2007-02-04 21:18:10 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* MTD driver for the SPI Flash Memory support.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2005-2006 Atheros Communications Inc.
|
|
|
|
* Copyright (C) 2006 FON Technology, SL.
|
|
|
|
* Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
|
|
|
|
* Copyright (C) 2006 Felix Fietkau <nbd@openwrt.org>
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*===========================================================================
|
|
|
|
** !!!! VERY IMPORTANT NOTICE !!!! FLASH DATA STORED IN LITTLE ENDIAN FORMAT
|
|
|
|
**
|
|
|
|
** This module contains the Serial Flash access routines for the Atheros SOC.
|
|
|
|
** The Atheros SOC integrates a SPI flash controller that is used to access
|
|
|
|
** serial flash parts. The SPI flash controller executes in "Little Endian"
|
|
|
|
** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be
|
|
|
|
** BYTESWAPPED! The SPI Flash controller hardware by default performs READ
|
|
|
|
** ONLY byteswapping when accessed via the SPI Flash Alias memory region
|
|
|
|
** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the
|
|
|
|
** flash sectors is stored in "Little Endian" format.
|
|
|
|
**
|
|
|
|
** The spiflash_write() routine performs byteswapping on all write
|
|
|
|
** operations.
|
|
|
|
**===========================================================================*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/version.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/squashfs_fs.h>
|
|
|
|
#include <linux/root_dev.h>
|
|
|
|
#include <asm/delay.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include "spiflash.h"
|
|
|
|
|
|
|
|
/* debugging */
|
|
|
|
/* #define SPIFLASH_DEBUG */
|
|
|
|
|
|
|
|
#ifndef __BIG_ENDIAN
|
|
|
|
#error This driver currently only works with big endian CPU.
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define MAX_PARTS 32
|
|
|
|
|
|
|
|
static char module_name[] = "spiflash";
|
|
|
|
|
|
|
|
#define MIN(a,b) ((a) < (b) ? (a) : (b))
|
|
|
|
#define FALSE 0
|
|
|
|
#define TRUE 1
|
|
|
|
|
|
|
|
#define ROOTFS_NAME "rootfs"
|
|
|
|
|
|
|
|
static __u32 spiflash_regread32(int reg);
|
|
|
|
static void spiflash_regwrite32(int reg, __u32 data);
|
|
|
|
static __u32 spiflash_sendcmd (int op);
|
|
|
|
|
|
|
|
int __init spiflash_init (void);
|
|
|
|
void __exit spiflash_exit (void);
|
|
|
|
static int spiflash_probe_chip (void);
|
|
|
|
static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr);
|
|
|
|
static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf);
|
|
|
|
static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf);
|
|
|
|
|
|
|
|
/* Flash configuration table */
|
|
|
|
struct flashconfig {
|
|
|
|
__u32 byte_cnt;
|
|
|
|
__u32 sector_cnt;
|
|
|
|
__u32 sector_size;
|
|
|
|
__u32 cs_addrmask;
|
|
|
|
} flashconfig_tbl[MAX_FLASH] =
|
|
|
|
{
|
|
|
|
{ 0, 0, 0, 0},
|
|
|
|
{ STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0},
|
|
|
|
{ STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0},
|
|
|
|
{ STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0},
|
|
|
|
{ STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0}
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Mapping of generic opcodes to STM serial flash opcodes */
|
|
|
|
struct opcodes {
|
|
|
|
__u16 code;
|
|
|
|
__s8 tx_cnt;
|
|
|
|
__s8 rx_cnt;
|
|
|
|
} stm_opcodes[] = {
|
|
|
|
{STM_OP_WR_ENABLE, 1, 0},
|
|
|
|
{STM_OP_WR_DISABLE, 1, 0},
|
|
|
|
{STM_OP_RD_STATUS, 1, 1},
|
|
|
|
{STM_OP_WR_STATUS, 1, 0},
|
|
|
|
{STM_OP_RD_DATA, 4, 4},
|
|
|
|
{STM_OP_FAST_RD_DATA, 1, 0},
|
|
|
|
{STM_OP_PAGE_PGRM, 8, 0},
|
|
|
|
{STM_OP_SECTOR_ERASE, 4, 0},
|
|
|
|
{STM_OP_BULK_ERASE, 1, 0},
|
|
|
|
{STM_OP_DEEP_PWRDOWN, 1, 0},
|
|
|
|
{STM_OP_RD_SIG, 4, 1}
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Driver private data structure */
|
|
|
|
struct spiflash_data {
|
|
|
|
struct mtd_info *mtd;
|
|
|
|
struct mtd_partition *parsed_parts; /* parsed partitions */
|
|
|
|
void *spiflash_readaddr; /* memory mapped data for read */
|
|
|
|
void *spiflash_mmraddr; /* memory mapped register space */
|
|
|
|
spinlock_t mutex;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct spiflash_data *spidata;
|
|
|
|
|
|
|
|
extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts);
|
|
|
|
|
|
|
|
/***************************************************************************************************/
|
|
|
|
|
|
|
|
static __u32
|
|
|
|
spiflash_regread32(int reg)
|
|
|
|
{
|
|
|
|
volatile __u32 *data = (__u32 *)(spidata->spiflash_mmraddr + reg);
|
|
|
|
|
|
|
|
return (*data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
spiflash_regwrite32(int reg, __u32 data)
|
|
|
|
{
|
|
|
|
volatile __u32 *addr = (__u32 *)(spidata->spiflash_mmraddr + reg);
|
|
|
|
|
|
|
|
*addr = data;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static __u32
|
|
|
|
spiflash_sendcmd (int op)
|
|
|
|
{
|
|
|
|
__u32 reg;
|
|
|
|
__u32 mask;
|
|
|
|
struct opcodes *ptr_opcode;
|
|
|
|
|
|
|
|
ptr_opcode = &stm_opcodes[op];
|
|
|
|
|
|
|
|
do {
|
|
|
|
reg = spiflash_regread32(SPI_FLASH_CTL);
|
|
|
|
} while (reg & SPI_CTL_BUSY);
|
|
|
|
|
|
|
|
spiflash_regwrite32(SPI_FLASH_OPCODE, ptr_opcode->code);
|
|
|
|
|
|
|
|
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt |
|
|
|
|
(ptr_opcode->rx_cnt << 4) | SPI_CTL_START;
|
|
|
|
|
|
|
|
spiflash_regwrite32(SPI_FLASH_CTL, reg);
|
|
|
|
|
|
|
|
if (ptr_opcode->rx_cnt > 0) {
|
|
|
|
do {
|
|
|
|
reg = spiflash_regread32(SPI_FLASH_CTL);
|
|
|
|
} while (reg & SPI_CTL_BUSY);
|
|
|
|
|
|
|
|
reg = (__u32) spiflash_regread32(SPI_FLASH_DATA);
|
|
|
|
|
|
|
|
switch (ptr_opcode->rx_cnt) {
|
|
|
|
case 1:
|
|
|
|
mask = 0x000000ff;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
mask = 0x0000ffff;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
mask = 0x00ffffff;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
mask = 0xffffffff;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
reg &= mask;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
reg = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return reg;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Probe SPI flash device
|
|
|
|
* Function returns 0 for failure.
|
|
|
|
* and flashconfig_tbl array index for success.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
spiflash_probe_chip (void)
|
|
|
|
{
|
|
|
|
__u32 sig;
|
|
|
|
int flash_size;
|
|
|
|
|
|
|
|
/* Read the signature on the flash device */
|
|
|
|
sig = spiflash_sendcmd(SPI_RD_SIG);
|
|
|
|
|
|
|
|
switch (sig) {
|
|
|
|
case STM_8MBIT_SIGNATURE:
|
|
|
|
flash_size = FLASH_1MB;
|
|
|
|
break;
|
|
|
|
case STM_16MBIT_SIGNATURE:
|
|
|
|
flash_size = FLASH_2MB;
|
|
|
|
break;
|
|
|
|
case STM_32MBIT_SIGNATURE:
|
|
|
|
flash_size = FLASH_4MB;
|
|
|
|
break;
|
|
|
|
case STM_64MBIT_SIGNATURE:
|
|
|
|
flash_size = FLASH_8MB;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk (KERN_WARNING "%s: Read of flash device signature failed!\n", module_name);
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (flash_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
spiflash_erase (struct mtd_info *mtd,struct erase_info *instr)
|
|
|
|
{
|
|
|
|
struct opcodes *ptr_opcode;
|
|
|
|
__u32 temp, reg;
|
|
|
|
int finished = FALSE;
|
|
|
|
|
|
|
|
#ifdef SPIFLASH_DEBUG
|
|
|
|
printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* sanity checks */
|
|
|
|
if (instr->addr + instr->len > mtd->size) return (-EINVAL);
|
|
|
|
|
|
|
|
ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE];
|
|
|
|
|
|
|
|
temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code);
|
|
|
|
spin_lock(&spidata->mutex);
|
|
|
|
spiflash_sendcmd(SPI_WRITE_ENABLE);
|
|
|
|
do {
|
|
|
|
schedule();
|
|
|
|
reg = spiflash_regread32(SPI_FLASH_CTL);
|
|
|
|
} while (reg & SPI_CTL_BUSY);
|
|
|
|
|
|
|
|
spiflash_regwrite32(SPI_FLASH_OPCODE, temp);
|
|
|
|
|
|
|
|
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START;
|
|
|
|
spiflash_regwrite32(SPI_FLASH_CTL, reg);
|
|
|
|
|
|
|
|
do {
|
|
|
|
schedule();
|
|
|
|
reg = spiflash_sendcmd(SPI_RD_STATUS);
|
|
|
|
if (!(reg & SPI_STATUS_WIP)) {
|
|
|
|
finished = TRUE;
|
|
|
|
}
|
|
|
|
} while (!finished);
|
|
|
|
spin_unlock(&spidata->mutex);
|
|
|
|
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
|
|
if (instr->callback) instr->callback (instr);
|
|
|
|
|
|
|
|
#ifdef SPIFLASH_DEBUG
|
|
|
|
printk (KERN_DEBUG "%s return\n",__FUNCTION__);
|
|
|
|
#endif
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf)
|
|
|
|
{
|
|
|
|
u_char *read_addr;
|
|
|
|
|
|
|
|
#ifdef SPIFLASH_DEBUG
|
|
|
|
printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,(int)len);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* sanity checks */
|
|
|
|
if (!len) return (0);
|
|
|
|
if (from + len > mtd->size) return (-EINVAL);
|
|
|
|
|
|
|
|
|
|
|
|
/* we always read len bytes */
|
|
|
|
*retlen = len;
|
|
|
|
|
|
|
|
read_addr = (u_char *)(spidata->spiflash_readaddr + from);
|
|
|
|
spin_lock(&spidata->mutex);
|
|
|
|
memcpy(buf, read_addr, len);
|
|
|
|
spin_unlock(&spidata->mutex);
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
|
|
|
|
{
|
|
|
|
int done = FALSE, page_offset, bytes_left, finished;
|
|
|
|
__u32 xact_len, spi_data = 0, opcode, reg;
|
|
|
|
|
|
|
|
#ifdef SPIFLASH_DEBUG
|
|
|
|
printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
*retlen = 0;
|
|
|
|
|
|
|
|
/* sanity checks */
|
|
|
|
if (!len) return (0);
|
|
|
|
if (to + len > mtd->size) return (-EINVAL);
|
|
|
|
|
|
|
|
opcode = stm_opcodes[SPI_PAGE_PROGRAM].code;
|
|
|
|
bytes_left = len;
|
|
|
|
|
|
|
|
while (done == FALSE) {
|
|
|
|
xact_len = MIN(bytes_left, sizeof(__u32));
|
|
|
|
|
|
|
|
/* 32-bit writes cannot span across a page boundary
|
|
|
|
* (256 bytes). This types of writes require two page
|
|
|
|
* program operations to handle it correctly. The STM part
|
|
|
|
* will write the overflow data to the beginning of the
|
|
|
|
* current page as opposed to the subsequent page.
|
|
|
|
*/
|
|
|
|
page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len;
|
|
|
|
|
|
|
|
if (page_offset > STM_PAGE_SIZE) {
|
|
|
|
xact_len -= (page_offset - STM_PAGE_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&spidata->mutex);
|
|
|
|
spiflash_sendcmd(SPI_WRITE_ENABLE);
|
|
|
|
|
|
|
|
do {
|
|
|
|
schedule();
|
|
|
|
reg = spiflash_regread32(SPI_FLASH_CTL);
|
|
|
|
} while (reg & SPI_CTL_BUSY);
|
|
|
|
|
|
|
|
switch (xact_len) {
|
|
|
|
case 1:
|
|
|
|
spi_data = (u32) ((u8) *buf);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
spi_data = (buf[1] << 8) | buf[0];
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0];
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
spi_data = (buf[3] << 24) | (buf[2] << 16) |
|
|
|
|
(buf[1] << 8) | buf[0];
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk("spiflash_write: default case\n");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
spiflash_regwrite32(SPI_FLASH_DATA, spi_data);
|
|
|
|
opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8);
|
|
|
|
spiflash_regwrite32(SPI_FLASH_OPCODE, opcode);
|
|
|
|
|
|
|
|
reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START;
|
|
|
|
spiflash_regwrite32(SPI_FLASH_CTL, reg);
|
|
|
|
finished = FALSE;
|
|
|
|
|
|
|
|
do {
|
|
|
|
schedule();
|
|
|
|
reg = spiflash_sendcmd(SPI_RD_STATUS);
|
|
|
|
if (!(reg & SPI_STATUS_WIP)) {
|
|
|
|
finished = TRUE;
|
|
|
|
}
|
|
|
|
} while (!finished);
|
|
|
|
spin_unlock(&spidata->mutex);
|
|
|
|
|
|
|
|
bytes_left -= xact_len;
|
|
|
|
to += xact_len;
|
|
|
|
buf += xact_len;
|
|
|
|
|
|
|
|
*retlen += xact_len;
|
|
|
|
|
|
|
|
if (bytes_left == 0) {
|
|
|
|
done = TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
|
|
static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL };
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
static int spiflash_probe(struct platform_device *pdev)
|
|
|
|
{
|
2007-02-19 16:48:02 +00:00
|
|
|
int i, result = -1;
|
2007-02-04 21:18:10 +00:00
|
|
|
int index, num_parts;
|
|
|
|
struct mtd_info *mtd;
|
|
|
|
|
|
|
|
spidata->spiflash_mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE);
|
|
|
|
|
|
|
|
if (!spidata->spiflash_mmraddr) {
|
|
|
|
printk (KERN_WARNING "%s: Failed to map flash device\n", module_name);
|
|
|
|
kfree(spidata);
|
|
|
|
spidata = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
|
|
|
|
if (!mtd) {
|
|
|
|
kfree(spidata);
|
|
|
|
return (-ENXIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
printk ("MTD driver for SPI flash.\n");
|
|
|
|
printk ("%s: Probing for Serial flash ...\n", module_name);
|
|
|
|
if (!(index = spiflash_probe_chip())) {
|
|
|
|
printk (KERN_WARNING "%s: Found no serial flash device\n", module_name);
|
|
|
|
kfree(mtd);
|
|
|
|
kfree(spidata);
|
|
|
|
return (-ENXIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
printk ("%s: Found SPI serial Flash.\n", module_name);
|
|
|
|
|
|
|
|
spidata->spiflash_readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt);
|
|
|
|
if (!spidata->spiflash_readaddr) {
|
|
|
|
printk (KERN_WARNING "%s: Failed to map flash device\n", module_name);
|
|
|
|
kfree(mtd);
|
|
|
|
kfree(spidata);
|
|
|
|
return (-ENXIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
mtd->name = module_name;
|
|
|
|
mtd->type = MTD_NORFLASH;
|
|
|
|
mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE);
|
|
|
|
mtd->size = flashconfig_tbl[index].byte_cnt;
|
|
|
|
mtd->erasesize = flashconfig_tbl[index].sector_size;
|
|
|
|
mtd->writesize = 1;
|
|
|
|
mtd->numeraseregions = 0;
|
|
|
|
mtd->eraseregions = NULL;
|
|
|
|
mtd->erase = spiflash_erase;
|
|
|
|
mtd->read = spiflash_read;
|
|
|
|
mtd->write = spiflash_write;
|
|
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
|
|
|
|
#ifdef SPIFLASH_DEBUG
|
|
|
|
printk (KERN_DEBUG
|
|
|
|
"mtd->name = %s\n"
|
|
|
|
"mtd->size = 0x%.8x (%uM)\n"
|
|
|
|
"mtd->erasesize = 0x%.8x (%uK)\n"
|
|
|
|
"mtd->numeraseregions = %d\n",
|
|
|
|
mtd->name,
|
|
|
|
mtd->size, mtd->size / (1024*1024),
|
|
|
|
mtd->erasesize, mtd->erasesize / 1024,
|
|
|
|
mtd->numeraseregions);
|
|
|
|
|
|
|
|
if (mtd->numeraseregions) {
|
|
|
|
for (result = 0; result < mtd->numeraseregions; result++) {
|
|
|
|
printk (KERN_DEBUG
|
|
|
|
"\n\n"
|
|
|
|
"mtd->eraseregions[%d].offset = 0x%.8x\n"
|
|
|
|
"mtd->eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
|
|
|
|
"mtd->eraseregions[%d].numblocks = %d\n",
|
|
|
|
result,mtd->eraseregions[result].offset,
|
|
|
|
result,mtd->eraseregions[result].erasesize,mtd->eraseregions[result].erasesize / 1024,
|
|
|
|
result,mtd->eraseregions[result].numblocks);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/* parse redboot partitions */
|
|
|
|
num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0);
|
2007-02-19 16:48:02 +00:00
|
|
|
for (i = 0; i < num_parts; i++) {
|
|
|
|
if (!strcmp(spidata->parsed_parts[i].name, ROOTFS_NAME)) {
|
|
|
|
/* create the root device */
|
|
|
|
ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, i);
|
|
|
|
}
|
|
|
|
}
|
2007-02-04 21:18:10 +00:00
|
|
|
|
|
|
|
#ifdef SPIFLASH_DEBUG
|
2007-02-16 09:57:24 +00:00
|
|
|
printk (KERN_DEBUG "Found %d partitions\n", num_parts);
|
2007-02-04 21:18:10 +00:00
|
|
|
#endif
|
|
|
|
if (num_parts) {
|
2007-02-16 09:57:24 +00:00
|
|
|
result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts);
|
2007-02-04 21:18:10 +00:00
|
|
|
} else {
|
|
|
|
#ifdef SPIFLASH_DEBUG
|
2007-02-16 09:57:24 +00:00
|
|
|
printk (KERN_DEBUG "Did not find any partitions\n");
|
2007-02-04 21:18:10 +00:00
|
|
|
#endif
|
|
|
|
kfree(mtd);
|
|
|
|
kfree(spidata);
|
|
|
|
return (-ENXIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
spidata->mtd = mtd;
|
|
|
|
|
|
|
|
return (result);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int spiflash_remove (struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
del_mtd_partitions (spidata->mtd);
|
|
|
|
kfree(spidata->mtd);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct platform_driver spiflash_driver = {
|
|
|
|
.driver.name = "spiflash",
|
|
|
|
.probe = spiflash_probe,
|
|
|
|
.remove = spiflash_remove,
|
|
|
|
};
|
|
|
|
|
|
|
|
int __init
|
|
|
|
spiflash_init (void)
|
|
|
|
{
|
|
|
|
spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL);
|
|
|
|
if (!spidata)
|
|
|
|
return (-ENXIO);
|
|
|
|
|
|
|
|
spin_lock_init(&spidata->mutex);
|
|
|
|
platform_driver_register(&spiflash_driver);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __exit
|
|
|
|
spiflash_exit (void)
|
|
|
|
{
|
|
|
|
kfree(spidata);
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init (spiflash_init);
|
|
|
|
module_exit (spiflash_exit);
|
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|
|
MODULE_AUTHOR("Atheros Communications Inc");
|
|
|
|
MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");
|
|
|
|
|