1];
@ -1780,10 +1781,10 @@ static void ath_rc_sib_update(struct ath_softc *sc,
* Update rate-control state on station associate/reassociate. * Update rate-control state on station associate/reassociate.
*/ */
static int ath_rate_newassoc(struct ath_softc *sc, static int ath_rate_newassoc(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv, struct ath_rate_node *ath_rc_priv,
unsigned int capflag, unsigned int capflag,
struct ath_rateset *negotiated_rates, struct ath_rateset *negotiated_rates,
struct ath_rateset *negotiated_htrates) struct ath_rateset *negotiated_htrates)
{ {
@ -1794,7 +1795,7 @@ static int ath_rate_newassoc(struct ath_softc *sc,
((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0); ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0);
ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0, ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0,
negotiated_rates, negotiated_htrates); negotiated_rates, negotiated_htrates);
return 0; return 0;
} }
@ -1834,15 +1835,14 @@ static void ath_setup_rates(struct ieee80211_local *local, struct sta_info *sta)
rc_priv->neg_rates.rs_nrates = j; rc_priv->neg_rates.rs_nrates = j;
} }
static void ath_rc_node_update(struct ieee80211_hw *hw, void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv)
struct ath_rate_node *rc_priv)
{ {
struct ath_softc *sc = hw->priv; struct ath_softc *sc = hw->priv;
u_int32_t capflag = 0; u32 capflag = 0;
if (hw->conf.ht_conf.ht_supported) { if (hw->conf.ht_conf.ht_supported) {
capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG; capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG;
if (sc->sc_ht_info.tx_chan_width == HAL_HT_MACMODE_2040) if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040)
capflag |= ATH_RC_CW40_FLAG; capflag |= ATH_RC_CW40_FLAG;
} }
@ -2027,8 +2027,8 @@ static void ath_get_rate(void *priv, struct net_device *dev,
} }
static void ath_rate_init(void *priv, void *priv_sta, static void ath_rate_init(void *priv, void *priv_sta,
struct ieee80211_local *local, struct ieee80211_local *local,
struct sta_info *sta) struct sta_info *sta)
{ {
struct ieee80211_supported_band *sband; struct ieee80211_supported_band *sband;
struct ieee80211_hw *hw = local_to_hw(local); struct ieee80211_hw *hw = local_to_hw(local);

View File

@ -149,31 +149,31 @@ struct ath_rate_table {
int valid; /* Valid for use in rate control */ int valid; /* Valid for use in rate control */
int valid_single_stream;/* Valid for use in rate control int valid_single_stream;/* Valid for use in rate control
for single stream operation */ for single stream operation */
u_int8_t phy; /* CCK/OFDM/TURBO/XR */ u8 phy; /* CCK/OFDM/TURBO/XR */
u_int32_t ratekbps; /* Rate in Kbits per second */ u32 ratekbps; /* Rate in Kbits per second */
u_int32_t user_ratekbps; /* User rate in KBits per second */ u32 user_ratekbps; /* User rate in KBits per second */
u_int8_t ratecode; /* rate that goes into u8 ratecode; /* rate that goes into
hw descriptors */ hw descriptors */
u_int8_t short_preamble; /* Mask for enabling short preamble u8 short_preamble; /* Mask for enabling short preamble
in rate code for CCK */ in rate code for CCK */
u_int8_t dot11rate; /* Value that goes into supported u8 dot11rate; /* Value that goes into supported
rates info element of MLME */ rates info element of MLME */
u_int8_t ctrl_rate; /* Index of next lower basic rate, u8 ctrl_rate; /* Index of next lower basic rate,
used for duration computation */ used for duration computation */
int8_t rssi_ack_validmin; /* Rate control related */ int8_t rssi_ack_validmin; /* Rate control related */
int8_t rssi_ack_deltamin; /* Rate control related */ int8_t rssi_ack_deltamin; /* Rate control related */
u_int8_t base_index; /* base rate index */ u8 base_index; /* base rate index */
u_int8_t cw40index; /* 40cap rate index */ u8 cw40index; /* 40cap rate index */
u_int8_t sgi_index; /* shortgi rate index */ u8 sgi_index; /* shortgi rate index */
u_int8_t ht_index; /* shortgi rate index */ u8 ht_index; /* shortgi rate index */
u_int32_t max_4ms_framelen; /* Maximum frame length(bytes) u32 max_4ms_framelen; /* Maximum frame length(bytes)
for 4ms tx duration */ for 4ms tx duration */
} info[RATE_TABLE_SIZE]; } info[RATE_TABLE_SIZE];
u_int32_t probe_interval; /* interval for ratectrl to u32 probe_interval; /* interval for ratectrl to
probe for other rates */ probe for other rates */
u_int32_t rssi_reduce_interval; /* interval for ratectrl u32 rssi_reduce_interval; /* interval for ratectrl
to reduce RSSI */ to reduce RSSI */
u_int8_t initial_ratemax; /* the initial ratemax value used u8 initial_ratemax; /* the initial ratemax value used
in ath_rc_sib_update() */ in ath_rc_sib_update() */
}; };
@ -182,10 +182,10 @@ struct ath_rate_table {
#define ATH_RC_SHORT_PREAMBLE 0x00000004 #define ATH_RC_SHORT_PREAMBLE 0x00000004
struct ath_rc_series { struct ath_rc_series {
u_int8_t rix; u8 rix;
u_int8_t tries; u8 tries;
u_int8_t flags; u8 flags;
u_int32_t max_4ms_framelen; u32 max_4ms_framelen;
}; };
/* rcs_flags definition */ /* rcs_flags definition */
@ -203,7 +203,7 @@ struct ath_rc_series {
struct ath_tx_ratectrl_state { struct ath_tx_ratectrl_state {
int8_t rssi_thres; /* required rssi for this rate (dB) */ int8_t rssi_thres; /* required rssi for this rate (dB) */
u_int8_t per; /* recent estimate of packet error rate (%) */ u8 per; /* recent estimate of packet error rate (%) */
}; };
struct ath_tx_ratectrl { struct ath_tx_ratectrl {
@ -215,34 +215,34 @@ struct ath_tx_ratectrl {
int32_t rssi_sum_cnt; /* count of rssi_sum for averaging */ int32_t rssi_sum_cnt; /* count of rssi_sum for averaging */
int32_t rssi_sum_rate; /* rate that we are averaging */ int32_t rssi_sum_rate; /* rate that we are averaging */
int32_t rssi_sum; /* running sum of rssi for averaging */ int32_t rssi_sum; /* running sum of rssi for averaging */
u_int32_t valid_txrate_mask; /* mask of valid rates */ u32 valid_txrate_mask; /* mask of valid rates */
u_int8_t rate_table_size; /* rate table size */ u8 rate_table_size; /* rate table size */
u_int8_t rate_max; /* max rate that has recently worked */ u8 rate_max; /* max rate that has recently worked */
u_int8_t probe_rate; /* rate we are probing at */ u8 probe_rate; /* rate we are probing at */
u_int32_t rssi_time; /* msec timestamp for last ack rssi */ u32 rssi_time; /* msec timestamp for last ack rssi */
u_int32_t rssi_down_time; /* msec timestamp for last down step */ u32 rssi_down_time; /* msec timestamp for last down step */
u_int32_t probe_time; /* msec timestamp for last probe */ u32 probe_time; /* msec timestamp for last probe */
u_int8_t hw_maxretry_pktcnt; /* num packets since we got u8 hw_maxretry_pktcnt; /* num packets since we got
HW max retry error */ HW max retry error */
u_int8_t max_valid_rate; /* maximum number of valid rate */ u8 max_valid_rate; /* maximum number of valid rate */
u_int8_t valid_rate_index[MAX_TX_RATE_TBL]; /* valid rate index */ u8 valid_rate_index[MAX_TX_RATE_TBL]; /* valid rate index */
u_int32_t per_down_time; /* msec timstamp for last u32 per_down_time; /* msec timstamp for last
PER down step */ PER down step */
/* 11n state */ /* 11n state */
u_int8_t valid_phy_ratecnt[WLAN_RC_PHY_MAX]; /* valid rate count */ u8 valid_phy_ratecnt[WLAN_RC_PHY_MAX]; /* valid rate count */
u_int8_t valid_phy_rateidx[WLAN_RC_PHY_MAX][MAX_TX_RATE_TBL]; u8 valid_phy_rateidx[WLAN_RC_PHY_MAX][MAX_TX_RATE_TBL];
u_int8_t rc_phy_mode; u8 rc_phy_mode;
u_int8_t rate_max_phy; /* Phy index for the max rate */ u8 rate_max_phy; /* Phy index for the max rate */
u_int32_t rate_max_lastused; /* msec timstamp of when we u32 rate_max_lastused; /* msec timstamp of when we
last used rateMaxPhy */ last used rateMaxPhy */
u_int32_t probe_interval; /* interval for ratectrl to probe u32 probe_interval; /* interval for ratectrl to probe
for other rates */ for other rates */
}; };
struct ath_rateset { struct ath_rateset {
u_int8_t rs_nrates; u8 rs_nrates;
u_int8_t rs_rates[ATH_RATE_MAX]; u8 rs_rates[ATH_RATE_MAX];
}; };
/* per-device state */ /* per-device state */
@ -255,18 +255,18 @@ struct ath_rate_softc {
/* per-node state */ /* per-node state */
struct ath_rate_node { struct ath_rate_node {
struct ath_tx_ratectrl tx_ratectrl; /* rate control state proper */ struct ath_tx_ratectrl tx_ratectrl; /* rate control state proper */
u_int32_t prev_data_rix; /* rate idx of last data frame */ u32 prev_data_rix; /* rate idx of last data frame */
/* map of rate ix -> negotiated rate set ix */ /* map of rate ix -> negotiated rate set ix */
u_int8_t rixmap[MAX_TX_RATE_TBL]; u8 rixmap[MAX_TX_RATE_TBL];
/* map of ht rate ix -> negotiated rate set ix */ /* map of ht rate ix -> negotiated rate set ix */
u_int8_t ht_rixmap[MAX_TX_RATE_TBL]; u8 ht_rixmap[MAX_TX_RATE_TBL];
u_int8_t ht_cap; /* ht capabilities */ u8 ht_cap; /* ht capabilities */
u_int8_t ant_tx; /* current transmit antenna */ u8 ant_tx; /* current transmit antenna */
u_int8_t single_stream; /* When TRUE, only single u8 single_stream; /* When TRUE, only single
stream Tx possible */ stream Tx possible */
struct ath_rateset neg_rates; /* Negotiated rates */ struct ath_rateset neg_rates; /* Negotiated rates */
struct ath_rateset neg_ht_rates; /* Negotiated HT rates */ struct ath_rateset neg_ht_rates; /* Negotiated HT rates */
@ -280,7 +280,7 @@ struct ath_tx_info_priv {
struct ath_tx_status tx; struct ath_tx_status tx;
int n_frames; int n_frames;
int n_bad_frames; int n_bad_frames;
u_int8_t min_rate; u8 min_rate;
}; };
/* /*
@ -294,7 +294,8 @@ void ath_rate_detach(struct ath_rate_softc *asc);
* Important mostly as the analog to ath_rate_newassoc when operating * Important mostly as the analog to ath_rate_newassoc when operating
* in station mode. * in station mode.
*/ */
void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp, int up); void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv);
void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp);
/* /*
* Return the tx rate series. * Return the tx rate series.
@ -306,8 +307,8 @@ void ath_rate_findrate(struct ath_softc *sc, struct ath_rate_node *ath_rc_priv,
/* /*
* Return rate index for given Dot11 Rate. * Return rate index for given Dot11 Rate.
*/ */
u_int8_t ath_rate_findrateix(struct ath_softc *sc, u8 ath_rate_findrateix(struct ath_softc *sc,
u_int8_t dot11_rate); u8 dot11_rate);
/* Routines to register/unregister rate control algorithm */ /* Routines to register/unregister rate control algorithm */
int ath_rate_control_register(void); int ath_rate_control_register(void);

View File

@ -75,7 +75,7 @@ static int ath_bar_rx(struct ath_softc *sc,
struct sk_buff *tskb; struct sk_buff *tskb;
struct ath_recv_status *rx_status; struct ath_recv_status *rx_status;
int tidno, index, cindex; int tidno, index, cindex;
u_int16_t seqno; u16 seqno;
/* look at BAR contents */ /* look at BAR contents */
@ -148,8 +148,8 @@ static int ath_ampdu_input(struct ath_softc *sc,
struct ieee80211_hdr *hdr; struct ieee80211_hdr *hdr;
struct ath_arx_tid *rxtid; struct ath_arx_tid *rxtid;
struct ath_rxbuf *rxbuf; struct ath_rxbuf *rxbuf;
u_int8_t type, subtype; u8 type, subtype;
u_int16_t rxseq; u16 rxseq;
int tid = 0, index, cindex, rxdiff; int tid = 0, index, cindex, rxdiff;
__le16 fc; __le16 fc;
u8 *qc; u8 *qc;
@ -184,7 +184,7 @@ static int ath_ampdu_input(struct ath_softc *sc,
tid = qc[0] & 0xf; tid = qc[0] & 0xf;
} }
if (sc->sc_opmode == HAL_M_STA) { if (sc->sc_opmode == ATH9K_M_STA) {
/* Drop the frame not belonging to me. */ /* Drop the frame not belonging to me. */
if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) { if (memcmp(hdr->addr1, sc->sc_myaddr, ETH_ALEN)) {
dev_kfree_skb(skb); dev_kfree_skb(skb);
@ -386,10 +386,10 @@ static void ath_rx_flush_tid(struct ath_softc *sc,
} }
static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc, static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc,
u_int32_t len) u32 len)
{ {
struct sk_buff *skb; struct sk_buff *skb;
u_int off; u32 off;
/* /*
* Cache-line-align. This is important (for the * Cache-line-align. This is important (for the
@ -441,7 +441,7 @@ static void ath_rx_requeue(struct ath_softc *sc, struct sk_buff *skb)
static int ath_rx_indicate(struct ath_softc *sc, static int ath_rx_indicate(struct ath_softc *sc,
struct sk_buff *skb, struct sk_buff *skb,
struct ath_recv_status *status, struct ath_recv_status *status,
u_int16_t keyix) u16 keyix)
{ {
struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf; struct ath_buf *bf = ATH_RX_CONTEXT(skb)->ctx_rxbuf;
struct sk_buff *nskb; struct sk_buff *nskb;
@ -471,7 +471,7 @@ static int ath_rx_indicate(struct ath_softc *sc,
static void ath_opmode_init(struct ath_softc *sc) static void ath_opmode_init(struct ath_softc *sc)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
u_int32_t rfilt, mfilt[2]; u32 rfilt, mfilt[2];
/* configure rx filter */ /* configure rx filter */
rfilt = ath_calcrxfilter(sc); rfilt = ath_calcrxfilter(sc);
@ -515,7 +515,7 @@ int ath_rx_init(struct ath_softc *sc, int nbufs)
*/ */
sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN, sc->sc_rxbufsize = roundup(IEEE80211_MAX_MPDU_LEN,
min(sc->sc_cachelsz, min(sc->sc_cachelsz,
(u_int16_t)64)); (u16)64));
DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n", DPRINTF(sc, ATH_DBG_CONFIG, "%s: cachelsz %u rxbufsize %u\n",
__func__, sc->sc_cachelsz, sc->sc_rxbufsize); __func__, sc->sc_cachelsz, sc->sc_rxbufsize);
@ -594,34 +594,34 @@ void ath_rx_cleanup(struct ath_softc *sc)
* - when scanning * - when scanning
*/ */
u_int32_t ath_calcrxfilter(struct ath_softc *sc) u32 ath_calcrxfilter(struct ath_softc *sc)
{ {
#define RX_FILTER_PRESERVE (HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR) #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
u_int32_t rfilt; u32 rfilt;
rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE) rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
| HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
| HAL_RX_FILTER_MCAST; | ATH9K_RX_FILTER_MCAST;
/* If not a STA, enable processing of Probe Requests */ /* If not a STA, enable processing of Probe Requests */
if (sc->sc_opmode != HAL_M_STA) if (sc->sc_opmode != ATH9K_M_STA)
rfilt |= HAL_RX_FILTER_PROBEREQ; rfilt |= ATH9K_RX_FILTER_PROBEREQ;
/* Can't set HOSTAP into promiscous mode */ /* Can't set HOSTAP into promiscous mode */
if (sc->sc_opmode == HAL_M_MONITOR) { if (sc->sc_opmode == ATH9K_M_MONITOR) {
rfilt |= HAL_RX_FILTER_PROM; rfilt |= ATH9K_RX_FILTER_PROM;
/* ??? To prevent from sending ACK */ /* ??? To prevent from sending ACK */
rfilt &= ~HAL_RX_FILTER_UCAST; rfilt &= ~ATH9K_RX_FILTER_UCAST;
} }
if (sc->sc_opmode == HAL_M_STA || sc->sc_opmode == HAL_M_IBSS || if (sc->sc_opmode == ATH9K_M_STA || sc->sc_opmode == ATH9K_M_IBSS ||
sc->sc_scanning) sc->sc_scanning)
rfilt |= HAL_RX_FILTER_BEACON; rfilt |= ATH9K_RX_FILTER_BEACON;
/* If in HOSTAP mode, want to enable reception of PSPOLL frames /* If in HOSTAP mode, want to enable reception of PSPOLL frames
& beacon frames */ & beacon frames */
if (sc->sc_opmode == HAL_M_HOSTAP) if (sc->sc_opmode == ATH9K_M_HOSTAP)
rfilt |= (HAL_RX_FILTER_BEACON | HAL_RX_FILTER_PSPOLL); rfilt |= (ATH9K_RX_FILTER_BEACON | ATH9K_RX_FILTER_PSPOLL);
return rfilt; return rfilt;
#undef RX_FILTER_PRESERVE #undef RX_FILTER_PRESERVE
} }
@ -677,7 +677,7 @@ start_recv:
bool ath_stoprecv(struct ath_softc *sc) bool ath_stoprecv(struct ath_softc *sc)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
u_int64_t tsf; u64 tsf;
bool stopped; bool stopped;
ath9k_hw_stoppcurecv(ah); /* disable PCU */ ath9k_hw_stoppcurecv(ah); /* disable PCU */
@ -743,9 +743,9 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush)
struct ath_recv_status rx_status; struct ath_recv_status rx_status;
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
int type, rx_processed = 0; int type, rx_processed = 0;
u_int phyerr; u32 phyerr;
u_int8_t chainreset = 0; u8 chainreset = 0;
enum hal_status retval; int retval;
__le16 fc; __le16 fc;
do { do {
@ -812,7 +812,7 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush)
bf->bf_daddr, bf->bf_daddr,
PA2DESC(sc, ds->ds_link), PA2DESC(sc, ds->ds_link),
0); 0);
if (HAL_EINPROGRESS == retval) { if (retval == -EINPROGRESS) {
struct ath_buf *tbf; struct ath_buf *tbf;
struct ath_desc *tds; struct ath_desc *tds;
@ -838,7 +838,7 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush)
retval = ath9k_hw_rxprocdesc(ah, retval = ath9k_hw_rxprocdesc(ah,
tds, tbf->bf_daddr, tds, tbf->bf_daddr,
PA2DESC(sc, tds->ds_link), 0); PA2DESC(sc, tds->ds_link), 0);
if (HAL_EINPROGRESS == retval) { if (retval == -EINPROGRESS) {
spin_unlock_bh(&sc->sc_rxbuflock); spin_unlock_bh(&sc->sc_rxbuflock);
break; break;
} }
@ -900,7 +900,7 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush)
* Enable this if you want to see * Enable this if you want to see
* error frames in Monitor mode. * error frames in Monitor mode.
*/ */
if (sc->sc_opmode != HAL_M_MONITOR) if (sc->sc_opmode != ATH9K_M_MONITOR)
goto rx_next; goto rx_next;
#endif #endif
/* fall thru for monitor mode handling... */ /* fall thru for monitor mode handling... */
@ -945,7 +945,7 @@ int ath_rx_tasklet(struct ath_softc *sc, int flush)
* decryption and MIC failures. For monitor mode, * decryption and MIC failures. For monitor mode,
* we also ignore the CRC error. * we also ignore the CRC error.
*/ */
if (sc->sc_opmode == HAL_M_MONITOR) { if (sc->sc_opmode == ATH9K_M_MONITOR) {
if (ds->ds_rxstat.rs_status & if (ds->ds_rxstat.rs_status &
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
ATH9K_RXERR_CRC)) ATH9K_RXERR_CRC))
@ -1199,7 +1199,7 @@ int ath_rx_aggr_stop(struct ath_softc *sc,
/* Rx aggregation tear down */ /* Rx aggregation tear down */
void ath_rx_aggr_teardown(struct ath_softc *sc, void ath_rx_aggr_teardown(struct ath_softc *sc,
struct ath_node *an, u_int8_t tid) struct ath_node *an, u8 tid)
{ {
struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid]; struct ath_arx_tid *rxtid = &an->an_aggr.rx.tid[tid];

View File

@ -17,13 +17,14 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/slab.h> #include <linux/slab.h>
#include "core.h" #include "core.h"
#include "hw.h"
#include "regd.h" #include "regd.h"
#include "regd_common.h" #include "regd_common.h"
static int ath9k_regd_chansort(const void *a, const void *b) static int ath9k_regd_chansort(const void *a, const void *b)
{ {
const struct hal_channel_internal *ca = a; const struct ath9k_channel *ca = a;
const struct hal_channel_internal *cb = b; const struct ath9k_channel *cb = b;
return (ca->channel == cb->channel) ? return (ca->channel == cb->channel) ?
(ca->channelFlags & CHAN_FLAGS) - (ca->channelFlags & CHAN_FLAGS) -
@ -31,26 +32,26 @@ static int ath9k_regd_chansort(const void *a, const void *b)
} }
static void static void
ath9k_regd_sort(void *a, u_int32_t n, u_int32_t size, ath_hal_cmp_t *cmp) ath9k_regd_sort(void *a, u32 n, u32 size, ath_hal_cmp_t *cmp)
{ {
u_int8_t *aa = a; u8 *aa = a;
u_int8_t *ai, *t; u8 *ai, *t;
for (ai = aa + size; --n >= 1; ai += size) for (ai = aa + size; --n >= 1; ai += size)
for (t = ai; t > aa; t -= size) { for (t = ai; t > aa; t -= size) {
u_int8_t *u = t - size; u8 *u = t - size;
if (cmp(u, t) <= 0) if (cmp(u, t) <= 0)
break; break;
swap(u, t, size); swap(u, t, size);
} }
} }
static u_int16_t ath9k_regd_get_eepromRD(struct ath_hal *ah) static u16 ath9k_regd_get_eepromRD(struct ath_hal *ah)
{ {
return ah->ah_currentRD & ~WORLDWIDE_ROAMING_FLAG; return ah->ah_currentRD & ~WORLDWIDE_ROAMING_FLAG;
} }
static bool ath9k_regd_is_chan_bm_zero(u_int64_t *bitmask) static bool ath9k_regd_is_chan_bm_zero(u64 *bitmask)
{ {
int i; int i;
@ -63,11 +64,11 @@ static bool ath9k_regd_is_chan_bm_zero(u_int64_t *bitmask)
static bool ath9k_regd_is_eeprom_valid(struct ath_hal *ah) static bool ath9k_regd_is_eeprom_valid(struct ath_hal *ah)
{ {
u_int16_t rd = ath9k_regd_get_eepromRD(ah); u16 rd = ath9k_regd_get_eepromRD(ah);
int i; int i;
if (rd & COUNTRY_ERD_FLAG) { if (rd & COUNTRY_ERD_FLAG) {
u_int16_t cc = rd & ~COUNTRY_ERD_FLAG; u16 cc = rd & ~COUNTRY_ERD_FLAG;
for (i = 0; i < ARRAY_SIZE(allCountries); i++) for (i = 0; i < ARRAY_SIZE(allCountries); i++)
if (allCountries[i].countryCode == cc) if (allCountries[i].countryCode == cc)
return true; return true;
@ -84,7 +85,7 @@ static bool ath9k_regd_is_eeprom_valid(struct ath_hal *ah)
static bool ath9k_regd_is_fcc_midband_supported(struct ath_hal *ah) static bool ath9k_regd_is_fcc_midband_supported(struct ath_hal *ah)
{ {
u_int32_t regcap; u32 regcap;
regcap = ah->ah_caps.halRegCap; regcap = ah->ah_caps.halRegCap;
@ -95,9 +96,9 @@ static bool ath9k_regd_is_fcc_midband_supported(struct ath_hal *ah)
} }
static bool ath9k_regd_is_ccode_valid(struct ath_hal *ah, static bool ath9k_regd_is_ccode_valid(struct ath_hal *ah,
u_int16_t cc) u16 cc)
{ {
u_int16_t rd; u16 rd;
int i; int i;
if (cc == CTRY_DEFAULT) if (cc == CTRY_DEFAULT)
@ -130,12 +131,12 @@ static bool ath9k_regd_is_ccode_valid(struct ath_hal *ah,
return false; return false;
} }
static u_int static u32
ath9k_regd_get_wmodes_nreg(struct ath_hal *ah, ath9k_regd_get_wmodes_nreg(struct ath_hal *ah,
struct country_code_to_enum_rd *country, struct country_code_to_enum_rd *country,
struct regDomain *rd5GHz) struct regDomain *rd5GHz)
{ {
u_int modesAvail; u32 modesAvail;
modesAvail = ah->ah_caps.halWirelessModes; modesAvail = ah->ah_caps.halWirelessModes;
@ -174,7 +175,7 @@ ath9k_regd_get_wmodes_nreg(struct ath_hal *ah,
bool ath9k_regd_is_public_safety_sku(struct ath_hal *ah) bool ath9k_regd_is_public_safety_sku(struct ath_hal *ah)
{ {
u_int16_t rd; u16 rd;
rd = ath9k_regd_get_eepromRD(ah); rd = ath9k_regd_get_eepromRD(ah);
@ -192,7 +193,7 @@ bool ath9k_regd_is_public_safety_sku(struct ath_hal *ah)
} }
static struct country_code_to_enum_rd* static struct country_code_to_enum_rd*
ath9k_regd_find_country(u_int16_t countryCode) ath9k_regd_find_country(u16 countryCode)
{ {
int i; int i;
@ -203,15 +204,15 @@ ath9k_regd_find_country(u_int16_t countryCode)
return NULL; return NULL;
} }
static u_int16_t ath9k_regd_get_default_country(struct ath_hal *ah) static u16 ath9k_regd_get_default_country(struct ath_hal *ah)
{ {
u_int16_t rd; u16 rd;
int i; int i;
rd = ath9k_regd_get_eepromRD(ah); rd = ath9k_regd_get_eepromRD(ah);
if (rd & COUNTRY_ERD_FLAG) { if (rd & COUNTRY_ERD_FLAG) {
struct country_code_to_enum_rd *country = NULL; struct country_code_to_enum_rd *country = NULL;
u_int16_t cc = rd & ~COUNTRY_ERD_FLAG; u16 cc = rd & ~COUNTRY_ERD_FLAG;
country = ath9k_regd_find_country(cc); country = ath9k_regd_find_country(cc);
if (country != NULL) if (country != NULL)
@ -260,16 +261,16 @@ static bool ath9k_regd_is_valid_reg_domainPair(int regDmnPair)
static bool static bool
ath9k_regd_get_wmode_regdomain(struct ath_hal *ah, int regDmn, ath9k_regd_get_wmode_regdomain(struct ath_hal *ah, int regDmn,
u_int16_t channelFlag, struct regDomain *rd) u16 channelFlag, struct regDomain *rd)
{ {
int i, found; int i, found;
u_int64_t flags = NO_REQ; u64 flags = NO_REQ;
struct reg_dmn_pair_mapping *regPair = NULL; struct reg_dmn_pair_mapping *regPair = NULL;
int regOrg; int regOrg;
regOrg = regDmn; regOrg = regDmn;
if (regDmn == CTRY_DEFAULT) { if (regDmn == CTRY_DEFAULT) {
u_int16_t rdnum; u16 rdnum;
rdnum = ath9k_regd_get_eepromRD(ah); rdnum = ath9k_regd_get_eepromRD(ah);
if (!(rdnum & COUNTRY_ERD_FLAG)) { if (!(rdnum & COUNTRY_ERD_FLAG)) {
@ -323,14 +324,14 @@ ath9k_regd_get_wmode_regdomain(struct ath_hal *ah, int regDmn,
} }
} }
static bool ath9k_regd_is_bit_set(int bit, u_int64_t *bitmask) static bool ath9k_regd_is_bit_set(int bit, u64 *bitmask)
{ {
int byteOffset, bitnum; int byteOffset, bitnum;
u_int64_t val; u64 val;
byteOffset = bit / 64; byteOffset = bit / 64;
bitnum = bit - byteOffset * 64; bitnum = bit - byteOffset * 64;
val = ((u_int64_t) 1) << bitnum; val = ((u64) 1) << bitnum;
if (bitmask[byteOffset] & val) if (bitmask[byteOffset] & val)
return true; return true;
else else
@ -338,8 +339,8 @@ static bool ath9k_regd_is_bit_set(int bit, u_int64_t *bitmask)
} }
static void static void
ath9k_regd_add_reg_classid(u_int8_t *regclassids, u_int maxregids, ath9k_regd_add_reg_classid(u8 *regclassids, u32 maxregids,
u_int *nregids, u_int8_t regclassid) u32 *nregids, u8 regclassid)
{ {
int i; int i;
@ -372,7 +373,7 @@ ath9k_regd_get_eeprom_reg_ext_bits(struct ath_hal *ah,
#ifdef ATH_NF_PER_CHAN #ifdef ATH_NF_PER_CHAN
static void ath9k_regd_init_rf_buffer(struct hal_channel_internal *ichans, static void ath9k_regd_init_rf_buffer(struct ath9k_channel *ichans,
int nchans) int nchans)
{ {
int i, j, next; int i, j, next;
@ -384,7 +385,7 @@ static void ath9k_regd_init_rf_buffer(struct hal_channel_internal *ichans,
AR_PHY_CCA_MAX_GOOD_VALUE; AR_PHY_CCA_MAX_GOOD_VALUE;
ichans[next].nfCalHist[i].invalidNFcount = ichans[next].nfCalHist[i].invalidNFcount =
AR_PHY_CCA_FILTERWINDOW_LENGTH; AR_PHY_CCA_FILTERWINDOW_LENGTH;
for (j = 0; j < HAL_NF_CAL_HIST_MAX; j++) { for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) {
ichans[next].nfCalHist[i].nfCalBuffer[j] = ichans[next].nfCalHist[i].nfCalBuffer[j] =
AR_PHY_CCA_MAX_GOOD_VALUE; AR_PHY_CCA_MAX_GOOD_VALUE;
} }
@ -393,22 +394,40 @@ static void ath9k_regd_init_rf_buffer(struct hal_channel_internal *ichans,
} }
#endif #endif
static int ath9k_regd_is_chan_present(struct ath_hal *ah,
u16 c)
{
int i;
for (i = 0; i < 150; i++) {
if (!ah->ah_channels[i].channel)
return -1;
else if (ah->ah_channels[i].channel == c)
return i;
}
return -1;
}
static bool static bool
ath9k_regd_add_channel(struct ath_hal *ah, ath9k_regd_add_channel(struct ath_hal *ah,
u_int16_t c, u16 c,
u_int16_t c_lo, u16 c_lo,
u_int16_t c_hi, u16 c_hi,
u_int16_t maxChan, u16 maxChan,
u_int8_t ctl, u8 ctl,
int pos, int pos,
struct regDomain rd5GHz, struct regDomain rd5GHz,
struct RegDmnFreqBand *fband, struct RegDmnFreqBand *fband,
struct regDomain *rd, struct regDomain *rd,
const struct cmode *cm, const struct cmode *cm,
struct hal_channel_internal *ichans, struct ath9k_channel *ichans,
bool enableExtendedChannels) bool enableExtendedChannels)
{ {
struct hal_channel_internal icv; struct ath9k_channel *chan;
int ret;
u32 channelFlags = 0;
u8 privFlags = 0;
if (!(c_lo <= c && c <= c_hi)) { if (!(c_lo <= c && c <= c_hi)) {
DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
@ -445,7 +464,7 @@ ath9k_regd_add_channel(struct ath_hal *ah,
return false; return false;
} }
if ((rd->flags & NO_HOSTAP) && (ah->ah_opmode == HAL_M_HOSTAP)) { if ((rd->flags & NO_HOSTAP) && (ah->ah_opmode == ATH9K_M_HOSTAP)) {
DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
"Skipping HOSTAP channel\n"); "Skipping HOSTAP channel\n");
return false; return false;
@ -478,54 +497,50 @@ ath9k_regd_add_channel(struct ath_hal *ah,
return false; return false;
} }
memset(&icv, 0, sizeof(icv)); /* Calculate channel flags */
icv.channel = c;
icv.channelFlags = cm->flags; channelFlags = cm->flags;
switch (fband->channelBW) { switch (fband->channelBW) {
case CHANNEL_HALF_BW: case CHANNEL_HALF_BW:
icv.channelFlags |= CHANNEL_HALF; channelFlags |= CHANNEL_HALF;
break; break;
case CHANNEL_QUARTER_BW: case CHANNEL_QUARTER_BW:
icv.channelFlags |= CHANNEL_QUARTER; channelFlags |= CHANNEL_QUARTER;
break; break;
} }
icv.maxRegTxPower = fband->powerDfs;
icv.antennaMax = fband->antennaMax;
icv.regDmnFlags = rd->flags;
icv.conformanceTestLimit = ctl;
if (fband->usePassScan & rd->pscan) if (fband->usePassScan & rd->pscan)
icv.channelFlags |= CHANNEL_PASSIVE; channelFlags |= CHANNEL_PASSIVE;
else else
icv.channelFlags &= ~CHANNEL_PASSIVE; channelFlags &= ~CHANNEL_PASSIVE;
if (fband->useDfs & rd->dfsMask) if (fband->useDfs & rd->dfsMask)
icv.privFlags = CHANNEL_DFS; privFlags = CHANNEL_DFS;
else else
icv.privFlags = 0; privFlags = 0;
if (rd->flags & LIMIT_FRAME_4MS) if (rd->flags & LIMIT_FRAME_4MS)
icv.privFlags |= CHANNEL_4MS_LIMIT; privFlags |= CHANNEL_4MS_LIMIT;
if (icv.privFlags & CHANNEL_DFS) if (privFlags & CHANNEL_DFS)
icv.privFlags |= CHANNEL_DISALLOW_ADHOC; privFlags |= CHANNEL_DISALLOW_ADHOC;
if (icv.regDmnFlags & ADHOC_PER_11D) if (rd->flags & ADHOC_PER_11D)
icv.privFlags |= CHANNEL_PER_11D_ADHOC; privFlags |= CHANNEL_PER_11D_ADHOC;
if (icv.channelFlags & CHANNEL_PASSIVE) { if (channelFlags & CHANNEL_PASSIVE) {
if ((icv.channel < 2412) || (icv.channel > 2462)) { if ((c < 2412) || (c > 2462)) {
if (rd5GHz.regDmnEnum == MKK1 || if (rd5GHz.regDmnEnum == MKK1 ||
rd5GHz.regDmnEnum == MKK2) { rd5GHz.regDmnEnum == MKK2) {
u_int32_t regcap = ah->ah_caps.halRegCap; u32 regcap = ah->ah_caps.halRegCap;
if (!(regcap & if (!(regcap &
(AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | (AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
AR_EEPROM_EEREGCAP_EN_KK_U2 | AR_EEPROM_EEREGCAP_EN_KK_U2 |
AR_EEPROM_EEREGCAP_EN_KK_MIDBAND)) && AR_EEPROM_EEREGCAP_EN_KK_MIDBAND)) &&
isUNII1OddChan(icv.channel)) { isUNII1OddChan(c)) {
icv.channelFlags &= ~CHANNEL_PASSIVE; channelFlags &= ~CHANNEL_PASSIVE;
} else { } else {
icv.privFlags |= CHANNEL_DISALLOW_ADHOC; privFlags |= CHANNEL_DISALLOW_ADHOC;
} }
} else { } else {
icv.privFlags |= CHANNEL_DISALLOW_ADHOC; privFlags |= CHANNEL_DISALLOW_ADHOC;
} }
} }
} }
@ -534,14 +549,39 @@ ath9k_regd_add_channel(struct ath_hal *ah,
ATH9K_MODE_SEL_11NA_HT20 | ATH9K_MODE_SEL_11NA_HT20 |
ATH9K_MODE_SEL_11NA_HT40PLUS | ATH9K_MODE_SEL_11NA_HT40PLUS |
ATH9K_MODE_SEL_11NA_HT40MINUS)) { ATH9K_MODE_SEL_11NA_HT40MINUS)) {
if (icv.regDmnFlags & (ADHOC_NO_11A | DISALLOW_ADHOC_11A)) if (rd->flags & (ADHOC_NO_11A | DISALLOW_ADHOC_11A))
icv.privFlags |= CHANNEL_DISALLOW_ADHOC; privFlags |= CHANNEL_DISALLOW_ADHOC;
} }
memcpy(&ichans[pos], &icv, /* Fill in channel details */
sizeof(struct hal_channel_internal));
return true; ret = ath9k_regd_is_chan_present(ah, c);
if (ret == -1) {
chan = &ah->ah_channels[pos];
chan->channel = c;
chan->maxRegTxPower = fband->powerDfs;
chan->antennaMax = fband->antennaMax;
chan->regDmnFlags = rd->flags;
chan->maxTxPower = AR5416_MAX_RATE_POWER;
chan->minTxPower = AR5416_MAX_RATE_POWER;
chan->channelFlags = channelFlags;
chan->privFlags = privFlags;
} else {
chan = &ah->ah_channels[ret];
chan->channelFlags |= channelFlags;
chan->privFlags |= privFlags;
}
/* Set CTLs */
if ((cm->flags & CHANNEL_ALL) == CHANNEL_A)
chan->conformanceTestLimit[0] = ctl;
else if ((cm->flags & CHANNEL_ALL) == CHANNEL_B)
chan->conformanceTestLimit[1] = ctl;
else if ((cm->flags & CHANNEL_ALL) == CHANNEL_G)
chan->conformanceTestLimit[2] = ctl;
return (ret == -1) ? true : false;
} }
static bool ath9k_regd_japan_check(struct ath_hal *ah, static bool ath9k_regd_japan_check(struct ath_hal *ah,
@ -550,7 +590,7 @@ static bool ath9k_regd_japan_check(struct ath_hal *ah,
{ {
bool skipband = false; bool skipband = false;
int i; int i;
u_int32_t regcap; u32 regcap;
for (i = 0; i < ARRAY_SIZE(j_bandcheck); i++) { for (i = 0; i < ARRAY_SIZE(j_bandcheck); i++) {
if (j_bandcheck[i].freqbandbit == b) { if (j_bandcheck[i].freqbandbit == b) {
@ -575,22 +615,22 @@ static bool ath9k_regd_japan_check(struct ath_hal *ah,
bool bool
ath9k_regd_init_channels(struct ath_hal *ah, ath9k_regd_init_channels(struct ath_hal *ah,
struct hal_channel *chans, u_int maxchans, u32 maxchans,
u_int *nchans, u_int8_t *regclassids, u32 *nchans, u8 *regclassids,
u_int maxregids, u_int *nregids, u_int16_t cc, u32 maxregids, u32 *nregids, u16 cc,
u_int32_t modeSelect, bool enableOutdoor, u32 modeSelect, bool enableOutdoor,
bool enableExtendedChannels) bool enableExtendedChannels)
{ {
u_int modesAvail; u32 modesAvail;
u_int16_t maxChan = 7000; u16 maxChan = 7000;
struct country_code_to_enum_rd *country = NULL; struct country_code_to_enum_rd *country = NULL;
struct regDomain rd5GHz, rd2GHz; struct regDomain rd5GHz, rd2GHz;
const struct cmode *cm; const struct cmode *cm;
struct hal_channel_internal *ichans = &ah->ah_channels[0]; struct ath9k_channel *ichans = &ah->ah_channels[0];
int next = 0, b; int next = 0, b;
u_int8_t ctl; u8 ctl;
int regdmn; int regdmn;
u_int16_t chanSep; u16 chanSep;
DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, "%s: cc %u mode 0x%x%s%s\n", DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, "%s: cc %u mode 0x%x%s%s\n",
__func__, cc, modeSelect, __func__, cc, modeSelect,
@ -699,8 +739,8 @@ ath9k_regd_init_channels(struct ath_hal *ah,
maxchans = ARRAY_SIZE(ah->ah_channels); maxchans = ARRAY_SIZE(ah->ah_channels);
for (cm = modes; cm < &modes[ARRAY_SIZE(modes)]; cm++) { for (cm = modes; cm < &modes[ARRAY_SIZE(modes)]; cm++) {
u_int16_t c, c_hi, c_lo; u16 c, c_hi, c_lo;
u_int64_t *channelBM = NULL; u64 *channelBM = NULL;
struct regDomain *rd = NULL; struct regDomain *rd = NULL;
struct RegDmnFreqBand *fband = NULL, *freqs; struct RegDmnFreqBand *fband = NULL, *freqs;
int8_t low_adj = 0, hi_adj = 0; int8_t low_adj = 0, hi_adj = 0;
@ -843,26 +883,17 @@ done:
ath9k_regd_init_rf_buffer(ichans, next); ath9k_regd_init_rf_buffer(ichans, next);
#endif #endif
ath9k_regd_sort(ichans, next, ath9k_regd_sort(ichans, next,
sizeof(struct hal_channel_internal), sizeof(struct ath9k_channel),
ath9k_regd_chansort); ath9k_regd_chansort);
ah->ah_nchan = next; ah->ah_nchan = next;
DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, "Channel list:\n"); DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, "Channel list:\n");
for (i = 0; i < next; i++) { for (i = 0; i < next; i++) {
DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
"chan: %d flags: 0x%x\n", "chan: %d flags: 0x%x\n",
ichans[i].channel, ah->ah_channels[i].channel,
ichans[i].channelFlags); ah->ah_channels[i].channelFlags);
chans[i].channel = ichans[i].channel;
chans[i].channelFlags = ichans[i].channelFlags;
chans[i].privFlags = ichans[i].privFlags;
chans[i].maxRegTxPower = ichans[i].maxRegTxPower;
}
ath9k_hw_get_chip_power_limits(ah, chans, next);
for (i = 0; i < next; i++) {
ichans[i].maxTxPower = chans[i].maxTxPower;
ichans[i].minTxPower = chans[i].minTxPower;
} }
} }
*nchans = next; *nchans = next;
@ -883,11 +914,11 @@ done:
return next != 0; return next != 0;
} }
struct hal_channel_internal* struct ath9k_channel*
ath9k_regd_check_channel(struct ath_hal *ah, ath9k_regd_check_channel(struct ath_hal *ah,
const struct hal_channel *c) const struct ath9k_channel *c)
{ {
struct hal_channel_internal *base, *cc; struct ath9k_channel *base, *cc;
int flags = c->channelFlags & CHAN_FLAGS; int flags = c->channelFlags & CHAN_FLAGS;
int n, lim; int n, lim;
@ -936,11 +967,11 @@ ath9k_regd_check_channel(struct ath_hal *ah,
return NULL; return NULL;
} }
u_int u32
ath9k_regd_get_antenna_allowed(struct ath_hal *ah, ath9k_regd_get_antenna_allowed(struct ath_hal *ah,
struct hal_channel *chan) struct ath9k_channel *chan)
{ {
struct hal_channel_internal *ichan = NULL; struct ath9k_channel *ichan = NULL;
ichan = ath9k_regd_check_channel(ah, chan); ichan = ath9k_regd_check_channel(ah, chan);
if (!ichan) if (!ichan)
@ -949,10 +980,10 @@ ath9k_regd_get_antenna_allowed(struct ath_hal *ah,
return ichan->antennaMax; return ichan->antennaMax;
} }
u_int ath9k_regd_get_ctl(struct ath_hal *ah, struct hal_channel *chan) u32 ath9k_regd_get_ctl(struct ath_hal *ah, struct ath9k_channel *chan)
{ {
u_int ctl = NO_CTL; u32 ctl = NO_CTL;
struct hal_channel_internal *ichan; struct ath9k_channel *ichan;
if (ah->ah_countryCode == CTRY_DEFAULT && isWwrSKU(ah)) { if (ah->ah_countryCode == CTRY_DEFAULT && isWwrSKU(ah)) {
if (IS_CHAN_B(chan)) if (IS_CHAN_B(chan))
@ -964,9 +995,15 @@ u_int ath9k_regd_get_ctl(struct ath_hal *ah, struct hal_channel *chan)
} else { } else {
ichan = ath9k_regd_check_channel(ah, chan); ichan = ath9k_regd_check_channel(ah, chan);
if (ichan != NULL) { if (ichan != NULL) {
ctl = ichan->conformanceTestLimit; /* FIXME */
if (IS_CHAN_A(ichan))
ctl = ichan->conformanceTestLimit[0];
else if (IS_CHAN_B(ichan))
ctl = ichan->conformanceTestLimit[1];
else if (IS_CHAN_G(ichan))
ctl = ichan->conformanceTestLimit[2];
if (IS_CHAN_PUREG(chan) && (ctl & 0xf) == CTL_11B) if (IS_CHAN_G(chan) && (ctl & 0xf) == CTL_11B)
ctl = (ctl & ~0xf) | CTL_11G; ctl = (ctl & ~0xf) | CTL_11G;
} }
} }
@ -974,9 +1011,9 @@ u_int ath9k_regd_get_ctl(struct ath_hal *ah, struct hal_channel *chan)
} }
void ath9k_regd_get_current_country(struct ath_hal *ah, void ath9k_regd_get_current_country(struct ath_hal *ah,
struct hal_country_entry *ctry) struct ath9k_country_entry *ctry)
{ {
u_int16_t rd = ath9k_regd_get_eepromRD(ah); u16 rd = ath9k_regd_get_eepromRD(ah);
ctry->isMultidomain = false; ctry->isMultidomain = false;
if (rd == CTRY_DEFAULT) if (rd == CTRY_DEFAULT)

View File

@ -20,57 +20,57 @@
#include "ath9k.h" #include "ath9k.h"
#define BMLEN 2 #define BMLEN 2
#define BMZERO {(u_int64_t) 0, (u_int64_t) 0} #define BMZERO {(u64) 0, (u64) 0}
#define BM(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh, _fi, _fj, _fk, _fl) \ #define BM(_fa, _fb, _fc, _fd, _fe, _ff, _fg, _fh, _fi, _fj, _fk, _fl) \
{((((_fa >= 0) && (_fa < 64)) ? \ {((((_fa >= 0) && (_fa < 64)) ? \
(((u_int64_t) 1) << _fa) : (u_int64_t) 0) | \ (((u64) 1) << _fa) : (u64) 0) | \
(((_fb >= 0) && (_fb < 64)) ? \ (((_fb >= 0) && (_fb < 64)) ? \
(((u_int64_t) 1) << _fb) : (u_int64_t) 0) | \ (((u64) 1) << _fb) : (u64) 0) | \
(((_fc >= 0) && (_fc < 64)) ? \ (((_fc >= 0) && (_fc < 64)) ? \
(((u_int64_t) 1) << _fc) : (u_int64_t) 0) | \ (((u64) 1) << _fc) : (u64) 0) | \
(((_fd >= 0) && (_fd < 64)) ? \ (((_fd >= 0) && (_fd < 64)) ? \
(((u_int64_t) 1) << _fd) : (u_int64_t) 0) | \ (((u64) 1) << _fd) : (u64) 0) | \
(((_fe >= 0) && (_fe < 64)) ? \ (((_fe >= 0) && (_fe < 64)) ? \
(((u_int64_t) 1) << _fe) : (u_int64_t) 0) | \ (((u64) 1) << _fe) : (u64) 0) | \
(((_ff >= 0) && (_ff < 64)) ? \ (((_ff >= 0) && (_ff < 64)) ? \
(((u_int64_t) 1) << _ff) : (u_int64_t) 0) | \ (((u64) 1) << _ff) : (u64) 0) | \
(((_fg >= 0) && (_fg < 64)) ? \ (((_fg >= 0) && (_fg < 64)) ? \
(((u_int64_t) 1) << _fg) : (u_int64_t) 0) | \ (((u64) 1) << _fg) : (u64) 0) | \
(((_fh >= 0) && (_fh < 64)) ? \ (((_fh >= 0) && (_fh < 64)) ? \
(((u_int64_t) 1) << _fh) : (u_int64_t) 0) | \ (((u64) 1) << _fh) : (u64) 0) | \
(((_fi >= 0) && (_fi < 64)) ? \ (((_fi >= 0) && (_fi < 64)) ? \
(((u_int64_t) 1) << _fi) : (u_int64_t) 0) | \ (((u64) 1) << _fi) : (u64) 0) | \
(((_fj >= 0) && (_fj < 64)) ? \ (((_fj >= 0) && (_fj < 64)) ? \
(((u_int64_t) 1) << _fj) : (u_int64_t) 0) | \ (((u64) 1) << _fj) : (u64) 0) | \
(((_fk >= 0) && (_fk < 64)) ? \ (((_fk >= 0) && (_fk < 64)) ? \
(((u_int64_t) 1) << _fk) : (u_int64_t) 0) | \ (((u64) 1) << _fk) : (u64) 0) | \
(((_fl >= 0) && (_fl < 64)) ? \ (((_fl >= 0) && (_fl < 64)) ? \
(((u_int64_t) 1) << _fl) : (u_int64_t) 0) | \ (((u64) 1) << _fl) : (u64) 0) | \
((((_fa > 63) && (_fa < 128)) ? \ ((((_fa > 63) && (_fa < 128)) ? \
(((u_int64_t) 1) << (_fa - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fa - 64)) : (u64) 0) | \
(((_fb > 63) && (_fb < 128)) ? \ (((_fb > 63) && (_fb < 128)) ? \
(((u_int64_t) 1) << (_fb - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fb - 64)) : (u64) 0) | \
(((_fc > 63) && (_fc < 128)) ? \ (((_fc > 63) && (_fc < 128)) ? \
(((u_int64_t) 1) << (_fc - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fc - 64)) : (u64) 0) | \
(((_fd > 63) && (_fd < 128)) ? \ (((_fd > 63) && (_fd < 128)) ? \
(((u_int64_t) 1) << (_fd - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fd - 64)) : (u64) 0) | \
(((_fe > 63) && (_fe < 128)) ? \ (((_fe > 63) && (_fe < 128)) ? \
(((u_int64_t) 1) << (_fe - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fe - 64)) : (u64) 0) | \
(((_ff > 63) && (_ff < 128)) ? \ (((_ff > 63) && (_ff < 128)) ? \
(((u_int64_t) 1) << (_ff - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_ff - 64)) : (u64) 0) | \
(((_fg > 63) && (_fg < 128)) ? \ (((_fg > 63) && (_fg < 128)) ? \
(((u_int64_t) 1) << (_fg - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fg - 64)) : (u64) 0) | \
(((_fh > 63) && (_fh < 128)) ? \ (((_fh > 63) && (_fh < 128)) ? \
(((u_int64_t) 1) << (_fh - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fh - 64)) : (u64) 0) | \
(((_fi > 63) && (_fi < 128)) ? \ (((_fi > 63) && (_fi < 128)) ? \
(((u_int64_t) 1) << (_fi - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fi - 64)) : (u64) 0) | \
(((_fj > 63) && (_fj < 128)) ? \ (((_fj > 63) && (_fj < 128)) ? \
(((u_int64_t) 1) << (_fj - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fj - 64)) : (u64) 0) | \
(((_fk > 63) && (_fk < 128)) ? \ (((_fk > 63) && (_fk < 128)) ? \
(((u_int64_t) 1) << (_fk - 64)) : (u_int64_t) 0) | \ (((u64) 1) << (_fk - 64)) : (u64) 0) | \
(((_fl > 63) && (_fl < 128)) ? \ (((_fl > 63) && (_fl < 128)) ? \
(((u_int64_t) 1) << (_fl - 64)) : (u_int64_t) 0)))} (((u64) 1) << (_fl - 64)) : (u64) 0)))}
#define DEF_REGDMN FCC1_FCCA #define DEF_REGDMN FCC1_FCCA
#define DEF_DMN_5 FCC1 #define DEF_DMN_5 FCC1
@ -126,10 +126,10 @@
#define CHAN_FLAGS (CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER) #define CHAN_FLAGS (CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER)
#define swap(_a, _b, _size) { \ #define swap(_a, _b, _size) { \
u_int8_t *s = _b; \ u8 *s = _b; \
int i = _size; \ int i = _size; \
do { \ do { \
u_int8_t tmp = *_a; \ u8 tmp = *_a; \
*_a++ = *s; \ *_a++ = *s; \
*s++ = tmp; \ *s++ = tmp; \
} while (--i); \ } while (--i); \
@ -150,23 +150,23 @@
typedef int ath_hal_cmp_t(const void *, const void *); typedef int ath_hal_cmp_t(const void *, const void *);
struct reg_dmn_pair_mapping { struct reg_dmn_pair_mapping {
u_int16_t regDmnEnum; u16 regDmnEnum;
u_int16_t regDmn5GHz; u16 regDmn5GHz;
u_int16_t regDmn2GHz; u16 regDmn2GHz;
u_int32_t flags5GHz; u32 flags5GHz;
u_int32_t flags2GHz; u32 flags2GHz;
u_int64_t pscanMask; u64 pscanMask;
u_int16_t singleCC; u16 singleCC;
}; };
struct ccmap { struct ccmap {
char isoName[3]; char isoName[3];
u_int16_t countryCode; u16 countryCode;
}; };
struct country_code_to_enum_rd { struct country_code_to_enum_rd {
u_int16_t countryCode; u16 countryCode;
u_int16_t regDmnEnum; u16 regDmnEnum;
const char *isoName; const char *isoName;
const char *name; const char *name;
bool allow11g; bool allow11g;
@ -176,52 +176,52 @@ struct country_code_to_enum_rd {
bool allow11ng40; bool allow11ng40;
bool allow11na20; bool allow11na20;
bool allow11na40; bool allow11na40;
u_int16_t outdoorChanStart; u16 outdoorChanStart;
}; };
struct RegDmnFreqBand { struct RegDmnFreqBand {
u_int16_t lowChannel; u16 lowChannel;
u_int16_t highChannel; u16 highChannel;
u_int8_t powerDfs; u8 powerDfs;
u_int8_t antennaMax; u8 antennaMax;
u_int8_t channelBW; u8 channelBW;
u_int8_t channelSep; u8 channelSep;
u_int64_t useDfs; u64 useDfs;
u_int64_t usePassScan; u64 usePassScan;
u_int8_t regClassId; u8 regClassId;
}; };
struct regDomain { struct regDomain {
u_int16_t regDmnEnum; u16 regDmnEnum;
u_int8_t conformanceTestLimit; u8 conformanceTestLimit;
u_int64_t dfsMask; u64 dfsMask;
u_int64_t pscan; u64 pscan;
u_int32_t flags; u32 flags;
u_int64_t chan11a[BMLEN]; u64 chan11a[BMLEN];
u_int64_t chan11a_turbo[BMLEN]; u64 chan11a_turbo[BMLEN];
u_int64_t chan11a_dyn_turbo[BMLEN]; u64 chan11a_dyn_turbo[BMLEN];
u_int64_t chan11b[BMLEN]; u64 chan11b[BMLEN];
u_int64_t chan11g[BMLEN]; u64 chan11g[BMLEN];
u_int64_t chan11g_turbo[BMLEN]; u64 chan11g_turbo[BMLEN];
}; };
struct cmode { struct cmode {
u_int32_t mode; u32 mode;
u_int32_t flags; u32 flags;
}; };
#define YES true #define YES true
#define NO false #define NO false
struct japan_bandcheck { struct japan_bandcheck {
u_int16_t freqbandbit; u16 freqbandbit;
u_int32_t eepromflagtocheck; u32 eepromflagtocheck;
}; };
struct common_mode_power { struct common_mode_power {
u_int16_t lchan; u16 lchan;
u_int16_t hchan; u16 hchan;
u_int8_t pwrlvl; u8 pwrlvl;
}; };
enum CountryCode { enum CountryCode {
@ -407,6 +407,6 @@ enum CountryCode {
}; };
void ath9k_regd_get_current_country(struct ath_hal *ah, void ath9k_regd_get_current_country(struct ath_hal *ah,
struct hal_country_entry *ctry); struct ath9k_country_entry *ctry);
#endif #endif

View File

@ -37,7 +37,7 @@
#define OFDM_SIFS_TIME 16 #define OFDM_SIFS_TIME 16
static u_int32_t bits_per_symbol[][2] = { static u32 bits_per_symbol[][2] = {
/* 20MHz 40MHz */ /* 20MHz 40MHz */
{ 26, 54 }, /* 0: BPSK */ { 26, 54 }, /* 0: BPSK */
{ 52, 108 }, /* 1: QPSK 1/2 */ { 52, 108 }, /* 1: QPSK 1/2 */
@ -180,7 +180,7 @@ static void ath_tx_txqaddbuf(struct ath_softc *sc,
/* Get transmit rate index using rate in Kbps */ /* Get transmit rate index using rate in Kbps */
static int ath_tx_findindex(const struct hal_rate_table *rt, int rate) static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate)
{ {
int i; int i;
int ndx = 0; int ndx = 0;
@ -198,7 +198,7 @@ static int ath_tx_findindex(const struct hal_rate_table *rt, int rate)
/* Check if it's okay to send out aggregates */ /* Check if it's okay to send out aggregates */
static int ath_aggr_query(struct ath_softc *sc, static int ath_aggr_query(struct ath_softc *sc,
struct ath_node *an, u_int8_t tidno) struct ath_node *an, u8 tidno)
{ {
struct ath_atx_tid *tid; struct ath_atx_tid *tid;
tid = ATH_AN_2_TID(an, tidno); tid = ATH_AN_2_TID(an, tidno);
@ -209,9 +209,9 @@ static int ath_aggr_query(struct ath_softc *sc,
return 0; return 0;
} }
static enum hal_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr) static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr)
{ {
enum hal_pkt_type htype; enum ath9k_pkt_type htype;
__le16 fc; __le16 fc;
fc = hdr->frame_control; fc = hdr->frame_control;
@ -219,15 +219,15 @@ static enum hal_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr)
/* Calculate Atheros packet type from IEEE80211 packet header */ /* Calculate Atheros packet type from IEEE80211 packet header */
if (ieee80211_is_beacon(fc)) if (ieee80211_is_beacon(fc))
htype = HAL_PKT_TYPE_BEACON; htype = ATH9K_PKT_TYPE_BEACON;
else if (ieee80211_is_probe_resp(fc)) else if (ieee80211_is_probe_resp(fc))
htype = HAL_PKT_TYPE_PROBE_RESP; htype = ATH9K_PKT_TYPE_PROBE_RESP;
else if (ieee80211_is_atim(fc)) else if (ieee80211_is_atim(fc))
htype = HAL_PKT_TYPE_ATIM; htype = ATH9K_PKT_TYPE_ATIM;
else if (ieee80211_is_pspoll(fc)) else if (ieee80211_is_pspoll(fc))
htype = HAL_PKT_TYPE_PSPOLL; htype = ATH9K_PKT_TYPE_PSPOLL;
else else
htype = HAL_PKT_TYPE_NORMAL; htype = ATH9K_PKT_TYPE_NORMAL;
return htype; return htype;
} }
@ -248,7 +248,8 @@ static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl)
txctl->min_rate = tx_info_priv->min_rate; txctl->min_rate = tx_info_priv->min_rate;
} else if (ieee80211_is_data(fc)) { } else if (ieee80211_is_data(fc)) {
if (ieee80211_is_nullfunc(fc) || if (ieee80211_is_nullfunc(fc) ||
(tx_info->flags & IEEE80211_TX_CTL_EAPOL_FRAME)) { /* Port Access Entity (IEEE 802.1X) */
(skb->protocol == cpu_to_be16(0x888E))) {
txctl->use_minrate = 1; txctl->use_minrate = 1;
txctl->min_rate = tx_info_priv->min_rate; txctl->min_rate = tx_info_priv->min_rate;
} }
@ -268,11 +269,11 @@ static int ath_tx_prepare(struct ath_softc *sc,
struct ieee80211_hdr *hdr; struct ieee80211_hdr *hdr;
struct ath_rc_series *rcs; struct ath_rc_series *rcs;
struct ath_txq *txq = NULL; struct ath_txq *txq = NULL;
const struct hal_rate_table *rt; const struct ath9k_rate_table *rt;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_tx_info_priv *tx_info_priv; struct ath_tx_info_priv *tx_info_priv;
int hdrlen; int hdrlen;
u_int8_t rix, antenna; u8 rix, antenna;
__le16 fc; __le16 fc;
u8 *qc; u8 *qc;
@ -307,19 +308,19 @@ static int ath_tx_prepare(struct ath_softc *sc,
/* Fill Key related fields */ /* Fill Key related fields */
txctl->keytype = HAL_KEY_TYPE_CLEAR; txctl->keytype = ATH9K_KEY_TYPE_CLEAR;
txctl->keyix = HAL_TXKEYIX_INVALID; txctl->keyix = ATH9K_TXKEYIX_INVALID;
if (!(tx_info->flags & IEEE80211_TX_CTL_DO_NOT_ENCRYPT)) { if (tx_info->control.hw_key) {
txctl->keyix = tx_info->control.hw_key->hw_key_idx; txctl->keyix = tx_info->control.hw_key->hw_key_idx;
txctl->frmlen += tx_info->control.icv_len; txctl->frmlen += tx_info->control.icv_len;
if (sc->sc_keytype == HAL_CIPHER_WEP) if (sc->sc_keytype == ATH9K_CIPHER_WEP)
txctl->keytype = HAL_KEY_TYPE_WEP; txctl->keytype = ATH9K_KEY_TYPE_WEP;
else if (sc->sc_keytype == HAL_CIPHER_TKIP) else if (sc->sc_keytype == ATH9K_CIPHER_TKIP)
txctl->keytype = HAL_KEY_TYPE_TKIP; txctl->keytype = ATH9K_KEY_TYPE_TKIP;
else if (sc->sc_keytype == HAL_CIPHER_AES_CCM) else if (sc->sc_keytype == ATH9K_CIPHER_AES_CCM)
txctl->keytype = HAL_KEY_TYPE_AES; txctl->keytype = ATH9K_KEY_TYPE_AES;
} }
/* Fill packet type */ /* Fill packet type */
@ -353,12 +354,12 @@ static int ath_tx_prepare(struct ath_softc *sc,
/* Fill flags */ /* Fill flags */
txctl->flags = HAL_TXDESC_CLRDMASK; /* needed for crypto errors */ txctl->flags = ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
tx_info->flags |= HAL_TXDESC_NOACK; tx_info->flags |= ATH9K_TXDESC_NOACK;
if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS)
tx_info->flags |= HAL_TXDESC_RTSENA; tx_info->flags |= ATH9K_TXDESC_RTSENA;
/* /*
* Setup for rate calculations. * Setup for rate calculations.
@ -373,7 +374,7 @@ static int ath_tx_prepare(struct ath_softc *sc,
(tx_info->flags & IEEE80211_TX_CTL_AMPDU)); (tx_info->flags & IEEE80211_TX_CTL_AMPDU));
if (is_multicast_ether_addr(hdr->addr1)) { if (is_multicast_ether_addr(hdr->addr1)) {
rcs[0].rix = (u_int8_t) rcs[0].rix = (u8)
ath_tx_findindex(rt, txctl->mcast_rate); ath_tx_findindex(rt, txctl->mcast_rate);
/* /*
@ -390,7 +391,7 @@ static int ath_tx_prepare(struct ath_softc *sc,
* not overridden, since it has been * not overridden, since it has been
* incremented by the fragmentation routine. * incremented by the fragmentation routine.
*/ */
if (likely(!(txctl->flags & HAL_TXDESC_FRAG_IS_ON)) && if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) &&
txctl->ht && sc->sc_txaggr) { txctl->ht && sc->sc_txaggr) {
struct ath_atx_tid *tid; struct ath_atx_tid *tid;
@ -416,8 +417,8 @@ static int ath_tx_prepare(struct ath_softc *sc,
* Calculate duration. This logically belongs in the 802.11 * Calculate duration. This logically belongs in the 802.11
* layer but it lacks sufficient information to calculate it. * layer but it lacks sufficient information to calculate it.
*/ */
if ((txctl->flags & HAL_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) { if ((txctl->flags & ATH9K_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) {
u_int16_t dur; u16 dur;
/* /*
* XXX not right with fragmentation. * XXX not right with fragmentation.
*/ */
@ -475,7 +476,7 @@ static int ath_tx_prepare(struct ath_softc *sc,
*/ */
spin_lock_bh(&txq->axq_lock); spin_lock_bh(&txq->axq_lock);
if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) { if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) {
txctl->flags |= HAL_TXDESC_INTREQ; txctl->flags |= ATH9K_TXDESC_INTREQ;
txq->axq_intrcnt = 0; txq->axq_intrcnt = 0;
} }
spin_unlock_bh(&txq->axq_lock); spin_unlock_bh(&txq->axq_lock);
@ -619,8 +620,8 @@ static int ath_tx_num_badfrms(struct ath_softc *sc,
int isnodegone = (an->an_flags & ATH_NODE_CLEAN); int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
struct ath_buf *bf_last = bf->bf_lastbf; struct ath_buf *bf_last = bf->bf_lastbf;
struct ath_desc *ds = bf_last->bf_desc; struct ath_desc *ds = bf_last->bf_desc;
u_int16_t seq_st = 0; u16 seq_st = 0;
u_int32_t ba[WME_BA_BMP_SIZE >> 5]; u32 ba[WME_BA_BMP_SIZE >> 5];
int ba_index; int ba_index;
int nbad = 0; int nbad = 0;
int isaggr = 0; int isaggr = 0;
@ -685,16 +686,16 @@ static void ath_tx_update_baw(struct ath_softc *sc,
* half_gi - to use 4us v/s 3.6 us for symbol time * half_gi - to use 4us v/s 3.6 us for symbol time
*/ */
static u_int32_t ath_pkt_duration(struct ath_softc *sc, static u32 ath_pkt_duration(struct ath_softc *sc,
u_int8_t rix, u8 rix,
struct ath_buf *bf, struct ath_buf *bf,
int width, int width,
int half_gi, int half_gi,
bool shortPreamble) bool shortPreamble)
{ {
const struct hal_rate_table *rt = sc->sc_currates; const struct ath9k_rate_table *rt = sc->sc_currates;
u_int32_t nbits, nsymbits, duration, nsymbols; u32 nbits, nsymbits, duration, nsymbols;
u_int8_t rc; u8 rc;
int streams, pktlen; int streams, pktlen;
pktlen = bf->bf_isaggr ? bf->bf_al : bf->bf_frmlen; pktlen = bf->bf_isaggr ? bf->bf_al : bf->bf_frmlen;
@ -734,14 +735,14 @@ static u_int32_t ath_pkt_duration(struct ath_softc *sc,
static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf) static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
const struct hal_rate_table *rt; const struct ath9k_rate_table *rt;
struct ath_desc *ds = bf->bf_desc; struct ath_desc *ds = bf->bf_desc;
struct ath_desc *lastds = bf->bf_lastbf->bf_desc; struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
struct hal_11n_rate_series series[4]; struct ath9k_11n_rate_series series[4];
int i, flags, rtsctsena = 0, dynamic_mimops = 0; int i, flags, rtsctsena = 0, dynamic_mimops = 0;
u_int ctsduration = 0; u32 ctsduration = 0;
u_int8_t rix = 0, cix, ctsrate = 0; u8 rix = 0, cix, ctsrate = 0;
u_int32_t aggr_limit_with_rts = sc->sc_rtsaggrlimit; u32 aggr_limit_with_rts = sc->sc_rtsaggrlimit;
struct ath_node *an = (struct ath_node *) bf->bf_node; struct ath_node *an = (struct ath_node *) bf->bf_node;
/* /*
@ -754,7 +755,7 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
break; break;
} }
} }
flags = (bf->bf_flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)); flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
cix = rt->info[rix].controlRate; cix = rt->info[rix].controlRate;
/* /*
@ -765,11 +766,11 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
if (sc->sc_protmode != PROT_M_NONE && if (sc->sc_protmode != PROT_M_NONE &&
(rt->info[rix].phy == PHY_OFDM || (rt->info[rix].phy == PHY_OFDM ||
rt->info[rix].phy == PHY_HT) && rt->info[rix].phy == PHY_HT) &&
(bf->bf_flags & HAL_TXDESC_NOACK) == 0) { (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
if (sc->sc_protmode == PROT_M_RTSCTS) if (sc->sc_protmode == PROT_M_RTSCTS)
flags = HAL_TXDESC_RTSENA; flags = ATH9K_TXDESC_RTSENA;
else if (sc->sc_protmode == PROT_M_CTSONLY) else if (sc->sc_protmode == PROT_M_CTSONLY)
flags = HAL_TXDESC_CTSENA; flags = ATH9K_TXDESC_CTSENA;
cix = rt->info[sc->sc_protrix].controlRate; cix = rt->info[sc->sc_protrix].controlRate;
rtsctsena = 1; rtsctsena = 1;
@ -786,14 +787,14 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
* 802.11g protection not needed, use our default behavior * 802.11g protection not needed, use our default behavior
*/ */
if (!rtsctsena) if (!rtsctsena)
flags = HAL_TXDESC_RTSENA; flags = ATH9K_TXDESC_RTSENA;
/* /*
* For dynamic MIMO PS, RTS needs to precede the first aggregate * For dynamic MIMO PS, RTS needs to precede the first aggregate
* and the second aggregate should have any protection at all. * and the second aggregate should have any protection at all.
*/ */
if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) { if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) {
if (!bf->bf_aggrburst) { if (!bf->bf_aggrburst) {
flags = HAL_TXDESC_RTSENA; flags = ATH9K_TXDESC_RTSENA;
dynamic_mimops = 1; dynamic_mimops = 1;
} else { } else {
flags = 0; flags = 0;
@ -806,7 +807,7 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
*/ */
if (sc->sc_config.ath_aggr_prot && if (sc->sc_config.ath_aggr_prot &&
(!bf->bf_isaggr || (bf->bf_isaggr && bf->bf_al < 8192))) { (!bf->bf_isaggr || (bf->bf_isaggr && bf->bf_al < 8192))) {
flags = HAL_TXDESC_RTSENA; flags = ATH9K_TXDESC_RTSENA;
cix = rt->info[sc->sc_protrix].controlRate; cix = rt->info[sc->sc_protrix].controlRate;
rtsctsena = 1; rtsctsena = 1;
} }
@ -820,7 +821,7 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
* while we are bursting the second aggregate the * while we are bursting the second aggregate the
* RTS is cleared. * RTS is cleared.
*/ */
flags &= ~(HAL_TXDESC_RTSENA); flags &= ~(ATH9K_TXDESC_RTSENA);
} }
/* /*
@ -836,7 +837,7 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
/* /*
* Setup HAL rate series * Setup HAL rate series
*/ */
memzero(series, sizeof(struct hal_11n_rate_series) * 4); memzero(series, sizeof(struct ath9k_11n_rate_series) * 4);
for (i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
if (!bf->bf_rcs[i].tries) if (!bf->bf_rcs[i].tries)
@ -851,11 +852,11 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
series[i].RateFlags = ( series[i].RateFlags = (
(bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ? (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ?
HAL_RATESERIES_RTS_CTS : 0) | ATH9K_RATESERIES_RTS_CTS : 0) |
((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ? ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ?
HAL_RATESERIES_2040 : 0) | ATH9K_RATESERIES_2040 : 0) |
((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ? ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ?
HAL_RATESERIES_HALFGI : 0); ATH9K_RATESERIES_HALFGI : 0);
series[i].PktDuration = ath_pkt_duration( series[i].PktDuration = ath_pkt_duration(
sc, rix, bf, sc, rix, bf,
@ -882,14 +883,14 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
} }
if (rtsctsena) if (rtsctsena)
series[i].RateFlags |= HAL_RATESERIES_RTS_CTS; series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
/* /*
* Set RTS for all rates if node is in dynamic powersave * Set RTS for all rates if node is in dynamic powersave
* mode and we are using dual stream rates. * mode and we are using dual stream rates.
*/ */
if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG)) if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG))
series[i].RateFlags |= HAL_RATESERIES_RTS_CTS; series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
} }
/* /*
@ -906,7 +907,7 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
* NB: CTS is assumed the same size as an ACK so we can * NB: CTS is assumed the same size as an ACK so we can
* use the precalculated ACK durations. * use the precalculated ACK durations.
*/ */
if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */ if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */
ctsduration += bf->bf_shpreamble ? ctsduration += bf->bf_shpreamble ?
rt->info[cix].spAckDuration : rt->info[cix].spAckDuration :
rt->info[cix].lpAckDuration; rt->info[cix].lpAckDuration;
@ -914,7 +915,7 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
ctsduration += series[0].PktDuration; ctsduration += series[0].PktDuration;
if ((bf->bf_flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */ if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */
ctsduration += bf->bf_shpreamble ? ctsduration += bf->bf_shpreamble ?
rt->info[rix].spAckDuration : rt->info[rix].spAckDuration :
rt->info[rix].lpAckDuration; rt->info[rix].lpAckDuration;
@ -924,7 +925,7 @@ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
* Disable multi-rate retry when using RTS/CTS by clearing * Disable multi-rate retry when using RTS/CTS by clearing
* series 1, 2 and 3. * series 1, 2 and 3.
*/ */
memzero(&series[1], sizeof(struct hal_11n_rate_series) * 3); memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3);
} }
/* /*
@ -1019,8 +1020,8 @@ static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
struct ath_desc *ds = bf_last->bf_desc; struct ath_desc *ds = bf_last->bf_desc;
struct ath_buf *bf_next, *bf_lastq = NULL; struct ath_buf *bf_next, *bf_lastq = NULL;
struct list_head bf_head, bf_pending; struct list_head bf_head, bf_pending;
u_int16_t seq_st = 0; u16 seq_st = 0;
u_int32_t ba[WME_BA_BMP_SIZE >> 5]; u32 ba[WME_BA_BMP_SIZE >> 5];
int isaggr, txfail, txpending, sendbar = 0, needreset = 0; int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
int isnodegone = (an->an_flags & ATH_NODE_CLEAN); int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
@ -1046,7 +1047,7 @@ static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
* when perform internal reset in this routine. * when perform internal reset in this routine.
* Only enable reset in STA mode for now. * Only enable reset in STA mode for now.
*/ */
if (sc->sc_opmode == HAL_M_STA) if (sc->sc_opmode == ATH9K_M_STA)
needreset = 1; needreset = 1;
} }
} else { } else {
@ -1258,7 +1259,7 @@ static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
struct ieee80211_tx_info *tx_info; struct ieee80211_tx_info *tx_info;
struct ath_tx_info_priv *tx_info_priv; struct ath_tx_info_priv *tx_info_priv;
int nacked, txok, nbad = 0, isrifs = 0; int nacked, txok, nbad = 0, isrifs = 0;
enum hal_status status; int status;
DPRINTF(sc, ATH_DBG_QUEUE, DPRINTF(sc, ATH_DBG_QUEUE,
"%s: tx queue %d (%x), link %p\n", __func__, "%s: tx queue %d (%x), link %p\n", __func__,
@ -1307,7 +1308,7 @@ static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
ds = lastbf->bf_desc; /* NB: last decriptor */ ds = lastbf->bf_desc; /* NB: last decriptor */
status = ath9k_hw_txprocdesc(ah, ds); status = ath9k_hw_txprocdesc(ah, ds);
if (status == HAL_EINPROGRESS) { if (status == -EINPROGRESS) {
spin_unlock_bh(&txq->axq_lock); spin_unlock_bh(&txq->axq_lock);
break; break;
} }
@ -1363,7 +1364,7 @@ static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 && if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
(bf->bf_flags & HAL_TXDESC_NOACK) == 0) { (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
if (ds->ds_txstat.ts_status == 0) if (ds->ds_txstat.ts_status == 0)
nacked++; nacked++;
@ -1429,11 +1430,11 @@ static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
int i; int i;
int npend = 0; int npend = 0;
enum hal_ht_macmode ht_macmode = ath_cwm_macmode(sc); enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
/* XXX return value */ /* XXX return value */
if (!sc->sc_invalid) { if (!sc->sc_invalid) {
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) { if (ATH_TXQ_SETUP(sc, i)) {
ath_tx_stopdma(sc, &sc->sc_txq[i]); ath_tx_stopdma(sc, &sc->sc_txq[i]);
@ -1446,7 +1447,7 @@ static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
} }
if (npend) { if (npend) {
enum hal_status status; int status;
/* TxDMA not stopped, reset the hal */ /* TxDMA not stopped, reset the hal */
DPRINTF(sc, ATH_DBG_XMIT, DPRINTF(sc, ATH_DBG_XMIT,
@ -1466,7 +1467,7 @@ static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
spin_unlock_bh(&sc->sc_resetlock); spin_unlock_bh(&sc->sc_resetlock);
} }
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) if (ATH_TXQ_SETUP(sc, i))
ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx); ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx);
} }
@ -1559,15 +1560,15 @@ static int ath_tx_send_ampdu(struct ath_softc *sc,
* returns aggr limit based on lowest of the rates * returns aggr limit based on lowest of the rates
*/ */
static u_int32_t ath_lookup_rate(struct ath_softc *sc, static u32 ath_lookup_rate(struct ath_softc *sc,
struct ath_buf *bf) struct ath_buf *bf)
{ {
const struct hal_rate_table *rt = sc->sc_currates; const struct ath9k_rate_table *rt = sc->sc_currates;
struct sk_buff *skb; struct sk_buff *skb;
struct ieee80211_tx_info *tx_info; struct ieee80211_tx_info *tx_info;
struct ath_tx_info_priv *tx_info_priv; struct ath_tx_info_priv *tx_info_priv;
u_int32_t max_4ms_framelen, frame_length; u32 max_4ms_framelen, frame_length;
u_int16_t aggr_limit, legacy = 0, maxampdu; u16 aggr_limit, legacy = 0, maxampdu;
int i; int i;
@ -1607,7 +1608,7 @@ static u_int32_t ath_lookup_rate(struct ath_softc *sc,
return 0; return 0;
aggr_limit = min(max_4ms_framelen, aggr_limit = min(max_4ms_framelen,
(u_int32_t)ATH_AMPDU_LIMIT_DEFAULT); (u32)ATH_AMPDU_LIMIT_DEFAULT);
/* /*
* h/w can accept aggregates upto 16 bit lengths (65535). * h/w can accept aggregates upto 16 bit lengths (65535).
@ -1629,12 +1630,12 @@ static u_int32_t ath_lookup_rate(struct ath_softc *sc,
static int ath_compute_num_delims(struct ath_softc *sc, static int ath_compute_num_delims(struct ath_softc *sc,
struct ath_buf *bf, struct ath_buf *bf,
u_int16_t frmlen) u16 frmlen)
{ {
const struct hal_rate_table *rt = sc->sc_currates; const struct ath9k_rate_table *rt = sc->sc_currates;
u_int32_t nsymbits, nsymbols, mpdudensity; u32 nsymbits, nsymbols, mpdudensity;
u_int16_t minlen; u16 minlen;
u_int8_t rc, flags, rix; u8 rc, flags, rix;
int width, half_gi, ndelim, mindelim; int width, half_gi, ndelim, mindelim;
/* Select standard number of delimiters based on frame length alone */ /* Select standard number of delimiters based on frame length alone */
@ -1646,7 +1647,7 @@ static int ath_compute_num_delims(struct ath_softc *sc,
* TODO - this could be improved to be dependent on the rate. * TODO - this could be improved to be dependent on the rate.
* The hardware can keep up at lower rates, but not higher rates * The hardware can keep up at lower rates, but not higher rates
*/ */
if (bf->bf_keytype != HAL_KEY_TYPE_CLEAR) if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
ndelim += ATH_AGGR_ENCRYPTDELIM; ndelim += ATH_AGGR_ENCRYPTDELIM;
/* /*
@ -1707,7 +1708,7 @@ static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL; struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
struct list_head bf_head; struct list_head bf_head;
int rl = 0, nframes = 0, ndelim; int rl = 0, nframes = 0, ndelim;
u_int16_t aggr_limit = 0, al = 0, bpad = 0, u16 aggr_limit = 0, al = 0, bpad = 0,
al_delta, h_baw = tid->baw_size / 2; al_delta, h_baw = tid->baw_size / 2;
enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
int prev_al = 0, is_ds_rate = 0; int prev_al = 0, is_ds_rate = 0;
@ -1981,7 +1982,7 @@ static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
static int ath_tx_start_dma(struct ath_softc *sc, static int ath_tx_start_dma(struct ath_softc *sc,
struct sk_buff *skb, struct sk_buff *skb,
struct scatterlist *sg, struct scatterlist *sg,
u_int32_t n_sg, u32 n_sg,
struct ath_tx_control *txctl) struct ath_tx_control *txctl)
{ {
struct ath_node *an = txctl->an; struct ath_node *an = txctl->an;
@ -2047,7 +2048,7 @@ static int ath_tx_start_dma(struct ath_softc *sc,
ds, ds,
bf->bf_frmlen, /* frame length */ bf->bf_frmlen, /* frame length */
txctl->atype, /* Atheros packet type */ txctl->atype, /* Atheros packet type */
min(txctl->txpower, (u_int16_t)60), /* txpower */ min(txctl->txpower, (u16)60), /* txpower */
txctl->keyix, /* key cache index */ txctl->keyix, /* key cache index */
txctl->keytype, /* key type */ txctl->keytype, /* key type */
txctl->flags); /* flags */ txctl->flags); /* flags */
@ -2208,14 +2209,14 @@ int ath_tx_cleanup(struct ath_softc *sc)
struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
struct hal_txq_info qi; struct ath9k_txq_info qi;
int qnum; int qnum;
memzero(&qi, sizeof(qi)); memzero(&qi, sizeof(qi));
qi.tqi_subtype = subtype; qi.tqi_subtype = subtype;
qi.tqi_aifs = HAL_TXQ_USEDEFAULT; qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
qi.tqi_compBuf = 0; qi.tqi_compBuf = 0;
/* /*
@ -2233,7 +2234,7 @@ struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
* The UAPSD queue is an exception, since we take a desc- * The UAPSD queue is an exception, since we take a desc-
* based intr on the EOSP frames. * based intr on the EOSP frames.
*/ */
if (qtype == HAL_TX_QUEUE_UAPSD) if (qtype == ATH9K_TX_QUEUE_UAPSD)
qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
else else
qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
@ -2299,7 +2300,7 @@ int ath_tx_setup(struct ath_softc *sc, int haltype)
__func__, haltype, ARRAY_SIZE(sc->sc_haltype2q)); __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q));
return 0; return 0;
} }
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
if (txq != NULL) { if (txq != NULL) {
sc->sc_haltype2q[haltype] = txq->axq_qnum; sc->sc_haltype2q[haltype] = txq->axq_qnum;
return 1; return 1;
@ -2312,7 +2313,7 @@ int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
int qnum; int qnum;
switch (qtype) { switch (qtype) {
case HAL_TX_QUEUE_DATA: case ATH9K_TX_QUEUE_DATA:
if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
DPRINTF(sc, ATH_DBG_FATAL, DPRINTF(sc, ATH_DBG_FATAL,
"%s: HAL AC %u out of range, max %zu!\n", "%s: HAL AC %u out of range, max %zu!\n",
@ -2322,10 +2323,10 @@ int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
} }
qnum = sc->sc_haltype2q[haltype]; qnum = sc->sc_haltype2q[haltype];
break; break;
case HAL_TX_QUEUE_BEACON: case ATH9K_TX_QUEUE_BEACON:
qnum = sc->sc_bhalq; qnum = sc->sc_bhalq;
break; break;
case HAL_TX_QUEUE_CAB: case ATH9K_TX_QUEUE_CAB:
qnum = sc->sc_cabq->axq_qnum; qnum = sc->sc_cabq->axq_qnum;
break; break;
default: default:
@ -2336,11 +2337,11 @@ int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
/* Update parameters for a transmit queue */ /* Update parameters for a transmit queue */
int ath_txq_update(struct ath_softc *sc, int qnum, struct hal_txq_info *qi0) int ath_txq_update(struct ath_softc *sc, int qnum, struct ath9k_txq_info *qi0)
{ {
struct ath_hal *ah = sc->sc_ah; struct ath_hal *ah = sc->sc_ah;
int error = 0; int error = 0;
struct hal_txq_info qi; struct ath9k_txq_info qi;
if (qnum == sc->sc_bhalq) { if (qnum == sc->sc_bhalq) {
/* /*
@ -2375,7 +2376,7 @@ int ath_txq_update(struct ath_softc *sc, int qnum, struct hal_txq_info *qi0)
int ath_cabq_update(struct ath_softc *sc) int ath_cabq_update(struct ath_softc *sc)
{ {
struct hal_txq_info qi; struct ath9k_txq_info qi;
int qnum = sc->sc_cabq->axq_qnum; int qnum = sc->sc_cabq->axq_qnum;
struct ath_beacon_config conf; struct ath_beacon_config conf;
@ -2383,10 +2384,10 @@ int ath_cabq_update(struct ath_softc *sc)
/* /*
* Ensure the readytime % is within the bounds. * Ensure the readytime % is within the bounds.
*/ */
if (sc->sc_config.cabqReadytime < HAL_READY_TIME_LO_BOUND) if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
sc->sc_config.cabqReadytime = HAL_READY_TIME_LO_BOUND; sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
else if (sc->sc_config.cabqReadytime > HAL_READY_TIME_HI_BOUND) else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
sc->sc_config.cabqReadytime = HAL_READY_TIME_HI_BOUND; sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf); ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
qi.tqi_readyTime = qi.tqi_readyTime =
@ -2422,16 +2423,16 @@ int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb)
void ath_tx_tasklet(struct ath_softc *sc) void ath_tx_tasklet(struct ath_softc *sc)
{ {
u_int64_t tsf = ath9k_hw_gettsf64(sc->sc_ah); u64 tsf = ath9k_hw_gettsf64(sc->sc_ah);
int i, nacked = 0; int i, nacked = 0;
u_int32_t qcumask = ((1 << HAL_NUM_TX_QUEUES) - 1); u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
/* /*
* Process each active queue. * Process each active queue.
*/ */
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
nacked += ath_tx_processq(sc, &sc->sc_txq[i]); nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
} }
@ -2516,12 +2517,12 @@ void ath_draintxq(struct ath_softc *sc, bool retry_tx)
ath_drain_txdataq(sc, retry_tx); ath_drain_txdataq(sc, retry_tx);
} }
u_int32_t ath_txq_depth(struct ath_softc *sc, int qnum) u32 ath_txq_depth(struct ath_softc *sc, int qnum)
{ {
return sc->sc_txq[qnum].axq_depth; return sc->sc_txq[qnum].axq_depth;
} }
u_int32_t ath_txq_aggr_depth(struct ath_softc *sc, int qnum) u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
{ {
return sc->sc_txq[qnum].axq_aggr_depth; return sc->sc_txq[qnum].axq_aggr_depth;
} }
@ -2620,7 +2621,7 @@ int ath_tx_aggr_stop(struct ath_softc *sc,
*/ */
void ath_tx_aggr_teardown(struct ath_softc *sc, void ath_tx_aggr_teardown(struct ath_softc *sc,
struct ath_node *an, u_int8_t tid) struct ath_node *an, u8 tid)
{ {
struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum]; struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
@ -2784,19 +2785,19 @@ void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
switch (acno) { switch (acno) {
case WME_AC_BE: case WME_AC_BE:
ac->qnum = ath_tx_get_qnum(sc, ac->qnum = ath_tx_get_qnum(sc,
HAL_TX_QUEUE_DATA, HAL_WME_AC_BE); ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
break; break;
case WME_AC_BK: case WME_AC_BK:
ac->qnum = ath_tx_get_qnum(sc, ac->qnum = ath_tx_get_qnum(sc,
HAL_TX_QUEUE_DATA, HAL_WME_AC_BK); ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
break; break;
case WME_AC_VI: case WME_AC_VI:
ac->qnum = ath_tx_get_qnum(sc, ac->qnum = ath_tx_get_qnum(sc,
HAL_TX_QUEUE_DATA, HAL_WME_AC_VI); ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
break; break;
case WME_AC_VO: case WME_AC_VO:
ac->qnum = ath_tx_get_qnum(sc, ac->qnum = ath_tx_get_qnum(sc,
HAL_TX_QUEUE_DATA, HAL_WME_AC_VO); ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
break; break;
} }
} }
@ -2812,7 +2813,7 @@ void ath_tx_node_cleanup(struct ath_softc *sc,
struct ath_atx_ac *ac, *ac_tmp; struct ath_atx_ac *ac, *ac_tmp;
struct ath_atx_tid *tid, *tid_tmp; struct ath_atx_tid *tid, *tid_tmp;
struct ath_txq *txq; struct ath_txq *txq;
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) { if (ATH_TXQ_SETUP(sc, i)) {
txq = &sc->sc_txq[i]; txq = &sc->sc_txq[i];