69 lines
2.3 KiB
Plaintext
Raw Normal View History

#!/bin/sh
#
# Copyright (C) 2015 OpenWrt.org
#
. /lib/functions/uci-defaults.sh
board_config_update
board=$(board_name)
boardname="${board##*,}"
case "$board" in
alfa-network,ap120c-ac)
ucidef_set_led_netdev "wan" "WAN" "${boardname}:amber:wan" "eth1"
;;
ipq40xx: add support for ASUS RT-AC58U/RT-ACRH13 This patch adds support for ASUS RT-AC58U/RT-ACRH13. hardware highlights: SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 128 MiB DDR3L-1066 @ 537 MHz (1074?) NT5CC64M16GP-DI NOR: 2 MiB Macronix MX25L1606E (for boot, QSEE) NAND: 128 MiB Winbond W25NO1GVZE1G (cal + kernel + root, UBI) ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN) USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC) WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: one Reset and one WPS button LEDS: Status, WAN, WIFI1/2, USB and LAN (one blue LED for each) Serial: WARNING: The serial port needs a TTL/RS-232 3V3 level converter! The Serial setting is 115200-8-N-1. The board has an unpopulated 1x4 0.1" header. The pinout (VDD, RX, GND, TX) is printed on the PCB right next to the connector. U-Boot Note: The ethernet driver isn't always reliable and can sometime time out... Don't worry, just retry. Access via the serial console is required. As well as a working TFTP-server setup and the initramfs image. (If not provided, it has to be built from the OpenWrt source. Make sure to enable LZMA as the compression for the INITRAMFS!) To install the image permanently, you have to do the following steps in the listed order. 1. Open up the router. There are four phillips screws hiding behind the four plastic feets on the underside. 2. Connect the serial cable (See notes above) 3. Connect your router via one of the four LAN-ports (yellow) to a PC which can set the IP-Address and ssh and scp from. If possible set your PC's IPv4 Address to 192.168.1.70 (As this is the IP-Address the Router's bootloader expects for the tftp server) 4. power up the router and enter the u-boot choose option 1 to upload the initramfs image. And follow through the ipv4 setup. Wait for your router's status LED to stop blinking rapidly and glow just blue. (The LAN LED should also be glowing blue). 3. Connect to the OpenWrt running in RAM The default IPv4-Address of your router will be 192.168.1.1. 1. Copy over the openwrt-sysupgrade.bin image to your router's temporary directory # scp openwrt-sysupgrade.bin root@192.168.1.1:/tmp 2. ssh from your PC into your router as root. # ssh root@192.168.1.1 The default OpenWrt-Image won't ask for a password. Simply hit the Enter-Key. Once connected...: run the following commands on your temporary installation 3. delete the "jffs2" ubi partition to make room for your new root partition # ubirmvol /dev/ubi0 --name=jffs2 4. install OpenWrt on the NAND Flash. # sysupgrade -v /tmp/openwrt-sysupgrade.bin - This will will automatically reboot the router - Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2018-03-07 09:13:10 +01:00
asus,rt-ac58u)
ucidef_set_led_wlan "wlan2g" "WLAN2G" "${boardname}:blue:wlan2G" "phy0tpt"
ucidef_set_led_wlan "wlan5g" "WLAN5G" "${boardname}:blue:wlan5G" "phy1tpt"
ucidef_set_led_netdev "wan" "WAN" "${boardname}:blue:wan" "eth1"
ucidef_set_led_switch "lan" "LAN" "${boardname}:blue:lan" "switch0" "0x1e"
;;
avm,fritzbox-4040)
ucidef_set_led_wlan "wlan" "WLAN" "fritz4040:green:wlan" "phy0tpt" "phy1tpt"
ucidef_set_led_netdev "wan" "WAN" "fritz4040:green:wan" "eth1"
ucidef_set_led_switch "lan" "LAN" "fritz4040:green:lan" "switch0" "0x1e"
;;
ipq40xx: add support for FritzBox 7530 Hardware -------- CPU: Qualcomm IPQ4019 RAM: 256M FLASH: 128M NAND ETH: QCA8075 VDSL: Intel/Lantiq VRX518 PCIe attached currently not supported DECT: Dialog SC14448 currently not supported WiFi2: IPQ4019 2T2R 2SS b/g/n WiFi5: IPQ4019 2T2R 2SS n/ac LED: - Power/DSL green - WLAN green - FON/DECT green - Connect/WPS green - Info green - Info red BTN: - WLAN - FON - WPS/Connect UART: 115200n8 3.3V (located under the Dialog chip) VCC - RX - TX - GND (Square is VCC) Installation ------------ 1. Grab the uboot for the Device from the 'u-boot-fritz7530' subdirectory. Place it in the same directory as the 'eva_ramboot.py' script. It is located in the 'scripts/flashing' subdirectory of the OpenWRT tree. 2. Assign yourself the IP address 192.168.178.10/24. Connect your Computer to one of the boxes LAN ports. 3. Connect Power to the Box. As soon as the LAN port of your computer shows link, load the U-Boot to the box using following command. > ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz7530.bin 4. The U-Boot will now start. Now assign yourself the IP address 192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP server root directory and rename it to 'FRITZ7530.bin'. 5. The Box will now boot OpenWRT from RAM. This can take up to two minutes. 6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using scp. SSH into the Box and first write the Bootloader to both previous kernel partitions. > mtd write /path/to/uboot-fritz7530.bin uboot0 > mtd write /path/to/uboot-fritz7530.bin uboot1 7. Remove the AVM filesystem partitions to make room for our kernel + rootfs + overlayfs. > ubirmvol /dev/ubi0 --name=avm_filesys_0 > ubirmvol /dev/ubi0 --name=avm_filesys_1 8. Flash OpenWRT peristently using sysupgrade. > sysupgrade -n /path/to/openwrt-sysupgrade.bin Signed-off-by: David Bauer <mail@david-bauer.net> [removed pcie-dts range node, refreshed on top of AP120-AC/E2600AC] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-02-18 23:58:34 +01:00
avm,fritzbox-7530 |\
glinet,gl-b1300)
ucidef_set_led_wlan "wlan" "WLAN" "${boardname}:green:wlan" "phy0tpt"
;;
ipq40xx: add support for EnGenius EAP1300 SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB NOR: 32 MiB ETH: Qualcomm Atheros QCA8072 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET Button LEDS: Power, LAN, MESH, WLAN 2.4GHz, WLAN 5GHz 1. Load Ramdisk via U-Boot To set up the flash memory environment, do the following: a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters: * 115200bps * 8N1 b. Confirm that the PC is connected to the board using one of the Ethernet ports. Set a static ip 192.168.99.8 for Ethernet that connects to board. The PC must have a TFTP server launched and listening on the interface to which the board is connected. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown. U-BOOT> set serverip 192.168.99.8 && set ipaddr 192.168.99.9 && tftpboot 0x84000000 openwrt.itb && bootm 2. Load image via GUI a. Upgrade EAP1300 to FW v3.5.3.2 In the GUI, System Manager > Firmware > Firmware Upgrade, to do upgrade. b. Transfer to OpenWrt from EnGenius. In Firmware Upgrade page, to upgrade yours openwrt-ipq40xx-engenius_eap1300-squashfs-sysupgrade.bin. 3. Revert to EnGenius EAP1300 To flash openwrt-ipq40xx-engenius_eap1300-squashfs-factory.bin by using sysupgrade command and "DO NOT" keep configuration. $ sysupgrade –n openwrt-ipq40xx-engenius_eap1300-squashfs-factory.bin Signed-off-by: Steven Lin <steven.lin@senao.com>
2018-10-19 16:55:08 +08:00
engenius,eap1300)
ucidef_set_led_netdev "lan" "LAN" "${boardname}:blue:lan" "eth0"
ucidef_set_led_wlan "wlan2g" "WLAN2G" "${boardname}:blue:wlan2g" "phy0tpt"
ucidef_set_led_wlan "wlan5g" "WLAN5G" "${boardname}:yellow:wlan5g" "phy1tpt"
ucidef_set_led_default "mesh" "MESH" "${boardname}:blue:mesh" "0"
;;
ipq40xx: add support for EnGenius ENS620EXT Hardware -------- CPU: Qualcomm IPQ4018 RAM: 256M FLASH: 32M SPI NOR W25Q256 ETH: QCA8075 WiFi2: IPQ4018 2T2R 2SS b/g/n WiFi5: IPQ4018 2T2R 2SS n/ac LED: - Power amber - LAN1(PoE) green - LAN2 green - Wi-Fi 2.4GHz green - Wi-Fi 5GHz green BTN: - WPS UART: 115200n8 3.3V J1 VCC(1) - GND(2) - TX(3) - RX(4) Added basic support to get the device up and running for a sysupgrade image only. There is currently no way back to factory firmware, so this is a one-way street to OpenWRT. Install from factory condition is convoluted, and may brick your device: 1) Enable SSH and disable the CLI on the factory device from the web user interface (Management->Advanced) 2) Reboot the device 3) Override the default, limited SSH shell: a) Get into the ssh shell: ssh admin@192.168.1.1 /bin/sh --login b) Change the dropbear script to disable the limited shell. At the empty command prompt type: sed -i '/login_ssh/s/^/#/g’ dropbear /etc/init.d/dropbear restart exit 4) ssh in to a (now-) normal OpenWRT SSH session 5) Flash your built image a) scp openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin admin@192.168.1.1:/tmp/ b) ssh admin@192.168.1.1 c) sysupgrade -n /tmp/openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin 6) After flash completes (it may say "Upgrade failed" followed by "Upgrade completed") and device reboots, log in to newly flashed system. Note you will now need to ssh as root rather than admin. Signed-off-by: Steve Glennon <s.glennon@cablelabs.com> [whitespace fixes, reordered partitions, removed rng node from 4.14, fixed 901-arm-boot-add-dts-files.patch] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-02-27 15:48:23 -07:00
engenius,ens620ext)
ucidef_set_led_wlan "wlan2g" "WLAN2G" "${boardname}:green:wlan2G" "phy0tpt"
ucidef_set_led_wlan "wlan5g" "WLAN5G" "${boardname}:green:wlan5G" "phy1tpt"
ucidef_set_led_netdev "lan1" "LAN1" "${boardname}:green:lan1" "eth0"
ucidef_set_led_netdev "lan2" "LAN2" "${boardname}:green:lan2" "eth1"
;;
ipq40xx: add support for Netgear EX6100v2/EX6150v2 Specifications: SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core RAM: 256 MB Winbond W632GU6KB12J FLASH: 16 MiB Macronix MX25L12805D ETH: Qualcomm QCA8072 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n/ac 2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac 1x1 (EX6100) 2x2 (EX6150) INPUT: Power, WPS, reset button AP / Range-extender toggle LED: Power, Router, Extender (dual), WPS, Left-/Right-arrow SERIAL: Header next to QCA8072 chip. VCC, TX, RX, GND (Square hole is VCC) WARNING: The serial port needs a TTL/RS-232 v3.3 level converter! The Serial setting is 115200-8-N-1. Tested and working: - Ethernet - 2.4 GHz WiFi (Correct MAC-address) - 5 GHz WiFi (Correct MAC-address) - Factory installation from WebIF - Factory installation from tftp - OpenWRT sysupgrade (Preserving and non-preserving) - LEDs - Buttons Not Working: - AP/Extender toggle-switch Untested: - Support on EX6100v2. They share the same GPL-Code and vendor-images. The 6100v2 seems to lack one 5GHz stream and differs in the 5GHz board-blob. I only own a EX6150v2, therefore i am only able to verify functionality on this device. Install via Web-Interface: Upload the factory image to the device to the Netgear Web-Interface. The device might asks you to confirm the update a second time due to detecting the OpenWRT firmware as older. The device will automatically reboot after the image is written to flash. Install via TFTP: Connect to the devices serial. Hit Enter-Key in bootloader to stop autobooting. Command "fw_recovery" will start a tftp server, waiting for a DNI image to be pushed. Assign your computer the IP-address 192.168.1.10/24. Push image with tftp -4 -v -m binary 192.168.1.1 -c put <OPENWRT_FACTORY> Device will erase factory-partition first, then writes the pushed image to flash and reboots. Parts of this commit are based on Thomas Hebb's work on the openwrt-devel mailinglist. See https://lists.openwrt.org/pipermail/openwrt-devel/2018-January/043418.html Signed-off-by: David Bauer <mail@david-bauer.net>
2018-03-29 00:32:38 +02:00
netgear,ex6100v2 |\
netgear,ex6150v2)
ucidef_set_led_wlan "wlan2g" "WLAN2G" "ex61x0v2:green:router" "phy0tpt"
ucidef_set_led_wlan "wlan5g" "WLAN5G" "ex61x0v2:green:client" "phy1tpt"
;;
ipq40xx: add support for Qxwlan E2600AC C1 and C2 Qxwlan E2600AC C1 based on IPQ4019 Specifications: SOC: Qualcomm IPQ4019 DRAM: 256 MiB FLASH: 32 MiB Winbond W25Q256 ETH: Qualcomm QCA8075 WLAN: 5G + 5G/2.4G * 2T2R 2.4/5 GHz - QCA4019 hw1.0 (SoC) * 2T2R 5 GHz - QCA4019 hw1.0 (SoC) INPUT: Reset buutton LED: 1x Power ,6 driven by gpio SERIAL: UART (J5) UUSB: USB3.0 POWER: 1x DC jack for main power input (9-24 V) SLOT: Pcie (J25), sim card (J11), SD card (J51) Flash instruction (using U-Boot CLI and tftp server): - Configure PC with static IP 192.168.1.10 and tftp server. - Rename "sysupgrade" filename to "firmware.bin" and place it in tftp server directory. - Connect PC with one of RJ45 ports, power up the board and press "enter" key to access U-Boot CLI. - Use the following command to update the device to OpenWrt: "run lfw". Flash instruction (using U-Boot web-based recovery): - Configure PC with static IP 192.168.1.xxx(2-254)/24. - Connect PC with one of RJ45 ports, press the reset button, power up the board and keep button pressed for around 6-7 seconds, until LEDs start flashing. - Open your browser and enter 192.168.1.1, select "sysupgrade" image and click the upgrade button. Qxwlan E2600AC C2 based on IPQ4019 Specifications: SOC: Qualcomm IPQ4019 DRAM: 256 MiB NOR: 16 MiB Winbond W25Q128 NAND: 128MiB Micron MT29F1G08ABAEAWP ETH: Qualcomm QCA8075 WLAN: 5G + 5G/2.4G * 2T2R 2.4/5 GHz - QCA4019 hw1.0 (SoC) * 2T2R 5 GHz - QCA4019 hw1.0 (SoC) INPUT: Reset buutton LED: 1x Power, 6 driven by gpio SERIAL: UART (J5) USB: USB3.0 POWER: 1x DC jack for main power input (9-24 V) SLOT: Pcie (J25), sim card (J11), SD card (J51) Flash instruction (using U-Boot CLI and tftp server): - Configure PC with static IP 192.168.1.10 and tftp server. - Rename "ubi" filename to "ubi-firmware.bin" and place it in tftp server directory. - Connect PC with one of RJ45 ports, power up the board and press "enter" key to access U-Boot CLI. - Use the following command to update the device to OpenWrt: "run lfw". Flash instruction (using U-Boot web-based recovery): - Configure PC with static IP 192.168.1.xxx(2-254)/24. - Connect PC with one of RJ45 ports, press the reset button, power up the board and keep button pressed for around 6-7 seconds, until LEDs start flashing. - Open your browser and enter 192.168.1.1, select "ubi" image and click the upgrade button. Signed-off-by: 张鹏 <sd20@qxwlan.com> [ added rng node. whitespace fixes, ported 02_network, ipq-wifi Makefile, misc dts fixes, trivial message changes ] Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-01-21 13:28:32 +08:00
qxwlan,e2600ac-c1 |\
qxwlan,e2600ac-c2)
ucidef_set_led_wlan "wlan2g" "WLAN0" "e2600ac:green:wlan0" "phy0tpt"
ucidef_set_led_wlan "wlan5g" "WLAN1" "e2600ac:green:wlan1" "phy1tpt"
;;
ipq40xx: add support for the ZyXEL NBG6617 This patch adds support for ZyXEL NBG6617 Hardware highlights: SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz NOR: 32 MiB Macronix MX25L25635F ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN) USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC) WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS Serial: WARNING: The serial port needs a TTL/RS-232 3.3v level converter! The Serial setting is 115200-8-N-1. The 1x4 .1" header comes pre-soldered. Pinout: 1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX first install / debricking / restore stock: 0. Have a PC running a tftp-server @ 192.168.1.99/24 1. connect the PC to any LAN-Ports 2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file into the tftp-server root directory and rename it to just "ras.bin". 3. power-cycle the router and hold down the the WPS button (for 30sek) 4. Wait (for a long time - the serial console provides some progress reports. The u-boot says it best: "Please be patient". 5. Once the power LED starts to flashes slowly and the USB + WPS LEDs flashes fast at the same time. You have to reboot the device and it should then come right up. Installation via Web-UI: 0. Connect a PC to the powered-on router. It will assign your PC a IP-address via DHCP 1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234) 2. Go to the "Expert Mode" 3. Under "Maintenance", select "Firmware-Upgrade" 4. Upload the OpenWRT factory image 5. Wait for the Device to finish. It will reboot into OpenWRT without any additional actions needed. To open the ZyXEL NBG6617: 0. remove the four rubber feet glued on the backside 1. remove the four philips screws and pry open the top cover (by applying force between the plastic top housing from the backside/lan-port side) Access the real u-boot shell: ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02" When the device is starting up, the user can enter the the loader shell by simply pressing a key within the 3 seconds once the following string appears on the serial console: | Hit any key to stop autoboot: 3 The user is then dropped to a locked shell. |NBG6617> HELP |ATEN x[,y] set BootExtension Debug Flag (y=password) |ATSE x show the seed of password generator |ATSH dump manufacturer related data in ROM |ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations) |ATGO boot up whole system |ATUR x upgrade RAS image (filename) |NBG6617> In order to escape/unlock a password challenge has to be passed. Note: the value is dynamic! you have to calculate your own! First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env) to get the challange value/seed. |NBG6617> ATSE NBG6617 |012345678901 This seed/value can be converted to the password with the help of this bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors): - tool.sh - ror32() { echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) )) } v="0x$1" a="0x${v:2:6}" b=$(( $a + 0x10F0A563)) c=$(( 0x${v:12:14} & 7 )) p=$(( $(ror32 $b $c) ^ $a )) printf "ATEN 1,%X\n" $p - end of tool.sh - |# bash ./tool.sh 012345678901 | |ATEN 1,879C711 copy and paste the result into the shell to unlock zloader. |NBG6617> ATEN 1,0046B0017430 If the entered code was correct the shell will change to use the ATGU command to enter the real u-boot shell. |NBG6617> ATGU |NBG6617# Co-authored-by: David Bauer <mail@david-bauer.net> Signed-off-by: Christian Lamparter <chunkeey@googlemail.com> Signed-off-by: David Bauer <mail@david-bauer.net>
2018-06-21 14:24:59 +02:00
zyxel,nbg6617)
ucidef_set_led_wlan "wlan2g" "WLAN2G" "${boardname}:green:wlan2G" "phy0tpt"
ucidef_set_led_wlan "wlan5g" "WLAN5G" "${boardname}:green:wlan5G" "phy1tpt"
ipq40xx: add support for the ZyXEL NBG6617 This patch adds support for ZyXEL NBG6617 Hardware highlights: SOC: IPQ4018 / QCA Dakota CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7 DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz NOR: 32 MiB Macronix MX25L25635F ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN) USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC) WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2 INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS Serial: WARNING: The serial port needs a TTL/RS-232 3.3v level converter! The Serial setting is 115200-8-N-1. The 1x4 .1" header comes pre-soldered. Pinout: 1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX first install / debricking / restore stock: 0. Have a PC running a tftp-server @ 192.168.1.99/24 1. connect the PC to any LAN-Ports 2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file into the tftp-server root directory and rename it to just "ras.bin". 3. power-cycle the router and hold down the the WPS button (for 30sek) 4. Wait (for a long time - the serial console provides some progress reports. The u-boot says it best: "Please be patient". 5. Once the power LED starts to flashes slowly and the USB + WPS LEDs flashes fast at the same time. You have to reboot the device and it should then come right up. Installation via Web-UI: 0. Connect a PC to the powered-on router. It will assign your PC a IP-address via DHCP 1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234) 2. Go to the "Expert Mode" 3. Under "Maintenance", select "Firmware-Upgrade" 4. Upload the OpenWRT factory image 5. Wait for the Device to finish. It will reboot into OpenWRT without any additional actions needed. To open the ZyXEL NBG6617: 0. remove the four rubber feet glued on the backside 1. remove the four philips screws and pry open the top cover (by applying force between the plastic top housing from the backside/lan-port side) Access the real u-boot shell: ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02" When the device is starting up, the user can enter the the loader shell by simply pressing a key within the 3 seconds once the following string appears on the serial console: | Hit any key to stop autoboot: 3 The user is then dropped to a locked shell. |NBG6617> HELP |ATEN x[,y] set BootExtension Debug Flag (y=password) |ATSE x show the seed of password generator |ATSH dump manufacturer related data in ROM |ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations) |ATGO boot up whole system |ATUR x upgrade RAS image (filename) |NBG6617> In order to escape/unlock a password challenge has to be passed. Note: the value is dynamic! you have to calculate your own! First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env) to get the challange value/seed. |NBG6617> ATSE NBG6617 |012345678901 This seed/value can be converted to the password with the help of this bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors): - tool.sh - ror32() { echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) )) } v="0x$1" a="0x${v:2:6}" b=$(( $a + 0x10F0A563)) c=$(( 0x${v:12:14} & 7 )) p=$(( $(ror32 $b $c) ^ $a )) printf "ATEN 1,%X\n" $p - end of tool.sh - |# bash ./tool.sh 012345678901 | |ATEN 1,879C711 copy and paste the result into the shell to unlock zloader. |NBG6617> ATEN 1,0046B0017430 If the entered code was correct the shell will change to use the ATGU command to enter the real u-boot shell. |NBG6617> ATGU |NBG6617# Co-authored-by: David Bauer <mail@david-bauer.net> Signed-off-by: Christian Lamparter <chunkeey@googlemail.com> Signed-off-by: David Bauer <mail@david-bauer.net>
2018-06-21 14:24:59 +02:00
;;
ipq40xx: add support for ZyXEL WRE6606 Specifications: SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core RAM: 128 MB Nanya NT5CC64M16GP-DI FLASH: 16 MiB Macronix MX25L12845EMI-12G ETH: Qualcomm QCA8072 WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2 WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2 INPUT: WPS, Mode-toggle-switch LED: Power, WLAN 2.4GHz, WLAN 5GHz, LAN, WPS (LAN not controllable by software) (WLAN each green / red) SERIAL: Header next to eth-phy. VCC, TX, GND, RX (Square hole is VCC) The Serial setting is 115200-8-N-1. Tested and working: - Ethernet (Correct MAC-address) - 2.4 GHz WiFi (Correct MAC-address) - 5 GHz WiFi (Correct MAC-address) - Factory installation from tftp - OpenWRT sysupgrade - LEDs - WPS Button Not Working: - Mode-toggle-switch Install via TFTP: Connect to the devices serial. Hit Enter-Key in bootloader to stop autobooting. Command `tftpboot` will pull an initramfs image named `C0A86302.img` from a tftp server at `192.168.99.08/24`. After successfull transfer, boot the image with `bootm`. To persistently write the firmware, flash an openwrt sysupgrade image from inside the initramfs, for example transfer via `scp <sysupgrade> root@192.168.1.1:/tmp` and flash on the device with `sysupgrade -n /tmp/<sysupgrade>`. append-cmdline patch taken from chunkeeys work on the NBG6617. Signed-off-by: Magnus Frühling <skorpy@frankfurt.ccc.de> Co-authored-by: David Bauer <mail@david-bauer.net> Co-authored-by: Christian Lamparter <chunkeey@googlemail.com>
2018-06-11 23:10:43 +02:00
zyxel,wre6606)
ucidef_set_led_wlan "wlan2g" "WLAN2G" "${boardname}:green:wlan2g" "phy0tpt"
ucidef_set_led_wlan "wlan5g" "WLAN5G" "${boardname}:green:wlan5g" "phy1tpt"
;;
*)
;;
esac
board_config_flush
exit 0