openwrt/target/linux/ar7/files/drivers/net/cpmac.c

1151 lines
30 KiB
C
Raw Normal View History

/*
* Copyright (C) 2006, 2007 OpenWrt.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/version.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <asm/gpio.h>
MODULE_AUTHOR("Eugene Konev");
MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
MODULE_LICENSE("GPL");
static int disable_napi;
static int debug_level = 8;
static int dumb_switch;
module_param(disable_napi, int, 0644);
/* Next 2 are only used in cpmac_probe, so it's pointless to change them */
module_param(debug_level, int, 0444);
module_param(dumb_switch, int, 0444);
MODULE_PARM_DESC(disable_napi, "Disable NAPI polling");
MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
/* stolen from net/ieee80211.h */
#ifndef MAC_FMT
#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
#define MAC_ARG(x) ((u8*)(x))[0], ((u8*)(x))[1], ((u8*)(x))[2], \
((u8*)(x))[3], ((u8*)(x))[4], ((u8*)(x))[5]
#endif
/* frame size + 802.1q tag */
#define CPMAC_SKB_SIZE (ETH_FRAME_LEN + 4)
#define CPMAC_TX_RING_SIZE 8
/* Ethernet registers */
#define CPMAC_TX_CONTROL 0x0004
#define CPMAC_TX_TEARDOWN 0x0008
#define CPMAC_RX_CONTROL 0x0014
#define CPMAC_RX_TEARDOWN 0x0018
#define CPMAC_MBP 0x0100
# define MBP_RXPASSCRC 0x40000000
# define MBP_RXQOS 0x20000000
# define MBP_RXNOCHAIN 0x10000000
# define MBP_RXCMF 0x01000000
# define MBP_RXSHORT 0x00800000
# define MBP_RXCEF 0x00400000
# define MBP_RXPROMISC 0x00200000
# define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
# define MBP_RXBCAST 0x00002000
# define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
# define MBP_RXMCAST 0x00000020
# define MBP_MCASTCHAN(channel) ((channel) & 0x7)
#define CPMAC_UNICAST_ENABLE 0x0104
#define CPMAC_UNICAST_CLEAR 0x0108
#define CPMAC_MAX_LENGTH 0x010c
#define CPMAC_BUFFER_OFFSET 0x0110
#define CPMAC_MAC_CONTROL 0x0160
# define MAC_TXPTYPE 0x00000200
# define MAC_TXPACE 0x00000040
# define MAC_MII 0x00000020
# define MAC_TXFLOW 0x00000010
# define MAC_RXFLOW 0x00000008
# define MAC_MTEST 0x00000004
# define MAC_LOOPBACK 0x00000002
# define MAC_FDX 0x00000001
#define CPMAC_MAC_STATUS 0x0164
# define MAC_STATUS_QOS 0x00000004
# define MAC_STATUS_RXFLOW 0x00000002
# define MAC_STATUS_TXFLOW 0x00000001
#define CPMAC_TX_INT_ENABLE 0x0178
#define CPMAC_TX_INT_CLEAR 0x017c
#define CPMAC_MAC_INT_VECTOR 0x0180
# define MAC_INT_STATUS 0x00080000
# define MAC_INT_HOST 0x00040000
# define MAC_INT_RX 0x00020000
# define MAC_INT_TX 0x00010000
#define CPMAC_MAC_EOI_VECTOR 0x0184
#define CPMAC_RX_INT_ENABLE 0x0198
#define CPMAC_RX_INT_CLEAR 0x019c
#define CPMAC_MAC_INT_ENABLE 0x01a8
#define CPMAC_MAC_INT_CLEAR 0x01ac
#define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
#define CPMAC_MAC_ADDR_MID 0x01d0
#define CPMAC_MAC_ADDR_HI 0x01d4
#define CPMAC_MAC_HASH_LO 0x01d8
#define CPMAC_MAC_HASH_HI 0x01dc
#define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
#define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
#define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
#define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
#define CPMAC_REG_END 0x0680
/*
* Rx/Tx statistics
* TODO: use some of them to fill stats in cpmac_stats()
*/
#define CPMAC_STATS_RX_GOOD 0x0200
#define CPMAC_STATS_RX_BCAST 0x0204
#define CPMAC_STATS_RX_MCAST 0x0208
#define CPMAC_STATS_RX_PAUSE 0x020c
#define CPMAC_STATS_RX_CRC 0x0210
#define CPMAC_STATS_RX_ALIGN 0x0214
#define CPMAC_STATS_RX_OVER 0x0218
#define CPMAC_STATS_RX_JABBER 0x021c
#define CPMAC_STATS_RX_UNDER 0x0220
#define CPMAC_STATS_RX_FRAG 0x0224
#define CPMAC_STATS_RX_FILTER 0x0228
#define CPMAC_STATS_RX_QOSFILTER 0x022c
#define CPMAC_STATS_RX_OCTETS 0x0230
#define CPMAC_STATS_TX_GOOD 0x0234
#define CPMAC_STATS_TX_BCAST 0x0238
#define CPMAC_STATS_TX_MCAST 0x023c
#define CPMAC_STATS_TX_PAUSE 0x0240
#define CPMAC_STATS_TX_DEFER 0x0244
#define CPMAC_STATS_TX_COLLISION 0x0248
#define CPMAC_STATS_TX_SINGLECOLL 0x024c
#define CPMAC_STATS_TX_MULTICOLL 0x0250
#define CPMAC_STATS_TX_EXCESSCOLL 0x0254
#define CPMAC_STATS_TX_LATECOLL 0x0258
#define CPMAC_STATS_TX_UNDERRUN 0x025c
#define CPMAC_STATS_TX_CARRIERSENSE 0x0260
#define CPMAC_STATS_TX_OCTETS 0x0264
#define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
#define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
(reg)))
/* MDIO bus */
#define CPMAC_MDIO_VERSION 0x0000
#define CPMAC_MDIO_CONTROL 0x0004
# define MDIOC_IDLE 0x80000000
# define MDIOC_ENABLE 0x40000000
# define MDIOC_PREAMBLE 0x00100000
# define MDIOC_FAULT 0x00080000
# define MDIOC_FAULTDETECT 0x00040000
# define MDIOC_INTTEST 0x00020000
# define MDIOC_CLKDIV(div) ((div) & 0xff)
#define CPMAC_MDIO_ALIVE 0x0008
#define CPMAC_MDIO_LINK 0x000c
#define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
# define MDIO_BUSY 0x80000000
# define MDIO_WRITE 0x40000000
# define MDIO_REG(reg) (((reg) & 0x1f) << 21)
# define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
# define MDIO_DATA(data) ((data) & 0xffff)
#define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
# define PHYSEL_LINKSEL 0x00000040
# define PHYSEL_LINKINT 0x00000020
struct cpmac_desc {
u32 hw_next;
u32 hw_data;
u16 buflen;
u16 bufflags;
u16 datalen;
u16 dataflags;
#define CPMAC_SOP 0x8000
#define CPMAC_EOP 0x4000
#define CPMAC_OWN 0x2000
#define CPMAC_EOQ 0x1000
struct sk_buff *skb;
struct cpmac_desc *next;
dma_addr_t mapping;
dma_addr_t data_mapping;
};
struct cpmac_priv {
spinlock_t lock;
struct cpmac_desc *rx_head;
int tx_head, tx_tail;
int ring_size;
struct cpmac_desc *desc_ring;
dma_addr_t dma_ring;
void __iomem *regs;
struct mii_bus *mii_bus;
struct phy_device *phy;
char phy_name[BUS_ID_SIZE];
int oldlink, oldspeed, oldduplex;
u32 msg_enable;
struct platform_device *pdev;
};
static irqreturn_t cpmac_irq(int, void *);
static void cpmac_reset(struct net_device *dev);
static void cpmac_hw_init(struct net_device *dev);
static int cpmac_stop(struct net_device *dev);
static int cpmac_open(struct net_device *dev);
static void cpmac_dump_regs(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
for (i = 0; i < CPMAC_REG_END; i += 4) {
if (i % 16 == 0) {
if (i)
printk("\n");
printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
priv->regs + i);
}
printk(" %08x", cpmac_read(priv->regs, i));
}
printk("\n");
}
static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
{
int i;
printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
for (i = 0; i < sizeof(*desc) / 4; i++)
printk(" %08x", ((u32 *)desc)[i]);
printk("\n");
}
static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
{
int i;
printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
for (i = 0; i < skb->len; i++) {
if (i % 16 == 0) {
if (i)
printk("\n");
printk(KERN_DEBUG "%s: data[%p]:", dev->name,
skb->data + i);
}
printk(" %02x", ((u8 *)skb->data)[i]);
}
printk("\n");
}
static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
{
u32 val;
while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
cpu_relax();
cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
MDIO_PHY(phy_id));
while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
cpu_relax();
return MDIO_DATA(val);
}
static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
int reg, u16 val)
{
while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
cpu_relax();
cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
return 0;
}
static int cpmac_mdio_reset(struct mii_bus *bus)
{
ar7_device_reset(AR7_RESET_BIT_MDIO);
cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
return 0;
}
static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
static struct mii_bus cpmac_mii = {
.name = "cpmac-mii",
.read = cpmac_mdio_read,
.write = cpmac_mdio_write,
.reset = cpmac_mdio_reset,
.irq = mii_irqs,
};
static int cpmac_config(struct net_device *dev, struct ifmap *map)
{
if (dev->flags & IFF_UP)
return -EBUSY;
/* Don't allow changing the I/O address */
if (map->base_addr != dev->base_addr)
return -EOPNOTSUPP;
/* ignore other fields */
return 0;
}
static void cpmac_set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *iter;
int i;
u8 tmp;
u32 mbp, bit, hash[2] = { 0, };
struct cpmac_priv *priv = netdev_priv(dev);
mbp = cpmac_read(priv->regs, CPMAC_MBP);
if (dev->flags & IFF_PROMISC) {
cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
MBP_RXPROMISC);
} else {
cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
if (dev->flags & IFF_ALLMULTI) {
/* enable all multicast mode */
cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
} else {
/*
* cpmac uses some strange mac address hashing
* (not crc32)
*/
for (i = 0, iter = dev->mc_list; i < dev->mc_count;
i++, iter = iter->next) {
bit = 0;
tmp = iter->dmi_addr[0];
bit ^= (tmp >> 2) ^ (tmp << 4);
tmp = iter->dmi_addr[1];
bit ^= (tmp >> 4) ^ (tmp << 2);
tmp = iter->dmi_addr[2];
bit ^= (tmp >> 6) ^ tmp;
tmp = iter->dmi_addr[3];
bit ^= (tmp >> 2) ^ (tmp << 4);
tmp = iter->dmi_addr[4];
bit ^= (tmp >> 4) ^ (tmp << 2);
tmp = iter->dmi_addr[5];
bit ^= (tmp >> 6) ^ tmp;
bit &= 0x3f;
hash[bit / 32] |= 1 << (bit % 32);
}
cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
}
}
}
static struct sk_buff *cpmac_rx_one(struct net_device *dev,
struct cpmac_priv *priv,
struct cpmac_desc *desc)
{
unsigned long flags;
struct sk_buff *skb, *result = NULL;
if (unlikely(netif_msg_hw(priv)))
cpmac_dump_desc(dev, desc);
cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
if (unlikely(!desc->datalen)) {
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: rx: spurious interrupt\n",
dev->name);
return NULL;
}
skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
spin_lock_irqsave(&priv->lock, flags);
if (likely(skb)) {
skb_reserve(skb, 2);
skb_put(desc->skb, desc->datalen);
desc->skb->protocol = eth_type_trans(desc->skb, dev);
desc->skb->ip_summed = CHECKSUM_NONE;
dev->stats.rx_packets++;
dev->stats.rx_bytes += desc->datalen;
result = desc->skb;
dma_unmap_single(&dev->dev, desc->data_mapping, CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
desc->skb = skb;
desc->data_mapping = dma_map_single(&dev->dev, skb->data,
CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
desc->hw_data = (u32)desc->data_mapping;
if (unlikely(netif_msg_pktdata(priv))) {
printk(KERN_DEBUG "%s: received packet:\n", dev->name);
cpmac_dump_skb(dev, result);
}
} else {
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING
"%s: low on skbs, dropping packet\n", dev->name);
dev->stats.rx_dropped++;
}
spin_unlock_irqrestore(&priv->lock, flags);
desc->buflen = CPMAC_SKB_SIZE;
desc->dataflags = CPMAC_OWN;
return result;
}
static void cpmac_rx(struct net_device *dev)
{
struct sk_buff *skb;
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
spin_lock(&priv->lock);
if (unlikely(!priv->rx_head)) {
spin_unlock(&priv->lock);
return;
}
desc = priv->rx_head;
while ((desc->dataflags & CPMAC_OWN) == 0) {
skb = cpmac_rx_one(dev, priv, desc);
if (likely(skb))
netif_rx(skb);
desc = desc->next;
}
priv->rx_head = desc;
cpmac_write(priv->regs, CPMAC_RX_PTR(0), (u32)desc->mapping);
spin_unlock(&priv->lock);
}
static int cpmac_poll(struct net_device *dev, int *budget)
{
struct sk_buff *skb;
struct cpmac_desc *desc;
int received = 0, quota = min(dev->quota, *budget);
struct cpmac_priv *priv = netdev_priv(dev);
if (unlikely(!priv->rx_head)) {
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: rx: polling, but no queue\n",
dev->name);
netif_rx_complete(dev);
return 0;
}
desc = priv->rx_head;
while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) {
skb = cpmac_rx_one(dev, priv, desc);
if (likely(skb)) {
netif_receive_skb(skb);
received++;
}
desc = desc->next;
}
priv->rx_head = desc;
*budget -= received;
dev->quota -= received;
if (unlikely(netif_msg_rx_status(priv)))
printk(KERN_DEBUG "%s: poll processed %d packets\n", dev->name,
received);
if (desc->dataflags & CPMAC_OWN) {
netif_rx_complete(dev);
cpmac_write(priv->regs, CPMAC_RX_PTR(0), (u32)desc->mapping);
cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
return 0;
}
return 1;
}
static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned long flags;
int channel, len;
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
if (unlikely(skb_padto(skb, ETH_ZLEN))) {
if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING"%s: tx: padding failed, dropping\n",
dev->name);
spin_lock_irqsave(&priv->lock, flags);
dev->stats.tx_dropped++;
spin_unlock_irqrestore(&priv->lock, flags);
return -ENOMEM;
}
len = max(skb->len, ETH_ZLEN);
spin_lock_irqsave(&priv->lock, flags);
channel = priv->tx_tail++;
priv->tx_tail %= CPMAC_TX_RING_SIZE;
if (priv->tx_tail == priv->tx_head)
netif_stop_queue(dev);
desc = &priv->desc_ring[channel];
if (desc->dataflags & CPMAC_OWN) {
if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: tx dma ring full, dropping\n",
dev->name);
dev->stats.tx_dropped++;
spin_unlock_irqrestore(&priv->lock, flags);
dev_kfree_skb_any(skb);
return -ENOMEM;
}
dev->trans_start = jiffies;
spin_unlock_irqrestore(&priv->lock, flags);
desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
desc->skb = skb;
desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
DMA_TO_DEVICE);
desc->hw_data = (u32)desc->data_mapping;
desc->datalen = len;
desc->buflen = len;
if (unlikely(netif_msg_tx_queued(priv)))
printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
skb->len);
if (unlikely(netif_msg_hw(priv)))
cpmac_dump_desc(dev, desc);
if (unlikely(netif_msg_pktdata(priv)))
cpmac_dump_skb(dev, skb);
cpmac_write(priv->regs, CPMAC_TX_PTR(channel), (u32)desc->mapping);
return 0;
}
static void cpmac_end_xmit(struct net_device *dev, int channel)
{
struct cpmac_desc *desc;
struct cpmac_priv *priv = netdev_priv(dev);
spin_lock(&priv->lock);
desc = &priv->desc_ring[channel];
cpmac_write(priv->regs, CPMAC_TX_ACK(channel), (u32)desc->mapping);
if (likely(desc->skb)) {
dev->stats.tx_packets++;
dev->stats.tx_bytes += desc->skb->len;
dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
DMA_TO_DEVICE);
if (unlikely(netif_msg_tx_done(priv)))
printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
desc->skb, desc->skb->len);
dev_kfree_skb_irq(desc->skb);
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
} else
if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING
"%s: end_xmit: spurious interrupt\n", dev->name);
spin_unlock(&priv->lock);
}
static void cpmac_reset(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
ar7_device_reset(pdata->reset_bit);
cpmac_write(priv->regs, CPMAC_RX_CONTROL,
cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
cpmac_write(priv->regs, CPMAC_TX_CONTROL,
cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
for (i = 0; i < 8; i++) {
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
}
cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
}
static inline void cpmac_free_rx_ring(struct net_device *dev)
{
struct cpmac_desc *desc;
int i;
struct cpmac_priv *priv = netdev_priv(dev);
if (unlikely(!priv->rx_head))
return;
desc = priv->rx_head;
for (i = 0; i < priv->ring_size; i++) {
desc->buflen = CPMAC_SKB_SIZE;
if ((desc->dataflags & CPMAC_OWN) == 0) {
if (netif_msg_rx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: packet dropped\n",
dev->name);
if (unlikely(netif_msg_hw(priv)))
cpmac_dump_desc(dev, desc);
desc->dataflags = CPMAC_OWN;
dev->stats.rx_dropped++;
}
desc = desc->next;
}
}
static irqreturn_t cpmac_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct cpmac_priv *priv;
u32 status;
if (!dev)
return IRQ_NONE;
priv = netdev_priv(dev);
status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
if (unlikely(netif_msg_intr(priv)))
printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
status);
if (status & MAC_INT_TX)
cpmac_end_xmit(dev, (status & 7));
if (status & MAC_INT_RX) {
if (disable_napi)
cpmac_rx(dev);
else {
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1);
netif_rx_schedule(dev);
}
}
cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS))) {
if (netif_msg_drv(priv) && net_ratelimit())
printk(KERN_ERR "%s: hw error, resetting...\n",
dev->name);
if (unlikely(netif_msg_hw(priv)))
cpmac_dump_regs(dev);
spin_lock(&priv->lock);
phy_stop(priv->phy);
cpmac_reset(dev);
cpmac_free_rx_ring(dev);
cpmac_hw_init(dev);
spin_unlock(&priv->lock);
}
return IRQ_HANDLED;
}
static void cpmac_tx_timeout(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
struct cpmac_desc *desc;
dev->stats.tx_errors++;
desc = &priv->desc_ring[priv->tx_head++];
priv->tx_head %= 8;
if (netif_msg_tx_err(priv) && net_ratelimit())
printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
if (desc->skb)
dev_kfree_skb_any(desc->skb);
netif_wake_queue(dev);
}
static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (!(netif_running(dev)))
return -EINVAL;
if (!priv->phy)
return -EINVAL;
if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
(cmd == SIOCSMIIREG))
return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
return -EINVAL;
}
static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (priv->phy)
return phy_ethtool_gset(priv->phy, cmd);
return -EINVAL;
}
static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (priv->phy)
return phy_ethtool_sset(priv->phy, cmd);
return -EINVAL;
}
static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
{
struct cpmac_priv *priv = netdev_priv(dev);
ring->rx_max_pending = 1024;
ring->rx_mini_max_pending = 1;
ring->rx_jumbo_max_pending = 1;
ring->tx_max_pending = 1;
ring->rx_pending = priv->ring_size;
ring->rx_mini_pending = 1;
ring->rx_jumbo_pending = 1;
ring->tx_pending = 1;
}
static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
{
struct cpmac_priv *priv = netdev_priv(dev);
if (dev->flags && IFF_UP)
return -EBUSY;
priv->ring_size = ring->rx_pending;
return 0;
}
static void cpmac_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strcpy(info->driver, "cpmac");
strcpy(info->version, "0.0.3");
info->fw_version[0] = '\0';
sprintf(info->bus_info, "%s", "cpmac");
info->regdump_len = 0;
}
static const struct ethtool_ops cpmac_ethtool_ops = {
.get_settings = cpmac_get_settings,
.set_settings = cpmac_set_settings,
.get_drvinfo = cpmac_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_ringparam = cpmac_get_ringparam,
.set_ringparam = cpmac_set_ringparam,
};
static void cpmac_adjust_link(struct net_device *dev)
{
struct cpmac_priv *priv = netdev_priv(dev);
unsigned long flags;
int new_state = 0;
spin_lock_irqsave(&priv->lock, flags);
if (priv->phy->link) {
if (priv->phy->duplex != priv->oldduplex) {
new_state = 1;
priv->oldduplex = priv->phy->duplex;
}
if (priv->phy->speed != priv->oldspeed) {
new_state = 1;
priv->oldspeed = priv->phy->speed;
}
if (!priv->oldlink) {
new_state = 1;
priv->oldlink = 1;
netif_schedule(dev);
}
} else if (priv->oldlink) {
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (new_state && netif_msg_link(priv) && net_ratelimit())
phy_print_status(priv->phy);
spin_unlock_irqrestore(&priv->lock, flags);
}
static void cpmac_hw_init(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
for (i = 0; i < 8; i++) {
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
}
cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
MBP_RXMCAST);
cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xfe);
cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
for (i = 0; i < 8; i++)
cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
(dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
(dev->dev_addr[3] << 24));
cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
cpmac_write(priv->regs, CPMAC_RX_CONTROL,
cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
cpmac_write(priv->regs, CPMAC_TX_CONTROL,
cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
MAC_FDX);
priv->phy->state = PHY_CHANGELINK;
phy_start(priv->phy);
}
static int cpmac_open(struct net_device *dev)
{
int i, size, res;
struct cpmac_priv *priv = netdev_priv(dev);
struct resource *mem;
struct cpmac_desc *desc;
struct sk_buff *skb;
priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link,
0, PHY_INTERFACE_MODE_MII);
if (IS_ERR(priv->phy)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: Could not attach to PHY\n",
dev->name);
return PTR_ERR(priv->phy);
}
mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: failed to request registers\n",
dev->name);
res = -ENXIO;
goto fail_reserve;
}
priv->regs = ioremap(mem->start, mem->end - mem->start);
if (!priv->regs) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: failed to remap registers\n",
dev->name);
res = -ENXIO;
goto fail_remap;
}
priv->rx_head = NULL;
size = priv->ring_size + CPMAC_TX_RING_SIZE;
priv->desc_ring = dma_alloc_coherent(&dev->dev,
sizeof(struct cpmac_desc) * size,
&priv->dma_ring,
GFP_KERNEL);
if (!priv->desc_ring) {
res = -ENOMEM;
goto fail_alloc;
}
priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
for (i = 0; i < size; i++)
priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
for (i = 0, desc = &priv->rx_head[i]; i < priv->ring_size; i++, desc++) {
skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
if (unlikely(!skb)) {
res = -ENOMEM;
goto fail_desc;
}
skb_reserve(skb, 2);
desc->skb = skb;
desc->data_mapping = dma_map_single(&dev->dev, skb->data,
CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
desc->hw_data = (u32)desc->data_mapping;
desc->buflen = CPMAC_SKB_SIZE;
desc->dataflags = CPMAC_OWN;
desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
desc->hw_next = (u32)desc->next->mapping;
}
if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
dev->name, dev))) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: failed to obtain irq\n",
dev->name);
goto fail_irq;
}
cpmac_reset(dev);
cpmac_hw_init(dev);
netif_start_queue(dev);
return 0;
fail_irq:
fail_desc:
for (i = 0; i < priv->ring_size; i++) {
if (priv->rx_head[i].skb) {
kfree_skb(priv->rx_head[i].skb);
dma_unmap_single(&dev->dev,
priv->rx_head[i].data_mapping,
CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
}
}
fail_alloc:
kfree(priv->desc_ring);
iounmap(priv->regs);
fail_remap:
release_mem_region(mem->start, mem->end - mem->start);
fail_reserve:
phy_disconnect(priv->phy);
return res;
}
static int cpmac_stop(struct net_device *dev)
{
int i;
struct cpmac_priv *priv = netdev_priv(dev);
struct resource *mem;
netif_stop_queue(dev);
phy_stop(priv->phy);
phy_disconnect(priv->phy);
priv->phy = NULL;
cpmac_reset(dev);
for (i = 0; i < 8; i++)
cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
cpmac_write(priv->regs, CPMAC_MBP, 0);
free_irq(dev->irq, dev);
iounmap(priv->regs);
mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
release_mem_region(mem->start, mem->end - mem->start);
priv->rx_head = &priv->desc_ring[CPMAC_TX_RING_SIZE];
for (i = 0; i < priv->ring_size; i++) {
if (priv->rx_head[i].skb) {
kfree_skb(priv->rx_head[i].skb);
dma_unmap_single(&dev->dev,
priv->rx_head[i].data_mapping,
CPMAC_SKB_SIZE,
DMA_FROM_DEVICE);
}
}
dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
(CPMAC_TX_RING_SIZE + priv->ring_size),
priv->desc_ring, priv->dma_ring);
return 0;
}
static int external_switch;
static int __devinit cpmac_probe(struct platform_device *pdev)
{
int rc, phy_id;
struct resource *mem;
struct cpmac_priv *priv;
struct net_device *dev;
struct plat_cpmac_data *pdata;
pdata = pdev->dev.platform_data;
for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
if (!(pdata->phy_mask & (1 << phy_id)))
continue;
if (!cpmac_mii.phy_map[phy_id])
continue;
break;
}
if (phy_id == PHY_MAX_ADDR) {
if (external_switch || dumb_switch)
phy_id = 0;
else {
printk(KERN_ERR "cpmac: no PHY present\n");
return -ENODEV;
}
}
dev = alloc_etherdev(sizeof(struct cpmac_priv));
if (!dev) {
printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, dev);
priv = netdev_priv(dev);
priv->pdev = pdev;
mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
if (!mem) {
rc = -ENODEV;
goto fail;
}
dev->irq = platform_get_irq_byname(pdev, "irq");
dev->open = cpmac_open;
dev->stop = cpmac_stop;
dev->set_config = cpmac_config;
dev->hard_start_xmit = cpmac_start_xmit;
dev->do_ioctl = cpmac_ioctl;
dev->set_multicast_list = cpmac_set_multicast_list;
dev->tx_timeout = cpmac_tx_timeout;
dev->ethtool_ops = &cpmac_ethtool_ops;
if (!disable_napi) {
dev->poll = cpmac_poll;
dev->weight = 64;
}
spin_lock_init(&priv->lock);
priv->msg_enable = netif_msg_init(debug_level, 0xff);
priv->ring_size = 64;
memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
if (phy_id == 31) {
snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT,
cpmac_mii.id, phy_id);
/* cpmac_write(cpmac_mii.priv, CPMAC_MDIO_PHYSEL(0), PHYSEL_LINKSEL
| PHYSEL_LINKINT | phy_id);*/
} else
snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1);
if ((rc = register_netdev(dev))) {
printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
dev->name);
goto fail;
}
if (netif_msg_probe(priv)) {
printk(KERN_INFO
"cpmac: device %s (regs: %p, irq: %d, phy: %s, mac: "
MAC_FMT ")\n", dev->name, (void *)mem->start, dev->irq,
priv->phy_name, MAC_ARG(dev->dev_addr));
}
return 0;
fail:
free_netdev(dev);
return rc;
}
static int __devexit cpmac_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
unregister_netdev(dev);
free_netdev(dev);
return 0;
}
static struct platform_driver cpmac_driver = {
.driver.name = "cpmac",
.probe = cpmac_probe,
2007-09-20 16:31:23 +00:00
.remove = __devexit_p(cpmac_remove),
};
int __devinit cpmac_init(void)
{
u32 mask;
int i, res;
cpmac_mii.priv = ioremap(AR7_REGS_MDIO, 256);
if (!cpmac_mii.priv) {
printk(KERN_ERR "Can't ioremap mdio registers\n");
return -ENXIO;
}
#warning FIXME: unhardcode gpio&reset bits
ar7_gpio_disable(26);
ar7_gpio_disable(27);
ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
ar7_device_reset(AR7_RESET_BIT_EPHY);
cpmac_mii.reset(&cpmac_mii);
for (i = 0; i < 300000; i++)
if ((mask = cpmac_read(cpmac_mii.priv, CPMAC_MDIO_ALIVE)))
break;
else
cpu_relax();
mask &= 0x7fffffff;
if (mask & (mask - 1)) {
external_switch = 1;
mask = 0;
}
cpmac_mii.phy_mask = ~(mask | 0x80000000);
res = mdiobus_register(&cpmac_mii);
if (res)
goto fail_mii;
res = platform_driver_register(&cpmac_driver);
if (res)
goto fail_cpmac;
return 0;
fail_cpmac:
mdiobus_unregister(&cpmac_mii);
fail_mii:
iounmap(cpmac_mii.priv);
return res;
}
void __devexit cpmac_exit(void)
{
platform_driver_unregister(&cpmac_driver);
mdiobus_unregister(&cpmac_mii);
iounmap(cpmac_mii.priv);
}
module_init(cpmac_init);
module_exit(cpmac_exit);