2017-03-15 10:49:14 +00:00
|
|
|
include $(TOPDIR)/rules.mk
|
|
|
|
include $(INCLUDE_DIR)/version.mk
|
|
|
|
|
2017-09-20 02:20:09 +00:00
|
|
|
PKG_NAME:=ipq-wifi
|
2017-03-15 10:49:14 +00:00
|
|
|
PKG_RELEASE:=1
|
2019-02-17 17:11:59 +00:00
|
|
|
PKG_FLAGS:=nonshared
|
2017-03-15 10:49:14 +00:00
|
|
|
|
|
|
|
include $(INCLUDE_DIR)/package.mk
|
|
|
|
|
|
|
|
define Build/Prepare
|
|
|
|
mkdir -p $(PKG_BUILD_DIR)
|
|
|
|
endef
|
|
|
|
|
|
|
|
define Build/Compile
|
|
|
|
endef
|
|
|
|
|
ipq40xx: Add support for D-Link DAP-2610
Specifications
==============
- SOC: IPQ4018
- RAM: DDR3 256MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: IPQ4018, 2x2, front end SKY85303-11
- 5GHz: IPQ4018, 2x2, front end SKY85717-21
- Ethernet: 1x 10/100/1000Mbps, POE 802.3af
- PHY: QCA8072
- UART: GND, blocked, 3.3V, RX, TX / 115200 8N1
- LED: 1x red / green
- Button: 1x reset / factory default
- U-Boot bootloader with tftp and "emergency web server" accessible
using serial port.
Installation
============
Flash factory image from D-Link web UI. Constraints in the D-Link web UI
makes the factory image unnecessarily large. Flash again using
sysupgrade from inside OpenWrt to reclaim some flash space.
Return to stock D-Link firmware
===============================
Partition layout is preserved, and it is possible to return to the stock
firmware simply by downloading it from D-Link and writing it to the
firmware partition.
# mtd -r write dap2610-firmware.bin firmware
Quirks
======
To be flashable from the D-Link http server, the firmware must be larger
then 6MB, and the size in the firmware header must match the actual file
size. Also, the boot loader verifies the checksum of the firmware before
each boot, thus the jffs2 must be after the checksum covered part. This
is solved in the factory image by having the rootfs at the very end of
the image (without pad-rootfs).
The sysupgrade image which does not have to be flashable from the D-Link
web UI may be smaller, and the checksum in the firmware header only
covers the kernel part of the image.
Signed-off-by: Fredrik Olofsson <fredrik.olofsson@anyfinetworks.com>
[added WRGG Variables to DEVICE_VARS, squashed spi pinconf/mux,
added emd1's gmac0 config,fix dtc warnings]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-09-10 09:25:53 +00:00
|
|
|
# Use ath10k-bdencoder from https://github.com/qca/qca-swiss-army-knife.git
|
|
|
|
# to generate the board-* files here.
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
#
|
|
|
|
# This is intended to be used on an interim basis until device-specific
|
|
|
|
# board data for new devices is available through the upstream compilation
|
|
|
|
#
|
2018-07-29 09:55:13 +00:00
|
|
|
# Please send a mail with your device-specific board files upstream.
|
|
|
|
# You can find instructions and examples on the linux-wireless wiki:
|
|
|
|
# <https://wireless.wiki.kernel.org/en/users/drivers/ath10k/boardfiles>
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
|
|
|
|
ALLWIFIBOARDS:= \
|
2020-03-08 16:21:27 +00:00
|
|
|
8dev_habanero-dvk \
|
2019-12-15 22:02:54 +00:00
|
|
|
aruba_ap-303 \
|
2022-05-25 20:07:10 +00:00
|
|
|
aruba_ap-365 \
|
2021-12-30 20:25:03 +00:00
|
|
|
asus_rt-ac42u \
|
2019-09-21 16:59:28 +00:00
|
|
|
avm_fritzrepeater-1200 \
|
ipq40xx: add support for Buffalo WTR-M2133HP
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.
Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A
Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
# ubidetach -p /dev/mtd15
# ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
# fw_setenv bootcmd bootipq
8. Perform reboot.
Recover to stock firmware
-------------------------
1. Execute the following command.
# fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
2020-01-29 10:27:25 +00:00
|
|
|
buffalo_wtr-m2133hp \
|
2020-03-09 20:16:43 +00:00
|
|
|
cellc_rtl30vw \
|
2020-10-02 12:32:55 +00:00
|
|
|
devolo_magic-2-wifi-next \
|
ipq40xx: Add support for D-Link DAP-2610
Specifications
==============
- SOC: IPQ4018
- RAM: DDR3 256MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: IPQ4018, 2x2, front end SKY85303-11
- 5GHz: IPQ4018, 2x2, front end SKY85717-21
- Ethernet: 1x 10/100/1000Mbps, POE 802.3af
- PHY: QCA8072
- UART: GND, blocked, 3.3V, RX, TX / 115200 8N1
- LED: 1x red / green
- Button: 1x reset / factory default
- U-Boot bootloader with tftp and "emergency web server" accessible
using serial port.
Installation
============
Flash factory image from D-Link web UI. Constraints in the D-Link web UI
makes the factory image unnecessarily large. Flash again using
sysupgrade from inside OpenWrt to reclaim some flash space.
Return to stock D-Link firmware
===============================
Partition layout is preserved, and it is possible to return to the stock
firmware simply by downloading it from D-Link and writing it to the
firmware partition.
# mtd -r write dap2610-firmware.bin firmware
Quirks
======
To be flashable from the D-Link http server, the firmware must be larger
then 6MB, and the size in the firmware header must match the actual file
size. Also, the boot loader verifies the checksum of the firmware before
each boot, thus the jffs2 must be after the checksum covered part. This
is solved in the factory image by having the rootfs at the very end of
the image (without pad-rootfs).
The sysupgrade image which does not have to be flashable from the D-Link
web UI may be smaller, and the checksum in the firmware header only
covers the kernel part of the image.
Signed-off-by: Fredrik Olofsson <fredrik.olofsson@anyfinetworks.com>
[added WRGG Variables to DEVICE_VARS, squashed spi pinconf/mux,
added emd1's gmac0 config,fix dtc warnings]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-09-10 09:25:53 +00:00
|
|
|
dlink_dap2610 \
|
2020-09-07 10:43:37 +00:00
|
|
|
edgecore_ecw5410 \
|
2020-09-07 11:08:41 +00:00
|
|
|
edgecore_oap100 \
|
ipq40xx: add support for EnGenius EAP2200
SOC: IPQ4019 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
FLASH: NOR 4 MiB + NAND 128 MiB
ETH: Qualcomm Atheros QCA8072
WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2
WLAN2: Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2
INPUT: WPS Button
LEDS: Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE
1. Load Ramdisk via U-Boot
To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
* 115200bps
* 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports.
c. Set a static ip 192.168.99.8 for Ethernet that connects to board.
d. The PC must have a TFTP server launched and listening on the interface to which the board is connected.
e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.
U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm
Signed-off-by: Steven Lin <steven.lin@senao.com>
[copied 4.19 dts to 5.4]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-09-02 02:39:45 +00:00
|
|
|
engenius_eap2200 \
|
2019-11-01 06:00:40 +00:00
|
|
|
engenius_emd1 \
|
2019-11-01 07:47:28 +00:00
|
|
|
engenius_emr3500 \
|
ipq40xx: add support for EZVIZ CS-W3-WD1200G EUP
Hardware:
SOC: Qualcomm IPQ4018
RAM: 128 MB Nanya NT5CC64M16GP-DI
FLASH: 16 MB Macronix MX25L12805D
ETH: Qualcomm QCA8075 (4 Gigabit ports, 3xLAN, 1xWAN)
WLAN: Qualcomm IPQ4018 (2.4 & 5 Ghz)
BUTTON: Shared WPS/Reset button
LED: RGB Status/Power LED
SERIAL: Header J8 (UART, Left side of board). Numbered from
top to bottom:
(1) GND, (2) TX, (3) RX, (4) VCC (White triangle
next to it).
3.3v, 115200, 8N1
Tested/Working:
* Ethernet
* WiFi (2.4 and 5GHz)
* Status LED
* Reset Button (See note below)
Implementation notes:
* The shared WPS/Reset button is implemented as a Reset button
* I could not find a original firmware image to reverse engineer, meaning
currently it's not possible to flash OpenWrt through the Web GUI.
Installation (Through Serial console & TFTP):
1. Set your PC to fixed IP 192.168.1.12, Netmask 255.255.255.0, and connect to
one of the LAN ports
2. Rename the initramfs image to 'C0A8010B.img' and enable a TFTP server on
your pc, to serve the image
2. Connect to the router through serial (See connection properties above)
3. Hit a key during startup, to pause startup
4. type `setenv serverip 192.168.1.12`, to set the tftp server address
5. type `tftpboot`, to load the image from the laptop through tftp
6. type `bootm` to run the loaded image from memory
6. (If you want to return to stock firmware later, create an full MTD backup,
e.g. using instructions here https://openwrt.org/docs/guide-user/installation/generic.backup#create_full_mtd_backup)
7. Transfer the 'sysupgrade' OpenWrt firmware image from PC to router, e.g.:
`scp xxx-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/upgrade.bin`
8. Run sysupgrade to permanently install OpenWrt to flash: `sysupgrade -n /tmp/upgrade.bin`
Revert to stock:
To revert to stock, you need the MTD backup from step 6 above:
1. Unpack the MTD backup archive
2. Transfer the 'firmware' partition image to the router (e.g. mtd8_firmware.backup)
3. On the router, do `mtd write mtd8_firmware.backup firmware`
Signed-off-by: Tom Brouwer <tombrouwer@outlook.com>
[removed BOARD_NAME, OpenWRT->OpenWrt, changed LED device name to board name]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-01-12 12:13:30 +00:00
|
|
|
ezviz_cs-w3-wd1200g-eup \
|
2020-07-22 07:12:17 +00:00
|
|
|
glinet_gl-ap1300 \
|
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router.
Specifications:
- SOC: Qualcomm IPQ4019 ARM Quad-Core
- RAM: 512 MiB
- Flash: 16 MiB NOR - SPI0
- EMMC: 8GB EMMC
- ETH: Qualcomm QCA8075
- WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
- WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
- WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
- INPUT: Reset, WPS
- LED: Power, Internet
- UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
- UART2: On board with BLE module
- SPI1: On board socket for Zigbee module
Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.
What's working:
- WiFi 2G, 5G
- WPA2/WPA3
Not tested:
- Bluetooth LE/Zigbee
Credits goes to the original authors of this patch.
V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade
Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-12-01 15:18:17 +00:00
|
|
|
glinet_gl-b2200 \
|
ipq40xx: add support for GL.iNet GL-S1300
Specifications:
SOC: Qualcomm IPQ4029 (DAKOTA) ARM Quad-Core
RAM: 512 MiB
FLASH1: 16 MiB NOR - SPI0
FLASH2: 8 GiB eMMC
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4029 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4029 5GHz 802.11n/ac W2 2x2
INPUT: Reset, WPS
LED: Power, Mesh, WLAN
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
UART2: On board with BLE module
SPI1: On board socket for Zigbee module
Install via tftp
- NB: need to flash transition image firstly
Firstly install transition image:
(IPQ40xx) # tftpboot 0x84000000 s1300-factory-to-openwrt.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
Secondly install openwrt sysupgrade bin:
(IPQ40xx) # run lf
Revert to factory image:
(IPQ40xx) # tftpboot 0x84000000 s1300-openwrt-to-factory.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
The kernel and rootfs of factory firmware are on eMMC, and openwrt
firmware is on NOR flash. The transition image includes U-boot
and partition table, which decides where to load kernel and rootfs.
After you firstly install openwrt image, you can switch between
factory and openwrt firmware by flashing transition image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
2020-04-08 08:43:51 +00:00
|
|
|
glinet_gl-s1300 \
|
ipq40xx: Add support for Linksys EA8300 (Dallas)
The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three,
independent radios. NAND provides two, alternate kernel/firmware
images with fail-over provided by the OEM U-Boot.
Installation:
"Factory" images may be installed directly through the OEM GUI.
Hardware Highlights:
* IPQ4019 at 717 MHz (4 CPUs)
* 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
* 256 MB RAM
* Three, fully-functional radios; `iw phy` reports (FCC/US, -CT):
* 2.4 GHz radio at 30 dBm
* 5 GHz radio on ch. 36-64 at 23 dBm
* 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm
#{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1
* All two-stream, MCS 0-9
* 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights
* USB3, single port on rear with LED
* WPS and reset buttons
* Four status lights on top
* Serial pads internal (unpopulated)
"Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1"
Implementation Notes:
The OEM flash layout is preserved at this time with 3 MB kernel and
~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and
syscfg (56 MB) partitions are untouched, available as read-only.
Serial Connectivity:
Serial connectivity is *not* required to flash.
Serial may be accessed by opening the device and connecting
a 3.3-V adapter using 115200, 8n1. U-Boot access is good,
including the ability to load images over TFTP and
either run or flash them.
Looking at the top of the board, from the front of the unit,
J3 can be found on the right edge of the board, near the rear
|
J3 |
|-| |
|O| | (3.3V seen, open-circuit)
|O| | TXD
|O| | RXD
|O| |
|O| | GND
|-| |
|
Unimplemented:
* serial1 "ttyQHS0" (serial0 works as console)
* Bluetooth; Qualcomm CSR8811 (potentially conected to serial1)
Other Notes:
https://wikidevi.com/wiki/Linksys_EA8300 states
FCC docs also cover the Linksys EA8250. According to the
RF Test Report BT BR+EDR, "All models are identical except
for the EA8300 supports 256QAM and the EA8250 disable 256QAM."
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-10 15:34:28 +00:00
|
|
|
linksys_ea8300 \
|
2020-09-09 22:45:02 +00:00
|
|
|
linksys_mr8300-v0 \
|
ipq40xx: add support for Luma Home WRTQ-329ACN
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
of J19 marking on PCB
1. GND, 2. RX, 3. TX, 4. 3.3V
baud: 115200, parity: none, flow control: none
The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.
Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.
Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
fw_setenv bootdelay 3
This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x84000000 <openwrt_initramfs_image_name>
bootm 0x84000000
and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
ubirmvol /dev/ubi0 -N ubi_rootfs
sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
ready for configuration.
Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
ubirmvol /dev/ubi0 -N rootfs_data
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N kernel
ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
ubimkvol /dev/ubi0 -S 34 -N kernel1
ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
ubimkvol /dev/ubi0 -S 264 -N rootfs_data
fw_setenv bootcmd bootipq
3. Reboot.
Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.
Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
sed -e 's/root:x:/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:
Usage: led_ctl [status | upgrade | force_upgrade | version]
led_ctl solid COLOR <brightness>
led_ctl single COLOR INDEX <brightness 0 - 15>
led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
led_ctl fill COLOR <period 1 - 16 (lower = faster)>
( default is 5 )
led_ctl flashing COLOR <on dur 1 - 128> <off dur 1 - 128>
(default is 34) ( default is 34 )
led_ctl pulsing COLOR
COLOR: red, green, blue, yellow, purple, cyan, white
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-08-30 11:28:10 +00:00
|
|
|
luma_wrtq-329acn \
|
ipq40xx: add support for MobiPromo CM520-79F
MobiPromo CM520-79F is an AC1300 dual band router based on IPQ4019
Specification:
SoC/Wireless: QCA IPQ4019
RAM: 512MiB
Flash: 128MiB SLC NAND
Ethernet PHY: QCA8075
Ethernet ports: 1x WAN, 2x LAN
LEDs: 7 LEDs
2 (USB, CAN) are GPIO
other 5 (2.4G, 5G, LAN1, LAN2, WAN) are connected to a shift register
Button: Reset
Flash instruction:
Disassemble the router, connect UART pins like this:
GND TX RX
[x x . . x .]
[. . . . . .]
(QCA8075 and IPQ4019 below)
Baud-rate: 115200
Set up TFTP server: IP 192.168.1.188/24
Power on the router and interrupt the booting with UART console
env backup (in case you want to go back to stock and need it there):
printenv
(Copy the output to somewhere save)
Set bootenv:
setenv set_ubi 'set mtdids nand0=nand0; set mtdparts mtdparts=nand0:0x7480000@0xb80000(fs); ubi part fs'
setenv bootkernel 'ubi read 0x84000000 kernel; bootm 0x84000000#config@1'
setenv cm520_boot 'run set_ubi; run bootkernel'
setenv bootcmd 'run cm520_boot'
setenv bootargs
saveenv
Boot initramfs from TFTP:
tftpboot openwrt-ipq40xx-generic-mobipromo_cm520-79f-initramfs-fit-zImage.itb
bootm
After initramfs image is booted, backup rootfs partition in case of reverting to stock image
cat /dev/mtd12 > /tmp/mtd12.bin
Then fetch it via SCP
Upload nand-factory.ubi to /tmp via SCP, then run
mtd erase rootfs
mtd write /tmp/*nand-factory.ubi rootfs
reboot
To revert to stock image, restore default bootenv in uboot UART console
setenv bootcmd 'bootipq'
printenv
use the saved dump you did back when you installed OpenWrt to verify that
there are no other differences from back in the day.
saveenv
upload the backed up mtd12.bin and run
tftpboot mtd12.bin
nand erase 0xb80000 0x7480000
nand write 0x84000000 0xb80000 0x7480000
The BOOTCONFIG may have been configured to boot from alternate partition (rootfs_1) instead
In case of this, set it back to rootfs:
cd /tmp
cat /dev/mtd7 > mtd7.bin
echo -ne '\x0b' | dd of=mtd7.bin conv=notrunc bs=1 count=1 seek=4
for i in 28 48 68 108; do
dd if=/dev/zero of=mtd7.bin conv=notrunc bs=1 count=1 seek=$i
done
mtd write mtd7.bin BOOTCONFIG
mtd write mtd7.bin BOOTCONFIG1
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
[renamed volume to ubi to support autoboot,
as per David Lam's test in PR#2432]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-01-14 14:22:59 +00:00
|
|
|
mobipromo_cm520-79f \
|
2020-04-21 06:06:12 +00:00
|
|
|
nec_wg2600hp3 \
|
ipq40xx: add support for P&W R619AC (aka G-DOCK 2.0)
P&W R619AC is a IPQ4019 Dual-Band AC1200 router.
It is made by P&W (p2w-tech.com) known as P&W R619AC
but marketed and sold more popularly as G-DOCK 2.0.
Specification:
* SOC: Qualcomm Atheros IPQ4019 (717 MHz)
* RAM: 512 MiB
* Flash: 16 MiB (NOR) + 128 MiB (NAND)
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN)
* Wireless:
- 2.4 GHz b/g/n Qualcomm Atheros IPQ4019
- 5 GHz a/n/ac Qualcomm Atheros IPQ4019
* USB: 1 x USB 3.0
* LED: 4 x LAN, 1 x WAN, 2 x WiFi, 1 x Power (All Blue LED)
* Input: 1 x reset
* 1 x MicroSD card slot
* Serial console: 115200bps, pinheader J2 on PCB
* Power: DC 12V 2A
* 1 x Unpopulated mPCIe Slot (see below how to connect it)
* 1 x Unpopulated Sim Card Slot
Installation:
1. Access to tty console via UART serial
2. Enter failsafe mode and mount rootfs
<https://openwrt.org/docs/guide-user/troubleshooting/failsafe_and_factory_reset>
3. Edit inittab to enable shell on tty console
`sed -i 's/#ttyM/ttyM/' /etc/inittab`
4. Reboot and upload `-nand-factory.bin` to the router (using wget)
5. Use `sysupgrade` command to install
Another installation method is to hijack the upgrade server domain
of stock firmware, because it's using insecure http.
This commit is based on @LGA1150(at GitHub)'s work
<https://github.com/LGA1150/openwrt/commit/a4932c8d5a275d1fb4297bd20ec03f9270a45d1c>
With some changes:
1. Added `qpic_bam` node in dts. I don't know much about this,
but I observed other dtses have this node.
2. Removed `ldo` node under `sd_0_pinmux`, because `ldo` cause SD card not
working. This fix is from
<https://github.com/coolsnowwolf/lede/commit/51143b4c7571f717afe071db60bbb4db1532cbf2>
3. Removed the 32MB NOR variant.
4. Removed `cd-gpios` in `sdhci` node, because it's reported that it makes
wlan2g led light up.
5. Added ethphy led config in dts.
6. Changed nand partition label from `rootfs` to `ubi`.
About the 128MiB variant: The stock bootloader sets size of nand to 64MiB.
But most of this devices have 128MiB nand. If you want to use all 128MiB,
you need to modify the `MIBIB` data of bootloader. More details can be
found on github:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-818770060>
For instructions on how to flash the MIBIB partition from u-boot console:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-819138232>
About the Mini PCIe slot: (from "ygleg")
"The REFCLK signals on the Mini PCIe slot is not connected on
this board out of the box. If you want to use the Mini PCIe slot
on the board, you need to (preferably) solder two 0402 resistors:
R436 (REFCLK+) and R444 (REFCLK-)..."
This and much more information is provoided in the github comment:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-968054670>
Signed-off-by: Richard Yu <yurichard3839@gmail.com>
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
[Added comment about MIBIB+128 MiB variant. Added commit
message section about pcie slot. Renamed gpio-leds' subnodes
and added color, function+enum properties.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-11-12 03:16:21 +00:00
|
|
|
p2w_r619ac \
|
ipq40xx: add support for Plasma Cloud PA1200
Device specifications:
* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio4:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio3:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3af/at POE(+)
+ used as WAN interface
* 12V/24V 1A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2018-11-25 13:46:54 +00:00
|
|
|
plasmacloud_pa1200 \
|
ipq40xx: add support for Plasma Cloud PA2200
Device specifications:
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
- QCA9888 hw2.0 (PCI)
- requires special BDF in QCA9888/hw2.0/board-2.bin
bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio3:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio4:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3at POE+
+ used as WAN interface
* 12V 2A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2018-12-14 15:46:53 +00:00
|
|
|
plasmacloud_pa2200 \
|
2022-03-25 09:39:07 +00:00
|
|
|
qxwlan_e2600ac-c1 \
|
|
|
|
qxwlan_e2600ac-c2 \
|
2021-11-23 08:10:14 +00:00
|
|
|
teltonika_rutx \
|
|
|
|
zte_mf286d
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
|
2017-03-15 10:49:14 +00:00
|
|
|
ALLWIFIPACKAGES:=$(foreach BOARD,$(ALLWIFIBOARDS),ipq-wifi-$(BOARD))
|
|
|
|
|
|
|
|
define Package/ipq-wifi-default
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
SUBMENU:=ath10k Board-Specific Overrides
|
2017-03-15 10:49:14 +00:00
|
|
|
SECTION:=firmware
|
|
|
|
CATEGORY:=Firmware
|
2020-05-18 10:34:06 +00:00
|
|
|
DEPENDS:=@(TARGET_ipq40xx||TARGET_ipq806x)
|
2017-03-15 10:49:14 +00:00
|
|
|
TITLE:=Custom Board
|
|
|
|
endef
|
|
|
|
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
define ipq-wifi-install-one-to
|
|
|
|
$(INSTALL_DIR) $(2)/lib/firmware/ath10k/$(3)/
|
|
|
|
$(INSTALL_DATA) $(1) $(2)/lib/firmware/ath10k/$(3)/board-2.bin
|
|
|
|
endef
|
|
|
|
|
|
|
|
define ipq-wifi-install-one
|
2020-01-18 23:00:52 +00:00
|
|
|
$(if $(filter $(suffix $(1)),.QCA4019 .qca4019),\
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
$(call ipq-wifi-install-one-to,$(1),$(2),QCA4019/hw1.0),\
|
|
|
|
$(if $(filter $(suffix $(1)),.QCA9888 .qca9888),\
|
|
|
|
$(call ipq-wifi-install-one-to,$(1),$(2),QCA9888/hw2.0),\
|
|
|
|
$(if $(filter $(suffix $(1)),.QCA9984 .qca9984),\
|
|
|
|
$(call ipq-wifi-install-one-to,$(1),$(2),QCA9984/hw1.0),\
|
|
|
|
$(error Unrecognized board-file suffix '$(suffix $(1))' for '$(1)')\
|
|
|
|
)))
|
|
|
|
|
|
|
|
endef
|
|
|
|
# Blank line required at end of above define due to foreach context
|
|
|
|
|
2017-03-15 10:49:14 +00:00
|
|
|
define generate-ipq-wifi-package
|
|
|
|
define Package/ipq-wifi-$(1)
|
|
|
|
$(call Package/ipq-wifi-default)
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
TITLE:=board-2.bin Overrides for $(2)
|
2017-03-15 10:49:14 +00:00
|
|
|
CONFLICTS:=$(PREV_BOARD)
|
|
|
|
endef
|
|
|
|
|
|
|
|
define Package/ipq-wifi-$(1)/description
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
The $(2) requires board-specific, reference ("cal") data
|
|
|
|
that is not yet present in the upstream wireless firmware distribution.
|
|
|
|
|
|
|
|
This package supplies board-2.bin file(s) that, in the interim,
|
|
|
|
overwrite those supplied by the ath10k-firmware-* packages.
|
2017-03-15 10:49:14 +00:00
|
|
|
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
This is package is only necessary for the $(2).
|
|
|
|
|
|
|
|
Do not install it for any other device!
|
2017-03-15 10:49:14 +00:00
|
|
|
endef
|
|
|
|
|
|
|
|
define Package/ipq-wifi-$(1)/install-overlay
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
$$$$(foreach IPQ_WIFI_BOARD_FILE,$$$$(wildcard board-$(1).*),\
|
|
|
|
$$$$(call ipq-wifi-install-one,$$$$(IPQ_WIFI_BOARD_FILE),$$(1)))
|
2017-03-15 10:49:14 +00:00
|
|
|
endef
|
|
|
|
|
|
|
|
PREV_BOARD+=ipq-wifi-$(1)
|
|
|
|
endef
|
|
|
|
|
firmware/ipq-wifi: Extend for multi-chip boards
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-14 20:20:57 +00:00
|
|
|
# Add board name to ALLWIFIBOARDS
|
|
|
|
# Place files in this directory as board-<devicename>.<qca4019|qca9888|qca9984>
|
|
|
|
# Add $(eval $(call generate-ipq-wifi-package,<devicename>,<display name>))
|
|
|
|
|
2020-03-08 16:21:27 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,8dev_habanero-dvk,8devices Habanero DVK))
|
2019-12-15 22:02:54 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,aruba_ap-303,Aruba AP-303))
|
2022-05-25 20:07:10 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,aruba_ap-365,Aruba AP-365))
|
2021-12-30 20:25:03 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,asus_rt-ac42u,ASUS RT-AC42U))
|
2019-09-21 16:59:28 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,avm_fritzrepeater-1200,AVM FRITZRepeater 1200))
|
ipq40xx: add support for Buffalo WTR-M2133HP
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.
Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A
Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
# ubidetach -p /dev/mtd15
# ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
# fw_setenv bootcmd bootipq
8. Perform reboot.
Recover to stock firmware
-------------------------
1. Execute the following command.
# fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
2020-01-29 10:27:25 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,buffalo_wtr-m2133hp,Buffalo WTR-M2133HP))
|
2020-03-09 20:16:43 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,cellc_rtl30vw, Cell C RTL30VW))
|
2020-10-02 12:32:55 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,devolo_magic-2-wifi-next,devolo Magic 2 WiFi next))
|
ipq40xx: Add support for D-Link DAP-2610
Specifications
==============
- SOC: IPQ4018
- RAM: DDR3 256MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: IPQ4018, 2x2, front end SKY85303-11
- 5GHz: IPQ4018, 2x2, front end SKY85717-21
- Ethernet: 1x 10/100/1000Mbps, POE 802.3af
- PHY: QCA8072
- UART: GND, blocked, 3.3V, RX, TX / 115200 8N1
- LED: 1x red / green
- Button: 1x reset / factory default
- U-Boot bootloader with tftp and "emergency web server" accessible
using serial port.
Installation
============
Flash factory image from D-Link web UI. Constraints in the D-Link web UI
makes the factory image unnecessarily large. Flash again using
sysupgrade from inside OpenWrt to reclaim some flash space.
Return to stock D-Link firmware
===============================
Partition layout is preserved, and it is possible to return to the stock
firmware simply by downloading it from D-Link and writing it to the
firmware partition.
# mtd -r write dap2610-firmware.bin firmware
Quirks
======
To be flashable from the D-Link http server, the firmware must be larger
then 6MB, and the size in the firmware header must match the actual file
size. Also, the boot loader verifies the checksum of the firmware before
each boot, thus the jffs2 must be after the checksum covered part. This
is solved in the factory image by having the rootfs at the very end of
the image (without pad-rootfs).
The sysupgrade image which does not have to be flashable from the D-Link
web UI may be smaller, and the checksum in the firmware header only
covers the kernel part of the image.
Signed-off-by: Fredrik Olofsson <fredrik.olofsson@anyfinetworks.com>
[added WRGG Variables to DEVICE_VARS, squashed spi pinconf/mux,
added emd1's gmac0 config,fix dtc warnings]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-09-10 09:25:53 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,dlink_dap2610,D-Link DAP-2610))
|
2020-09-07 10:43:37 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,edgecore_ecw5410,Edgecore ECW5410))
|
2020-09-07 11:08:41 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,edgecore_oap100,Edgecore OAP100))
|
ipq40xx: add support for EnGenius EAP2200
SOC: IPQ4019 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
FLASH: NOR 4 MiB + NAND 128 MiB
ETH: Qualcomm Atheros QCA8072
WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2
WLAN2: Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2
INPUT: WPS Button
LEDS: Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE
1. Load Ramdisk via U-Boot
To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
* 115200bps
* 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports.
c. Set a static ip 192.168.99.8 for Ethernet that connects to board.
d. The PC must have a TFTP server launched and listening on the interface to which the board is connected.
e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.
U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm
Signed-off-by: Steven Lin <steven.lin@senao.com>
[copied 4.19 dts to 5.4]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2019-09-02 02:39:45 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,engenius_eap2200,EnGenius EAP2200))
|
2019-11-01 06:00:40 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,engenius_emd1,EnGenius EMD1))
|
2019-11-01 07:47:28 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,engenius_emr3500,EnGenius EMR3500))
|
ipq40xx: add support for EZVIZ CS-W3-WD1200G EUP
Hardware:
SOC: Qualcomm IPQ4018
RAM: 128 MB Nanya NT5CC64M16GP-DI
FLASH: 16 MB Macronix MX25L12805D
ETH: Qualcomm QCA8075 (4 Gigabit ports, 3xLAN, 1xWAN)
WLAN: Qualcomm IPQ4018 (2.4 & 5 Ghz)
BUTTON: Shared WPS/Reset button
LED: RGB Status/Power LED
SERIAL: Header J8 (UART, Left side of board). Numbered from
top to bottom:
(1) GND, (2) TX, (3) RX, (4) VCC (White triangle
next to it).
3.3v, 115200, 8N1
Tested/Working:
* Ethernet
* WiFi (2.4 and 5GHz)
* Status LED
* Reset Button (See note below)
Implementation notes:
* The shared WPS/Reset button is implemented as a Reset button
* I could not find a original firmware image to reverse engineer, meaning
currently it's not possible to flash OpenWrt through the Web GUI.
Installation (Through Serial console & TFTP):
1. Set your PC to fixed IP 192.168.1.12, Netmask 255.255.255.0, and connect to
one of the LAN ports
2. Rename the initramfs image to 'C0A8010B.img' and enable a TFTP server on
your pc, to serve the image
2. Connect to the router through serial (See connection properties above)
3. Hit a key during startup, to pause startup
4. type `setenv serverip 192.168.1.12`, to set the tftp server address
5. type `tftpboot`, to load the image from the laptop through tftp
6. type `bootm` to run the loaded image from memory
6. (If you want to return to stock firmware later, create an full MTD backup,
e.g. using instructions here https://openwrt.org/docs/guide-user/installation/generic.backup#create_full_mtd_backup)
7. Transfer the 'sysupgrade' OpenWrt firmware image from PC to router, e.g.:
`scp xxx-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/upgrade.bin`
8. Run sysupgrade to permanently install OpenWrt to flash: `sysupgrade -n /tmp/upgrade.bin`
Revert to stock:
To revert to stock, you need the MTD backup from step 6 above:
1. Unpack the MTD backup archive
2. Transfer the 'firmware' partition image to the router (e.g. mtd8_firmware.backup)
3. On the router, do `mtd write mtd8_firmware.backup firmware`
Signed-off-by: Tom Brouwer <tombrouwer@outlook.com>
[removed BOARD_NAME, OpenWRT->OpenWrt, changed LED device name to board name]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-01-12 12:13:30 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,ezviz_cs-w3-wd1200g-eup,EZVIZ CS-W3-WD1200G EUP))
|
2020-07-22 07:12:17 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,glinet_gl-ap1300,GL.iNet GL-AP1300))
|
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router.
Specifications:
- SOC: Qualcomm IPQ4019 ARM Quad-Core
- RAM: 512 MiB
- Flash: 16 MiB NOR - SPI0
- EMMC: 8GB EMMC
- ETH: Qualcomm QCA8075
- WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
- WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
- WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
- INPUT: Reset, WPS
- LED: Power, Internet
- UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
- UART2: On board with BLE module
- SPI1: On board socket for Zigbee module
Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.
What's working:
- WiFi 2G, 5G
- WPA2/WPA3
Not tested:
- Bluetooth LE/Zigbee
Credits goes to the original authors of this patch.
V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade
Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-12-01 15:18:17 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,glinet_gl-b2200,GL.iNet GL-B2200))
|
ipq40xx: add support for GL.iNet GL-S1300
Specifications:
SOC: Qualcomm IPQ4029 (DAKOTA) ARM Quad-Core
RAM: 512 MiB
FLASH1: 16 MiB NOR - SPI0
FLASH2: 8 GiB eMMC
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4029 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4029 5GHz 802.11n/ac W2 2x2
INPUT: Reset, WPS
LED: Power, Mesh, WLAN
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
UART2: On board with BLE module
SPI1: On board socket for Zigbee module
Install via tftp
- NB: need to flash transition image firstly
Firstly install transition image:
(IPQ40xx) # tftpboot 0x84000000 s1300-factory-to-openwrt.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
Secondly install openwrt sysupgrade bin:
(IPQ40xx) # run lf
Revert to factory image:
(IPQ40xx) # tftpboot 0x84000000 s1300-openwrt-to-factory.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
The kernel and rootfs of factory firmware are on eMMC, and openwrt
firmware is on NOR flash. The transition image includes U-boot
and partition table, which decides where to load kernel and rootfs.
After you firstly install openwrt image, you can switch between
factory and openwrt firmware by flashing transition image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
2020-04-08 08:43:51 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,glinet_gl-s1300,GL.iNet GL-S1300))
|
ipq40xx: Add support for Linksys EA8300 (Dallas)
The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three,
independent radios. NAND provides two, alternate kernel/firmware
images with fail-over provided by the OEM U-Boot.
Installation:
"Factory" images may be installed directly through the OEM GUI.
Hardware Highlights:
* IPQ4019 at 717 MHz (4 CPUs)
* 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
* 256 MB RAM
* Three, fully-functional radios; `iw phy` reports (FCC/US, -CT):
* 2.4 GHz radio at 30 dBm
* 5 GHz radio on ch. 36-64 at 23 dBm
* 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm
#{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1
* All two-stream, MCS 0-9
* 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights
* USB3, single port on rear with LED
* WPS and reset buttons
* Four status lights on top
* Serial pads internal (unpopulated)
"Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1"
Implementation Notes:
The OEM flash layout is preserved at this time with 3 MB kernel and
~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and
syscfg (56 MB) partitions are untouched, available as read-only.
Serial Connectivity:
Serial connectivity is *not* required to flash.
Serial may be accessed by opening the device and connecting
a 3.3-V adapter using 115200, 8n1. U-Boot access is good,
including the ability to load images over TFTP and
either run or flash them.
Looking at the top of the board, from the front of the unit,
J3 can be found on the right edge of the board, near the rear
|
J3 |
|-| |
|O| | (3.3V seen, open-circuit)
|O| | TXD
|O| | RXD
|O| |
|O| | GND
|-| |
|
Unimplemented:
* serial1 "ttyQHS0" (serial0 works as console)
* Bluetooth; Qualcomm CSR8811 (potentially conected to serial1)
Other Notes:
https://wikidevi.com/wiki/Linksys_EA8300 states
FCC docs also cover the Linksys EA8250. According to the
RF Test Report BT BR+EDR, "All models are identical except
for the EA8300 supports 256QAM and the EA8250 disable 256QAM."
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-04-10 15:34:28 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,linksys_ea8300,Linksys EA8300))
|
2020-09-09 22:45:02 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,linksys_mr8300-v0,Linksys MR8300))
|
ipq40xx: add support for Luma Home WRTQ-329ACN
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
of J19 marking on PCB
1. GND, 2. RX, 3. TX, 4. 3.3V
baud: 115200, parity: none, flow control: none
The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.
Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.
Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
fw_setenv bootdelay 3
This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x84000000 <openwrt_initramfs_image_name>
bootm 0x84000000
and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
ubirmvol /dev/ubi0 -N ubi_rootfs
sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
ready for configuration.
Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
ubirmvol /dev/ubi0 -N rootfs_data
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N kernel
ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
ubimkvol /dev/ubi0 -S 34 -N kernel1
ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
ubimkvol /dev/ubi0 -S 264 -N rootfs_data
fw_setenv bootcmd bootipq
3. Reboot.
Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.
Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
sed -e 's/root:x:/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:
Usage: led_ctl [status | upgrade | force_upgrade | version]
led_ctl solid COLOR <brightness>
led_ctl single COLOR INDEX <brightness 0 - 15>
led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
led_ctl fill COLOR <period 1 - 16 (lower = faster)>
( default is 5 )
led_ctl flashing COLOR <on dur 1 - 128> <off dur 1 - 128>
(default is 34) ( default is 34 )
led_ctl pulsing COLOR
COLOR: red, green, blue, yellow, purple, cyan, white
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-08-30 11:28:10 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,luma_wrtq-329acn,Luma WRTQ-329ACN))
|
ipq40xx: add support for MobiPromo CM520-79F
MobiPromo CM520-79F is an AC1300 dual band router based on IPQ4019
Specification:
SoC/Wireless: QCA IPQ4019
RAM: 512MiB
Flash: 128MiB SLC NAND
Ethernet PHY: QCA8075
Ethernet ports: 1x WAN, 2x LAN
LEDs: 7 LEDs
2 (USB, CAN) are GPIO
other 5 (2.4G, 5G, LAN1, LAN2, WAN) are connected to a shift register
Button: Reset
Flash instruction:
Disassemble the router, connect UART pins like this:
GND TX RX
[x x . . x .]
[. . . . . .]
(QCA8075 and IPQ4019 below)
Baud-rate: 115200
Set up TFTP server: IP 192.168.1.188/24
Power on the router and interrupt the booting with UART console
env backup (in case you want to go back to stock and need it there):
printenv
(Copy the output to somewhere save)
Set bootenv:
setenv set_ubi 'set mtdids nand0=nand0; set mtdparts mtdparts=nand0:0x7480000@0xb80000(fs); ubi part fs'
setenv bootkernel 'ubi read 0x84000000 kernel; bootm 0x84000000#config@1'
setenv cm520_boot 'run set_ubi; run bootkernel'
setenv bootcmd 'run cm520_boot'
setenv bootargs
saveenv
Boot initramfs from TFTP:
tftpboot openwrt-ipq40xx-generic-mobipromo_cm520-79f-initramfs-fit-zImage.itb
bootm
After initramfs image is booted, backup rootfs partition in case of reverting to stock image
cat /dev/mtd12 > /tmp/mtd12.bin
Then fetch it via SCP
Upload nand-factory.ubi to /tmp via SCP, then run
mtd erase rootfs
mtd write /tmp/*nand-factory.ubi rootfs
reboot
To revert to stock image, restore default bootenv in uboot UART console
setenv bootcmd 'bootipq'
printenv
use the saved dump you did back when you installed OpenWrt to verify that
there are no other differences from back in the day.
saveenv
upload the backed up mtd12.bin and run
tftpboot mtd12.bin
nand erase 0xb80000 0x7480000
nand write 0x84000000 0xb80000 0x7480000
The BOOTCONFIG may have been configured to boot from alternate partition (rootfs_1) instead
In case of this, set it back to rootfs:
cd /tmp
cat /dev/mtd7 > mtd7.bin
echo -ne '\x0b' | dd of=mtd7.bin conv=notrunc bs=1 count=1 seek=4
for i in 28 48 68 108; do
dd if=/dev/zero of=mtd7.bin conv=notrunc bs=1 count=1 seek=$i
done
mtd write mtd7.bin BOOTCONFIG
mtd write mtd7.bin BOOTCONFIG1
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
[renamed volume to ubi to support autoboot,
as per David Lam's test in PR#2432]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-01-14 14:22:59 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,mobipromo_cm520-79f,MobiPromo CM520-79F))
|
2020-04-21 06:06:12 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,nec_wg2600hp3,NEC Platforms WG2600HP3))
|
ipq40xx: add support for P&W R619AC (aka G-DOCK 2.0)
P&W R619AC is a IPQ4019 Dual-Band AC1200 router.
It is made by P&W (p2w-tech.com) known as P&W R619AC
but marketed and sold more popularly as G-DOCK 2.0.
Specification:
* SOC: Qualcomm Atheros IPQ4019 (717 MHz)
* RAM: 512 MiB
* Flash: 16 MiB (NOR) + 128 MiB (NAND)
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN)
* Wireless:
- 2.4 GHz b/g/n Qualcomm Atheros IPQ4019
- 5 GHz a/n/ac Qualcomm Atheros IPQ4019
* USB: 1 x USB 3.0
* LED: 4 x LAN, 1 x WAN, 2 x WiFi, 1 x Power (All Blue LED)
* Input: 1 x reset
* 1 x MicroSD card slot
* Serial console: 115200bps, pinheader J2 on PCB
* Power: DC 12V 2A
* 1 x Unpopulated mPCIe Slot (see below how to connect it)
* 1 x Unpopulated Sim Card Slot
Installation:
1. Access to tty console via UART serial
2. Enter failsafe mode and mount rootfs
<https://openwrt.org/docs/guide-user/troubleshooting/failsafe_and_factory_reset>
3. Edit inittab to enable shell on tty console
`sed -i 's/#ttyM/ttyM/' /etc/inittab`
4. Reboot and upload `-nand-factory.bin` to the router (using wget)
5. Use `sysupgrade` command to install
Another installation method is to hijack the upgrade server domain
of stock firmware, because it's using insecure http.
This commit is based on @LGA1150(at GitHub)'s work
<https://github.com/LGA1150/openwrt/commit/a4932c8d5a275d1fb4297bd20ec03f9270a45d1c>
With some changes:
1. Added `qpic_bam` node in dts. I don't know much about this,
but I observed other dtses have this node.
2. Removed `ldo` node under `sd_0_pinmux`, because `ldo` cause SD card not
working. This fix is from
<https://github.com/coolsnowwolf/lede/commit/51143b4c7571f717afe071db60bbb4db1532cbf2>
3. Removed the 32MB NOR variant.
4. Removed `cd-gpios` in `sdhci` node, because it's reported that it makes
wlan2g led light up.
5. Added ethphy led config in dts.
6. Changed nand partition label from `rootfs` to `ubi`.
About the 128MiB variant: The stock bootloader sets size of nand to 64MiB.
But most of this devices have 128MiB nand. If you want to use all 128MiB,
you need to modify the `MIBIB` data of bootloader. More details can be
found on github:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-818770060>
For instructions on how to flash the MIBIB partition from u-boot console:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-819138232>
About the Mini PCIe slot: (from "ygleg")
"The REFCLK signals on the Mini PCIe slot is not connected on
this board out of the box. If you want to use the Mini PCIe slot
on the board, you need to (preferably) solder two 0402 resistors:
R436 (REFCLK+) and R444 (REFCLK-)..."
This and much more information is provoided in the github comment:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-968054670>
Signed-off-by: Richard Yu <yurichard3839@gmail.com>
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
[Added comment about MIBIB+128 MiB variant. Added commit
message section about pcie slot. Renamed gpio-leds' subnodes
and added color, function+enum properties.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-11-12 03:16:21 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,p2w_r619ac,P&W R619AC))
|
ipq40xx: add support for Plasma Cloud PA1200
Device specifications:
* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio4:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio3:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3af/at POE(+)
+ used as WAN interface
* 12V/24V 1A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2018-11-25 13:46:54 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,plasmacloud_pa1200,Plasma Cloud PA1200))
|
ipq40xx: add support for Plasma Cloud PA2200
Device specifications:
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
- QCA9888 hw2.0 (PCI)
- requires special BDF in QCA9888/hw2.0/board-2.bin
bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio3:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio4:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3at POE+
+ used as WAN interface
* 12V 2A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2018-12-14 15:46:53 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,plasmacloud_pa2200,Plasma Cloud PA2200))
|
2022-03-25 09:39:07 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,qxwlan_e2600ac-c1,Qxwlan E2600AC C1))
|
|
|
|
$(eval $(call generate-ipq-wifi-package,qxwlan_e2600ac-c2,Qxwlan E2600AC C2))
|
2021-07-15 19:48:11 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,teltonika_rutx,Teltonika RUTX))
|
2021-11-23 08:10:14 +00:00
|
|
|
$(eval $(call generate-ipq-wifi-package,zte_mf286d,ZTE MF286D))
|
2017-03-15 10:49:14 +00:00
|
|
|
|
|
|
|
$(foreach PACKAGE,$(ALLWIFIPACKAGES),$(eval $(call BuildPackage,$(PACKAGE))))
|