1891 lines
45 KiB
C
Raw Normal View History

/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/bitops.h>
#include <linux/switch.h>
#include <linux/delay.h>
#include <linux/phy.h>
#include <linux/clk.h>
#include <linux/reset.h>
#include <linux/lockdep.h>
#include <linux/workqueue.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/of_mdio.h>
#include <linux/mdio.h>
#include <linux/gpio.h>
#include "ar40xx.h"
static struct ar40xx_priv *ar40xx_priv;
#define MIB_DESC(_s , _o, _n) \
{ \
.size = (_s), \
.offset = (_o), \
.name = (_n), \
}
static const struct ar40xx_mib_desc ar40xx_mibs[] = {
MIB_DESC(1, AR40XX_STATS_RXBROAD, "RxBroad"),
MIB_DESC(1, AR40XX_STATS_RXPAUSE, "RxPause"),
MIB_DESC(1, AR40XX_STATS_RXMULTI, "RxMulti"),
MIB_DESC(1, AR40XX_STATS_RXFCSERR, "RxFcsErr"),
MIB_DESC(1, AR40XX_STATS_RXALIGNERR, "RxAlignErr"),
MIB_DESC(1, AR40XX_STATS_RXRUNT, "RxRunt"),
MIB_DESC(1, AR40XX_STATS_RXFRAGMENT, "RxFragment"),
MIB_DESC(1, AR40XX_STATS_RX64BYTE, "Rx64Byte"),
MIB_DESC(1, AR40XX_STATS_RX128BYTE, "Rx128Byte"),
MIB_DESC(1, AR40XX_STATS_RX256BYTE, "Rx256Byte"),
MIB_DESC(1, AR40XX_STATS_RX512BYTE, "Rx512Byte"),
MIB_DESC(1, AR40XX_STATS_RX1024BYTE, "Rx1024Byte"),
MIB_DESC(1, AR40XX_STATS_RX1518BYTE, "Rx1518Byte"),
MIB_DESC(1, AR40XX_STATS_RXMAXBYTE, "RxMaxByte"),
MIB_DESC(1, AR40XX_STATS_RXTOOLONG, "RxTooLong"),
MIB_DESC(2, AR40XX_STATS_RXGOODBYTE, "RxGoodByte"),
MIB_DESC(2, AR40XX_STATS_RXBADBYTE, "RxBadByte"),
MIB_DESC(1, AR40XX_STATS_RXOVERFLOW, "RxOverFlow"),
MIB_DESC(1, AR40XX_STATS_FILTERED, "Filtered"),
MIB_DESC(1, AR40XX_STATS_TXBROAD, "TxBroad"),
MIB_DESC(1, AR40XX_STATS_TXPAUSE, "TxPause"),
MIB_DESC(1, AR40XX_STATS_TXMULTI, "TxMulti"),
MIB_DESC(1, AR40XX_STATS_TXUNDERRUN, "TxUnderRun"),
MIB_DESC(1, AR40XX_STATS_TX64BYTE, "Tx64Byte"),
MIB_DESC(1, AR40XX_STATS_TX128BYTE, "Tx128Byte"),
MIB_DESC(1, AR40XX_STATS_TX256BYTE, "Tx256Byte"),
MIB_DESC(1, AR40XX_STATS_TX512BYTE, "Tx512Byte"),
MIB_DESC(1, AR40XX_STATS_TX1024BYTE, "Tx1024Byte"),
MIB_DESC(1, AR40XX_STATS_TX1518BYTE, "Tx1518Byte"),
MIB_DESC(1, AR40XX_STATS_TXMAXBYTE, "TxMaxByte"),
MIB_DESC(1, AR40XX_STATS_TXOVERSIZE, "TxOverSize"),
MIB_DESC(2, AR40XX_STATS_TXBYTE, "TxByte"),
MIB_DESC(1, AR40XX_STATS_TXCOLLISION, "TxCollision"),
MIB_DESC(1, AR40XX_STATS_TXABORTCOL, "TxAbortCol"),
MIB_DESC(1, AR40XX_STATS_TXMULTICOL, "TxMultiCol"),
MIB_DESC(1, AR40XX_STATS_TXSINGLECOL, "TxSingleCol"),
MIB_DESC(1, AR40XX_STATS_TXEXCDEFER, "TxExcDefer"),
MIB_DESC(1, AR40XX_STATS_TXDEFER, "TxDefer"),
MIB_DESC(1, AR40XX_STATS_TXLATECOL, "TxLateCol"),
};
static u32
ar40xx_read(struct ar40xx_priv *priv, int reg)
{
return readl(priv->hw_addr + reg);
}
static u32
ar40xx_psgmii_read(struct ar40xx_priv *priv, int reg)
{
return readl(priv->psgmii_hw_addr + reg);
}
static void
ar40xx_write(struct ar40xx_priv *priv, int reg, u32 val)
{
writel(val, priv->hw_addr + reg);
}
static u32
ar40xx_rmw(struct ar40xx_priv *priv, int reg, u32 mask, u32 val)
{
u32 ret;
ret = ar40xx_read(priv, reg);
ret &= ~mask;
ret |= val;
ar40xx_write(priv, reg, ret);
return ret;
}
static void
ar40xx_psgmii_write(struct ar40xx_priv *priv, int reg, u32 val)
{
writel(val, priv->psgmii_hw_addr + reg);
}
static void
ar40xx_phy_dbg_write(struct ar40xx_priv *priv, int phy_addr,
u16 dbg_addr, u16 dbg_data)
{
struct mii_bus *bus = priv->mii_bus;
mutex_lock(&bus->mdio_lock);
bus->write(bus, phy_addr, AR40XX_MII_ATH_DBG_ADDR, dbg_addr);
bus->write(bus, phy_addr, AR40XX_MII_ATH_DBG_DATA, dbg_data);
mutex_unlock(&bus->mdio_lock);
}
static void
ar40xx_phy_dbg_read(struct ar40xx_priv *priv, int phy_addr,
u16 dbg_addr, u16 *dbg_data)
{
struct mii_bus *bus = priv->mii_bus;
mutex_lock(&bus->mdio_lock);
bus->write(bus, phy_addr, AR40XX_MII_ATH_DBG_ADDR, dbg_addr);
*dbg_data = bus->read(bus, phy_addr, AR40XX_MII_ATH_DBG_DATA);
mutex_unlock(&bus->mdio_lock);
}
static void
ar40xx_phy_mmd_write(struct ar40xx_priv *priv, u32 phy_id,
u16 mmd_num, u16 reg_id, u16 reg_val)
{
struct mii_bus *bus = priv->mii_bus;
mutex_lock(&bus->mdio_lock);
bus->write(bus, phy_id,
AR40XX_MII_ATH_MMD_ADDR, mmd_num);
bus->write(bus, phy_id,
AR40XX_MII_ATH_MMD_DATA, reg_id);
bus->write(bus, phy_id,
AR40XX_MII_ATH_MMD_ADDR,
0x4000 | mmd_num);
bus->write(bus, phy_id,
AR40XX_MII_ATH_MMD_DATA, reg_val);
mutex_unlock(&bus->mdio_lock);
}
static u16
ar40xx_phy_mmd_read(struct ar40xx_priv *priv, u32 phy_id,
u16 mmd_num, u16 reg_id)
{
u16 value;
struct mii_bus *bus = priv->mii_bus;
mutex_lock(&bus->mdio_lock);
bus->write(bus, phy_id,
AR40XX_MII_ATH_MMD_ADDR, mmd_num);
bus->write(bus, phy_id,
AR40XX_MII_ATH_MMD_DATA, reg_id);
bus->write(bus, phy_id,
AR40XX_MII_ATH_MMD_ADDR,
0x4000 | mmd_num);
value = bus->read(bus, phy_id, AR40XX_MII_ATH_MMD_DATA);
mutex_unlock(&bus->mdio_lock);
return value;
}
/* Start of swconfig support */
static void
ar40xx_phy_poll_reset(struct ar40xx_priv *priv)
{
u32 i, in_reset, retries = 500;
struct mii_bus *bus = priv->mii_bus;
/* Assume RESET was recently issued to some or all of the phys */
in_reset = GENMASK(AR40XX_NUM_PHYS - 1, 0);
while (retries--) {
/* 1ms should be plenty of time.
* 802.3 spec allows for a max wait time of 500ms
*/
usleep_range(1000, 2000);
for (i = 0; i < AR40XX_NUM_PHYS; i++) {
int val;
/* skip devices which have completed reset */
if (!(in_reset & BIT(i)))
continue;
val = mdiobus_read(bus, i, MII_BMCR);
if (val < 0)
continue;
/* mark when phy is no longer in reset state */
if (!(val & BMCR_RESET))
in_reset &= ~BIT(i);
}
if (!in_reset)
return;
}
dev_warn(&bus->dev, "Failed to reset all phys! (in_reset: 0x%x)\n",
in_reset);
}
static void
ar40xx_phy_init(struct ar40xx_priv *priv)
{
int i;
struct mii_bus *bus;
u16 val;
bus = priv->mii_bus;
for (i = 0; i < AR40XX_NUM_PORTS - 1; i++) {
ar40xx_phy_dbg_read(priv, i, AR40XX_PHY_DEBUG_0, &val);
val &= ~AR40XX_PHY_MANU_CTRL_EN;
ar40xx_phy_dbg_write(priv, i, AR40XX_PHY_DEBUG_0, val);
mdiobus_write(bus, i,
MII_ADVERTISE, ADVERTISE_ALL |
ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
mdiobus_write(bus, i, MII_CTRL1000, ADVERTISE_1000FULL);
mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE);
}
ar40xx_phy_poll_reset(priv);
}
static void
ar40xx_port_phy_linkdown(struct ar40xx_priv *priv)
{
struct mii_bus *bus;
int i;
u16 val;
bus = priv->mii_bus;
for (i = 0; i < AR40XX_NUM_PORTS - 1; i++) {
mdiobus_write(bus, i, MII_CTRL1000, 0);
mdiobus_write(bus, i, MII_ADVERTISE, 0);
mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE);
ar40xx_phy_dbg_read(priv, i, AR40XX_PHY_DEBUG_0, &val);
val |= AR40XX_PHY_MANU_CTRL_EN;
ar40xx_phy_dbg_write(priv, i, AR40XX_PHY_DEBUG_0, val);
/* disable transmit */
ar40xx_phy_dbg_read(priv, i, AR40XX_PHY_DEBUG_2, &val);
val &= 0xf00f;
ar40xx_phy_dbg_write(priv, i, AR40XX_PHY_DEBUG_2, val);
}
}
static void
ar40xx_set_mirror_regs(struct ar40xx_priv *priv)
{
int port;
/* reset all mirror registers */
ar40xx_rmw(priv, AR40XX_REG_FWD_CTRL0,
AR40XX_FWD_CTRL0_MIRROR_PORT,
(0xF << AR40XX_FWD_CTRL0_MIRROR_PORT_S));
for (port = 0; port < AR40XX_NUM_PORTS; port++) {
ar40xx_rmw(priv, AR40XX_REG_PORT_LOOKUP(port),
AR40XX_PORT_LOOKUP_ING_MIRROR_EN, 0);
ar40xx_rmw(priv, AR40XX_REG_PORT_HOL_CTRL1(port),
AR40XX_PORT_HOL_CTRL1_EG_MIRROR_EN, 0);
}
/* now enable mirroring if necessary */
if (priv->source_port >= AR40XX_NUM_PORTS ||
priv->monitor_port >= AR40XX_NUM_PORTS ||
priv->source_port == priv->monitor_port) {
return;
}
ar40xx_rmw(priv, AR40XX_REG_FWD_CTRL0,
AR40XX_FWD_CTRL0_MIRROR_PORT,
(priv->monitor_port << AR40XX_FWD_CTRL0_MIRROR_PORT_S));
if (priv->mirror_rx)
ar40xx_rmw(priv, AR40XX_REG_PORT_LOOKUP(priv->source_port), 0,
AR40XX_PORT_LOOKUP_ING_MIRROR_EN);
if (priv->mirror_tx)
ar40xx_rmw(priv, AR40XX_REG_PORT_HOL_CTRL1(priv->source_port),
0, AR40XX_PORT_HOL_CTRL1_EG_MIRROR_EN);
}
static int
ar40xx_sw_get_ports(struct switch_dev *dev, struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
u8 ports = priv->vlan_table[val->port_vlan];
int i;
val->len = 0;
for (i = 0; i < dev->ports; i++) {
struct switch_port *p;
if (!(ports & BIT(i)))
continue;
p = &val->value.ports[val->len++];
p->id = i;
if ((priv->vlan_tagged & BIT(i)) ||
(priv->pvid[i] != val->port_vlan))
p->flags = BIT(SWITCH_PORT_FLAG_TAGGED);
else
p->flags = 0;
}
return 0;
}
static int
ar40xx_sw_set_ports(struct switch_dev *dev, struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
u8 *vt = &priv->vlan_table[val->port_vlan];
int i;
*vt = 0;
for (i = 0; i < val->len; i++) {
struct switch_port *p = &val->value.ports[i];
if (p->flags & BIT(SWITCH_PORT_FLAG_TAGGED)) {
if (val->port_vlan == priv->pvid[p->id])
priv->vlan_tagged |= BIT(p->id);
} else {
priv->vlan_tagged &= ~BIT(p->id);
priv->pvid[p->id] = val->port_vlan;
}
*vt |= BIT(p->id);
}
return 0;
}
static int
ar40xx_reg_wait(struct ar40xx_priv *priv, u32 reg, u32 mask, u32 val,
unsigned timeout)
{
int i;
for (i = 0; i < timeout; i++) {
u32 t;
t = ar40xx_read(priv, reg);
if ((t & mask) == val)
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int
ar40xx_mib_op(struct ar40xx_priv *priv, u32 op)
{
int ret;
lockdep_assert_held(&priv->mib_lock);
/* Capture the hardware statistics for all ports */
ar40xx_rmw(priv, AR40XX_REG_MIB_FUNC,
AR40XX_MIB_FUNC, (op << AR40XX_MIB_FUNC_S));
/* Wait for the capturing to complete. */
ret = ar40xx_reg_wait(priv, AR40XX_REG_MIB_FUNC,
AR40XX_MIB_BUSY, 0, 10);
return ret;
}
static void
ar40xx_mib_fetch_port_stat(struct ar40xx_priv *priv, int port, bool flush)
{
unsigned int base;
u64 *mib_stats;
int i;
u32 num_mibs = ARRAY_SIZE(ar40xx_mibs);
WARN_ON(port >= priv->dev.ports);
lockdep_assert_held(&priv->mib_lock);
base = AR40XX_REG_PORT_STATS_START +
AR40XX_REG_PORT_STATS_LEN * port;
mib_stats = &priv->mib_stats[port * num_mibs];
if (flush) {
u32 len;
len = num_mibs * sizeof(*mib_stats);
memset(mib_stats, 0, len);
return;
}
for (i = 0; i < num_mibs; i++) {
const struct ar40xx_mib_desc *mib;
u64 t;
mib = &ar40xx_mibs[i];
t = ar40xx_read(priv, base + mib->offset);
if (mib->size == 2) {
u64 hi;
hi = ar40xx_read(priv, base + mib->offset + 4);
t |= hi << 32;
}
mib_stats[i] += t;
}
}
static int
ar40xx_mib_capture(struct ar40xx_priv *priv)
{
return ar40xx_mib_op(priv, AR40XX_MIB_FUNC_CAPTURE);
}
static int
ar40xx_mib_flush(struct ar40xx_priv *priv)
{
return ar40xx_mib_op(priv, AR40XX_MIB_FUNC_FLUSH);
}
static int
ar40xx_sw_set_reset_mibs(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
unsigned int len;
int ret;
u32 num_mibs = ARRAY_SIZE(ar40xx_mibs);
mutex_lock(&priv->mib_lock);
len = priv->dev.ports * num_mibs * sizeof(*priv->mib_stats);
memset(priv->mib_stats, 0, len);
ret = ar40xx_mib_flush(priv);
mutex_unlock(&priv->mib_lock);
return ret;
}
static int
ar40xx_sw_set_vlan(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
priv->vlan = !!val->value.i;
return 0;
}
static int
ar40xx_sw_get_vlan(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
val->value.i = priv->vlan;
return 0;
}
static int
ar40xx_sw_set_mirror_rx_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
mutex_lock(&priv->reg_mutex);
priv->mirror_rx = !!val->value.i;
ar40xx_set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_get_mirror_rx_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
mutex_lock(&priv->reg_mutex);
val->value.i = priv->mirror_rx;
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_set_mirror_tx_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
mutex_lock(&priv->reg_mutex);
priv->mirror_tx = !!val->value.i;
ar40xx_set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_get_mirror_tx_enable(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
mutex_lock(&priv->reg_mutex);
val->value.i = priv->mirror_tx;
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_set_mirror_monitor_port(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
mutex_lock(&priv->reg_mutex);
priv->monitor_port = val->value.i;
ar40xx_set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_get_mirror_monitor_port(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
mutex_lock(&priv->reg_mutex);
val->value.i = priv->monitor_port;
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_set_mirror_source_port(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
mutex_lock(&priv->reg_mutex);
priv->source_port = val->value.i;
ar40xx_set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_get_mirror_source_port(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
mutex_lock(&priv->reg_mutex);
val->value.i = priv->source_port;
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_set_linkdown(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
if (val->value.i == 1)
ar40xx_port_phy_linkdown(priv);
else
ar40xx_phy_init(priv);
return 0;
}
static int
ar40xx_sw_set_port_reset_mib(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
int port;
int ret;
port = val->port_vlan;
if (port >= dev->ports)
return -EINVAL;
mutex_lock(&priv->mib_lock);
ret = ar40xx_mib_capture(priv);
if (ret)
goto unlock;
ar40xx_mib_fetch_port_stat(priv, port, true);
unlock:
mutex_unlock(&priv->mib_lock);
return ret;
}
static int
ar40xx_sw_get_port_mib(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
u64 *mib_stats;
int port;
int ret;
char *buf = priv->buf;
int i, len = 0;
u32 num_mibs = ARRAY_SIZE(ar40xx_mibs);
port = val->port_vlan;
if (port >= dev->ports)
return -EINVAL;
mutex_lock(&priv->mib_lock);
ret = ar40xx_mib_capture(priv);
if (ret)
goto unlock;
ar40xx_mib_fetch_port_stat(priv, port, false);
len += snprintf(buf + len, sizeof(priv->buf) - len,
"Port %d MIB counters\n",
port);
mib_stats = &priv->mib_stats[port * num_mibs];
for (i = 0; i < num_mibs; i++)
len += snprintf(buf + len, sizeof(priv->buf) - len,
"%-12s: %llu\n",
ar40xx_mibs[i].name,
mib_stats[i]);
val->value.s = buf;
val->len = len;
unlock:
mutex_unlock(&priv->mib_lock);
return ret;
}
static int
ar40xx_sw_set_vid(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
priv->vlan_id[val->port_vlan] = val->value.i;
return 0;
}
static int
ar40xx_sw_get_vid(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
val->value.i = priv->vlan_id[val->port_vlan];
return 0;
}
static int
ar40xx_sw_get_pvid(struct switch_dev *dev, int port, int *vlan)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
*vlan = priv->pvid[port];
return 0;
}
static int
ar40xx_sw_set_pvid(struct switch_dev *dev, int port, int vlan)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
/* make sure no invalid PVIDs get set */
if (vlan >= dev->vlans)
return -EINVAL;
priv->pvid[port] = vlan;
return 0;
}
static void
ar40xx_read_port_link(struct ar40xx_priv *priv, int port,
struct switch_port_link *link)
{
u32 status;
u32 speed;
memset(link, 0, sizeof(*link));
status = ar40xx_read(priv, AR40XX_REG_PORT_STATUS(port));
link->aneg = !!(status & AR40XX_PORT_AUTO_LINK_EN);
if (link->aneg || (port != AR40XX_PORT_CPU))
link->link = !!(status & AR40XX_PORT_STATUS_LINK_UP);
else
link->link = true;
if (!link->link)
return;
link->duplex = !!(status & AR40XX_PORT_DUPLEX);
link->tx_flow = !!(status & AR40XX_PORT_STATUS_TXFLOW);
link->rx_flow = !!(status & AR40XX_PORT_STATUS_RXFLOW);
speed = (status & AR40XX_PORT_SPEED) >>
AR40XX_PORT_STATUS_SPEED_S;
switch (speed) {
case AR40XX_PORT_SPEED_10M:
link->speed = SWITCH_PORT_SPEED_10;
break;
case AR40XX_PORT_SPEED_100M:
link->speed = SWITCH_PORT_SPEED_100;
break;
case AR40XX_PORT_SPEED_1000M:
link->speed = SWITCH_PORT_SPEED_1000;
break;
default:
link->speed = SWITCH_PORT_SPEED_UNKNOWN;
break;
}
}
static int
ar40xx_sw_get_port_link(struct switch_dev *dev, int port,
struct switch_port_link *link)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
ar40xx_read_port_link(priv, port, link);
return 0;
}
static const struct switch_attr ar40xx_sw_attr_globals[] = {
{
.type = SWITCH_TYPE_INT,
.name = "enable_vlan",
.description = "Enable VLAN mode",
.set = ar40xx_sw_set_vlan,
.get = ar40xx_sw_get_vlan,
.max = 1
},
{
.type = SWITCH_TYPE_NOVAL,
.name = "reset_mibs",
.description = "Reset all MIB counters",
.set = ar40xx_sw_set_reset_mibs,
},
{
.type = SWITCH_TYPE_INT,
.name = "enable_mirror_rx",
.description = "Enable mirroring of RX packets",
.set = ar40xx_sw_set_mirror_rx_enable,
.get = ar40xx_sw_get_mirror_rx_enable,
.max = 1
},
{
.type = SWITCH_TYPE_INT,
.name = "enable_mirror_tx",
.description = "Enable mirroring of TX packets",
.set = ar40xx_sw_set_mirror_tx_enable,
.get = ar40xx_sw_get_mirror_tx_enable,
.max = 1
},
{
.type = SWITCH_TYPE_INT,
.name = "mirror_monitor_port",
.description = "Mirror monitor port",
.set = ar40xx_sw_set_mirror_monitor_port,
.get = ar40xx_sw_get_mirror_monitor_port,
.max = AR40XX_NUM_PORTS - 1
},
{
.type = SWITCH_TYPE_INT,
.name = "mirror_source_port",
.description = "Mirror source port",
.set = ar40xx_sw_set_mirror_source_port,
.get = ar40xx_sw_get_mirror_source_port,
.max = AR40XX_NUM_PORTS - 1
},
{
.type = SWITCH_TYPE_INT,
.name = "linkdown",
.description = "Link down all the PHYs",
.set = ar40xx_sw_set_linkdown,
.max = 1
},
};
static const struct switch_attr ar40xx_sw_attr_port[] = {
{
.type = SWITCH_TYPE_NOVAL,
.name = "reset_mib",
.description = "Reset single port MIB counters",
.set = ar40xx_sw_set_port_reset_mib,
},
{
.type = SWITCH_TYPE_STRING,
.name = "mib",
.description = "Get port's MIB counters",
.set = NULL,
.get = ar40xx_sw_get_port_mib,
},
};
const struct switch_attr ar40xx_sw_attr_vlan[] = {
{
.type = SWITCH_TYPE_INT,
.name = "vid",
.description = "VLAN ID (0-4094)",
.set = ar40xx_sw_set_vid,
.get = ar40xx_sw_get_vid,
.max = 4094,
},
};
/* End of swconfig support */
static int
ar40xx_wait_bit(struct ar40xx_priv *priv, int reg, u32 mask, u32 val)
{
int timeout = 20;
u32 t;
while (1) {
t = ar40xx_read(priv, reg);
if ((t & mask) == val)
return 0;
if (timeout-- <= 0)
break;
usleep_range(10, 20);
}
pr_err("ar40xx: timeout for reg %08x: %08x & %08x != %08x\n",
(unsigned int)reg, t, mask, val);
return -ETIMEDOUT;
}
static int
ar40xx_atu_flush(struct ar40xx_priv *priv)
{
int ret;
ret = ar40xx_wait_bit(priv, AR40XX_REG_ATU_FUNC,
AR40XX_ATU_FUNC_BUSY, 0);
if (!ret)
ar40xx_write(priv, AR40XX_REG_ATU_FUNC,
AR40XX_ATU_FUNC_OP_FLUSH |
AR40XX_ATU_FUNC_BUSY);
return ret;
}
static void
ar40xx_ess_reset(struct ar40xx_priv *priv)
{
reset_control_assert(priv->ess_rst);
mdelay(10);
reset_control_deassert(priv->ess_rst);
/* Waiting for all inner tables init done.
* It cost 5~10ms.
*/
mdelay(10);
pr_info("ESS reset ok!\n");
}
/* Start of psgmii self test */
static void
ar40xx_malibu_psgmii_ess_reset(struct ar40xx_priv *priv)
{
u32 n;
struct mii_bus *bus = priv->mii_bus;
/* reset phy psgmii */
/* fix phy psgmii RX 20bit */
mdiobus_write(bus, 5, 0x0, 0x005b);
/* reset phy psgmii */
mdiobus_write(bus, 5, 0x0, 0x001b);
/* release reset phy psgmii */
mdiobus_write(bus, 5, 0x0, 0x005b);
for (n = 0; n < AR40XX_PSGMII_CALB_NUM; n++) {
u16 status;
status = ar40xx_phy_mmd_read(priv, 5, 1, 0x28);
if (status & BIT(0))
break;
/* Polling interval to check PSGMII PLL in malibu is ready
* the worst time is 8.67ms
* for 25MHz reference clock
* [512+(128+2048)*49]*80ns+100us
*/
mdelay(2);
}
/*check malibu psgmii calibration done end..*/
/*freeze phy psgmii RX CDR*/
mdiobus_write(bus, 5, 0x1a, 0x2230);
ar40xx_ess_reset(priv);
/*check psgmii calibration done start*/
for (n = 0; n < AR40XX_PSGMII_CALB_NUM; n++) {
u32 status;
status = ar40xx_psgmii_read(priv, 0xa0);
if (status & BIT(0))
break;
/* Polling interval to check PSGMII PLL in ESS is ready */
mdelay(2);
}
/* check dakota psgmii calibration done end..*/
/* relesae phy psgmii RX CDR */
mdiobus_write(bus, 5, 0x1a, 0x3230);
/* release phy psgmii RX 20bit */
mdiobus_write(bus, 5, 0x0, 0x005f);
}
static void
ar40xx_psgmii_single_phy_testing(struct ar40xx_priv *priv, int phy)
{
int j;
u32 tx_ok, tx_error;
u32 rx_ok, rx_error;
u32 tx_ok_high16;
u32 rx_ok_high16;
u32 tx_all_ok, rx_all_ok;
struct mii_bus *bus = priv->mii_bus;
mdiobus_write(bus, phy, 0x0, 0x9000);
mdiobus_write(bus, phy, 0x0, 0x4140);
for (j = 0; j < AR40XX_PSGMII_CALB_NUM; j++) {
u16 status;
status = mdiobus_read(bus, phy, 0x11);
if (status & AR40XX_PHY_SPEC_STATUS_LINK)
break;
/* the polling interval to check if the PHY link up or not
* maxwait_timer: 750 ms +/-10 ms
* minwait_timer : 1 us +/- 0.1us
* time resides in minwait_timer ~ maxwait_timer
* see IEEE 802.3 section 40.4.5.2
*/
mdelay(8);
}
/* enable check */
ar40xx_phy_mmd_write(priv, phy, 7, 0x8029, 0x0000);
ar40xx_phy_mmd_write(priv, phy, 7, 0x8029, 0x0003);
/* start traffic */
ar40xx_phy_mmd_write(priv, phy, 7, 0x8020, 0xa000);
/* wait for all traffic end
* 4096(pkt num)*1524(size)*8ns(125MHz)=49.9ms
*/
mdelay(50);
/* check counter */
tx_ok = ar40xx_phy_mmd_read(priv, phy, 7, 0x802e);
tx_ok_high16 = ar40xx_phy_mmd_read(priv, phy, 7, 0x802d);
tx_error = ar40xx_phy_mmd_read(priv, phy, 7, 0x802f);
rx_ok = ar40xx_phy_mmd_read(priv, phy, 7, 0x802b);
rx_ok_high16 = ar40xx_phy_mmd_read(priv, phy, 7, 0x802a);
rx_error = ar40xx_phy_mmd_read(priv, phy, 7, 0x802c);
tx_all_ok = tx_ok + (tx_ok_high16 << 16);
rx_all_ok = rx_ok + (rx_ok_high16 << 16);
if (tx_all_ok == 0x1000 && tx_error == 0) {
/* success */
priv->phy_t_status &= (~BIT(phy));
} else {
pr_info("PHY %d single test PSGMII issue happen!\n", phy);
priv->phy_t_status |= BIT(phy);
}
mdiobus_write(bus, phy, 0x0, 0x1840);
}
static void
ar40xx_psgmii_all_phy_testing(struct ar40xx_priv *priv)
{
int phy, j;
struct mii_bus *bus = priv->mii_bus;
mdiobus_write(bus, 0x1f, 0x0, 0x9000);
mdiobus_write(bus, 0x1f, 0x0, 0x4140);
for (j = 0; j < AR40XX_PSGMII_CALB_NUM; j++) {
for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) {
u16 status;
status = mdiobus_read(bus, phy, 0x11);
if (!(status & BIT(10)))
break;
}
if (phy >= (AR40XX_NUM_PORTS - 1))
break;
/* The polling interva to check if the PHY link up or not */
mdelay(8);
}
/* enable check */
ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8029, 0x0000);
ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8029, 0x0003);
/* start traffic */
ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8020, 0xa000);
/* wait for all traffic end
* 4096(pkt num)*1524(size)*8ns(125MHz)=49.9ms
*/
mdelay(50);
for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) {
u32 tx_ok, tx_error;
u32 rx_ok, rx_error;
u32 tx_ok_high16;
u32 rx_ok_high16;
u32 tx_all_ok, rx_all_ok;
/* check counter */
tx_ok = ar40xx_phy_mmd_read(priv, phy, 7, 0x802e);
tx_ok_high16 = ar40xx_phy_mmd_read(priv, phy, 7, 0x802d);
tx_error = ar40xx_phy_mmd_read(priv, phy, 7, 0x802f);
rx_ok = ar40xx_phy_mmd_read(priv, phy, 7, 0x802b);
rx_ok_high16 = ar40xx_phy_mmd_read(priv, phy, 7, 0x802a);
rx_error = ar40xx_phy_mmd_read(priv, phy, 7, 0x802c);
tx_all_ok = tx_ok + (tx_ok_high16<<16);
rx_all_ok = rx_ok + (rx_ok_high16<<16);
if (tx_all_ok == 0x1000 && tx_error == 0) {
/* success */
priv->phy_t_status &= ~BIT(phy + 8);
} else {
pr_info("PHY%d test see issue!\n", phy);
priv->phy_t_status |= BIT(phy + 8);
}
}
pr_debug("PHY all test 0x%x \r\n", priv->phy_t_status);
}
void
ar40xx_psgmii_self_test(struct ar40xx_priv *priv)
{
u32 i, phy;
struct mii_bus *bus = priv->mii_bus;
ar40xx_malibu_psgmii_ess_reset(priv);
/* switch to access MII reg for copper */
mdiobus_write(bus, 4, 0x1f, 0x8500);
for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) {
/*enable phy mdio broadcast write*/
ar40xx_phy_mmd_write(priv, phy, 7, 0x8028, 0x801f);
}
/* force no link by power down */
mdiobus_write(bus, 0x1f, 0x0, 0x1840);
/*packet number*/
ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8021, 0x1000);
ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8062, 0x05e0);
/*fix mdi status */
mdiobus_write(bus, 0x1f, 0x10, 0x6800);
for (i = 0; i < AR40XX_PSGMII_CALB_NUM; i++) {
priv->phy_t_status = 0;
for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) {
ar40xx_rmw(priv, AR40XX_REG_PORT_LOOKUP(phy + 1),
AR40XX_PORT_LOOKUP_LOOPBACK,
AR40XX_PORT_LOOKUP_LOOPBACK);
}
for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++)
ar40xx_psgmii_single_phy_testing(priv, phy);
ar40xx_psgmii_all_phy_testing(priv);
if (priv->phy_t_status)
ar40xx_malibu_psgmii_ess_reset(priv);
else
break;
}
if (i >= AR40XX_PSGMII_CALB_NUM)
pr_info("PSGMII cannot recover\n");
else
pr_debug("PSGMII recovered after %d times reset\n", i);
/* configuration recover */
/* packet number */
ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8021, 0x0);
/* disable check */
ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8029, 0x0);
/* disable traffic */
ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8020, 0x0);
}
void
ar40xx_psgmii_self_test_clean(struct ar40xx_priv *priv)
{
int phy;
struct mii_bus *bus = priv->mii_bus;
/* disable phy internal loopback */
mdiobus_write(bus, 0x1f, 0x10, 0x6860);
mdiobus_write(bus, 0x1f, 0x0, 0x9040);
for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) {
/* disable mac loop back */
ar40xx_rmw(priv, AR40XX_REG_PORT_LOOKUP(phy + 1),
AR40XX_PORT_LOOKUP_LOOPBACK, 0);
/* disable phy mdio broadcast write */
ar40xx_phy_mmd_write(priv, phy, 7, 0x8028, 0x001f);
}
/* clear fdb entry */
ar40xx_atu_flush(priv);
}
/* End of psgmii self test */
static void
ar40xx_mac_mode_init(struct ar40xx_priv *priv, u32 mode)
{
if (mode == PORT_WRAPPER_PSGMII) {
ar40xx_psgmii_write(priv, AR40XX_PSGMII_MODE_CONTROL, 0x2200);
ar40xx_psgmii_write(priv, AR40XX_PSGMIIPHY_TX_CONTROL, 0x8380);
}
}
static
int ar40xx_cpuport_setup(struct ar40xx_priv *priv)
{
u32 t;
t = AR40XX_PORT_STATUS_TXFLOW |
AR40XX_PORT_STATUS_RXFLOW |
AR40XX_PORT_TXHALF_FLOW |
AR40XX_PORT_DUPLEX |
AR40XX_PORT_SPEED_1000M;
ar40xx_write(priv, AR40XX_REG_PORT_STATUS(0), t);
usleep_range(10, 20);
t |= AR40XX_PORT_TX_EN |
AR40XX_PORT_RX_EN;
ar40xx_write(priv, AR40XX_REG_PORT_STATUS(0), t);
return 0;
}
static void
ar40xx_init_port(struct ar40xx_priv *priv, int port)
{
u32 t;
ar40xx_write(priv, AR40XX_REG_PORT_STATUS(port), 0);
ar40xx_write(priv, AR40XX_REG_PORT_HEADER(port), 0);
ar40xx_write(priv, AR40XX_REG_PORT_VLAN0(port), 0);
t = AR40XX_PORT_VLAN1_OUT_MODE_UNTOUCH << AR40XX_PORT_VLAN1_OUT_MODE_S;
ar40xx_write(priv, AR40XX_REG_PORT_VLAN1(port), t);
t = AR40XX_PORT_LOOKUP_LEARN;
t |= AR40XX_PORT_STATE_FORWARD << AR40XX_PORT_LOOKUP_STATE_S;
ar40xx_write(priv, AR40XX_REG_PORT_LOOKUP(port), t);
}
void
ar40xx_init_globals(struct ar40xx_priv *priv)
{
u32 t;
/* enable CPU port and disable mirror port */
t = AR40XX_FWD_CTRL0_CPU_PORT_EN |
AR40XX_FWD_CTRL0_MIRROR_PORT;
ar40xx_write(priv, AR40XX_REG_FWD_CTRL0, t);
/* forward multicast and broadcast frames to CPU */
t = (AR40XX_PORTS_ALL << AR40XX_FWD_CTRL1_UC_FLOOD_S) |
(AR40XX_PORTS_ALL << AR40XX_FWD_CTRL1_MC_FLOOD_S) |
(AR40XX_PORTS_ALL << AR40XX_FWD_CTRL1_BC_FLOOD_S);
ar40xx_write(priv, AR40XX_REG_FWD_CTRL1, t);
/* enable jumbo frames */
ar40xx_rmw(priv, AR40XX_REG_MAX_FRAME_SIZE,
AR40XX_MAX_FRAME_SIZE_MTU, 9018 + 8 + 2);
/* Enable MIB counters */
ar40xx_rmw(priv, AR40XX_REG_MODULE_EN, 0,
AR40XX_MODULE_EN_MIB);
/* Disable AZ */
ar40xx_write(priv, AR40XX_REG_EEE_CTRL, 0);
/* set flowctrl thershold for cpu port */
t = (AR40XX_PORT0_FC_THRESH_ON_DFLT << 16) |
AR40XX_PORT0_FC_THRESH_OFF_DFLT;
ar40xx_write(priv, AR40XX_REG_PORT_FLOWCTRL_THRESH(0), t);
}
static int
ar40xx_hw_init(struct ar40xx_priv *priv)
{
u32 i;
ar40xx_ess_reset(priv);
if (!priv->mii_bus)
return -1;
ar40xx_psgmii_self_test(priv);
ar40xx_psgmii_self_test_clean(priv);
ar40xx_mac_mode_init(priv, priv->mac_mode);
for (i = 0; i < priv->dev.ports; i++)
ar40xx_init_port(priv, i);
ar40xx_init_globals(priv);
return 0;
}
/* Start of qm error WAR */
static
int ar40xx_force_1g_full(struct ar40xx_priv *priv, u32 port_id)
{
u32 reg;
if (port_id < 0 || port_id > 6)
return -1;
reg = AR40XX_REG_PORT_STATUS(port_id);
return ar40xx_rmw(priv, reg, AR40XX_PORT_SPEED,
(AR40XX_PORT_SPEED_1000M | AR40XX_PORT_DUPLEX));
}
static
int ar40xx_get_qm_status(struct ar40xx_priv *priv,
u32 port_id, u32 *qm_buffer_err)
{
u32 reg;
u32 qm_val;
if (port_id < 1 || port_id > 5) {
*qm_buffer_err = 0;
return -1;
}
if (port_id < 4) {
reg = AR40XX_REG_QM_PORT0_3_QNUM;
ar40xx_write(priv, AR40XX_REG_QM_DEBUG_ADDR, reg);
qm_val = ar40xx_read(priv, AR40XX_REG_QM_DEBUG_VALUE);
/* every 8 bits for each port */
*qm_buffer_err = (qm_val >> (port_id * 8)) & 0xFF;
} else {
reg = AR40XX_REG_QM_PORT4_6_QNUM;
ar40xx_write(priv, AR40XX_REG_QM_DEBUG_ADDR, reg);
qm_val = ar40xx_read(priv, AR40XX_REG_QM_DEBUG_VALUE);
/* every 8 bits for each port */
*qm_buffer_err = (qm_val >> ((port_id-4) * 8)) & 0xFF;
}
return 0;
}
static void
ar40xx_sw_mac_polling_task(struct ar40xx_priv *priv)
{
static int task_count;
u32 i;
u32 reg, value;
u32 link, speed, duplex;
u32 qm_buffer_err;
u16 port_phy_status[AR40XX_NUM_PORTS];
static u32 qm_err_cnt[AR40XX_NUM_PORTS] = {0, 0, 0, 0, 0, 0};
static u32 link_cnt[AR40XX_NUM_PORTS] = {0, 0, 0, 0, 0, 0};
struct mii_bus *bus = NULL;
if (!priv || !priv->mii_bus)
return;
bus = priv->mii_bus;
++task_count;
for (i = 1; i < AR40XX_NUM_PORTS; ++i) {
port_phy_status[i] =
mdiobus_read(bus, i-1, AR40XX_PHY_SPEC_STATUS);
speed = FIELD_GET(AR40XX_PHY_SPEC_STATUS_SPEED,
port_phy_status[i]);
link = FIELD_GET(AR40XX_PHY_SPEC_STATUS_LINK,
port_phy_status[i]);
duplex = FIELD_GET(AR40XX_PHY_SPEC_STATUS_DUPLEX,
port_phy_status[i]);
if (link != priv->ar40xx_port_old_link[i]) {
++link_cnt[i];
/* Up --> Down */
if ((priv->ar40xx_port_old_link[i] ==
AR40XX_PORT_LINK_UP) &&
(link == AR40XX_PORT_LINK_DOWN)) {
/* LINK_EN disable(MAC force mode)*/
reg = AR40XX_REG_PORT_STATUS(i);
ar40xx_rmw(priv, reg,
AR40XX_PORT_AUTO_LINK_EN, 0);
/* Check queue buffer */
qm_err_cnt[i] = 0;
ar40xx_get_qm_status(priv, i, &qm_buffer_err);
if (qm_buffer_err) {
priv->ar40xx_port_qm_buf[i] =
AR40XX_QM_NOT_EMPTY;
} else {
u16 phy_val = 0;
priv->ar40xx_port_qm_buf[i] =
AR40XX_QM_EMPTY;
ar40xx_force_1g_full(priv, i);
/* Ref:QCA8337 Datasheet,Clearing
* MENU_CTRL_EN prevents phy to
* stuck in 100BT mode when
* bringing up the link
*/
ar40xx_phy_dbg_read(priv, i-1,
AR40XX_PHY_DEBUG_0,
&phy_val);
phy_val &= (~AR40XX_PHY_MANU_CTRL_EN);
ar40xx_phy_dbg_write(priv, i-1,
AR40XX_PHY_DEBUG_0,
phy_val);
}
priv->ar40xx_port_old_link[i] = link;
} else if ((priv->ar40xx_port_old_link[i] ==
AR40XX_PORT_LINK_DOWN) &&
(link == AR40XX_PORT_LINK_UP)) {
/* Down --> Up */
if (priv->port_link_up[i] < 1) {
++priv->port_link_up[i];
} else {
/* Change port status */
reg = AR40XX_REG_PORT_STATUS(i);
value = ar40xx_read(priv, reg);
priv->port_link_up[i] = 0;
value &= ~(AR40XX_PORT_DUPLEX |
AR40XX_PORT_SPEED);
value |= speed | (duplex ? BIT(6) : 0);
ar40xx_write(priv, reg, value);
/* clock switch need such time
* to avoid glitch
*/
usleep_range(100, 200);
value |= AR40XX_PORT_AUTO_LINK_EN;
ar40xx_write(priv, reg, value);
/* HW need such time to make sure link
* stable before enable MAC
*/
usleep_range(100, 200);
if (speed == AR40XX_PORT_SPEED_100M) {
u16 phy_val = 0;
/* Enable @100M, if down to 10M
* clock will change smoothly
*/
ar40xx_phy_dbg_read(priv, i-1,
0,
&phy_val);
phy_val |=
AR40XX_PHY_MANU_CTRL_EN;
ar40xx_phy_dbg_write(priv, i-1,
0,
phy_val);
}
priv->ar40xx_port_old_link[i] = link;
}
}
}
if (priv->ar40xx_port_qm_buf[i] == AR40XX_QM_NOT_EMPTY) {
/* Check QM */
ar40xx_get_qm_status(priv, i, &qm_buffer_err);
if (qm_buffer_err) {
++qm_err_cnt[i];
} else {
priv->ar40xx_port_qm_buf[i] =
AR40XX_QM_EMPTY;
qm_err_cnt[i] = 0;
ar40xx_force_1g_full(priv, i);
}
}
}
}
static void
ar40xx_qm_err_check_work_task(struct work_struct *work)
{
struct ar40xx_priv *priv = container_of(work, struct ar40xx_priv,
qm_dwork.work);
mutex_lock(&priv->qm_lock);
ar40xx_sw_mac_polling_task(priv);
mutex_unlock(&priv->qm_lock);
schedule_delayed_work(&priv->qm_dwork,
msecs_to_jiffies(AR40XX_QM_WORK_DELAY));
}
static int
ar40xx_qm_err_check_work_start(struct ar40xx_priv *priv)
{
mutex_init(&priv->qm_lock);
INIT_DELAYED_WORK(&priv->qm_dwork, ar40xx_qm_err_check_work_task);
schedule_delayed_work(&priv->qm_dwork,
msecs_to_jiffies(AR40XX_QM_WORK_DELAY));
return 0;
}
/* End of qm error WAR */
static int
ar40xx_vlan_init(struct ar40xx_priv *priv)
{
int port;
unsigned long bmp;
/* By default Enable VLAN */
priv->vlan = 1;
priv->vlan_table[AR40XX_LAN_VLAN] = priv->cpu_bmp | priv->lan_bmp;
priv->vlan_table[AR40XX_WAN_VLAN] = priv->cpu_bmp | priv->wan_bmp;
priv->vlan_tagged = priv->cpu_bmp;
bmp = priv->lan_bmp;
for_each_set_bit(port, &bmp, AR40XX_NUM_PORTS)
priv->pvid[port] = AR40XX_LAN_VLAN;
bmp = priv->wan_bmp;
for_each_set_bit(port, &bmp, AR40XX_NUM_PORTS)
priv->pvid[port] = AR40XX_WAN_VLAN;
return 0;
}
static void
ar40xx_mib_work_func(struct work_struct *work)
{
struct ar40xx_priv *priv;
int err;
priv = container_of(work, struct ar40xx_priv, mib_work.work);
mutex_lock(&priv->mib_lock);
err = ar40xx_mib_capture(priv);
if (err)
goto next_port;
ar40xx_mib_fetch_port_stat(priv, priv->mib_next_port, false);
next_port:
priv->mib_next_port++;
if (priv->mib_next_port >= priv->dev.ports)
priv->mib_next_port = 0;
mutex_unlock(&priv->mib_lock);
schedule_delayed_work(&priv->mib_work,
msecs_to_jiffies(AR40XX_MIB_WORK_DELAY));
}
static void
ar40xx_setup_port(struct ar40xx_priv *priv, int port, u32 members)
{
u32 t;
u32 egress, ingress;
u32 pvid = priv->vlan_id[priv->pvid[port]];
if (priv->vlan) {
egress = AR40XX_PORT_VLAN1_OUT_MODE_UNMOD;
ingress = AR40XX_IN_SECURE;
} else {
egress = AR40XX_PORT_VLAN1_OUT_MODE_UNTOUCH;
ingress = AR40XX_IN_PORT_ONLY;
}
t = pvid << AR40XX_PORT_VLAN0_DEF_SVID_S;
t |= pvid << AR40XX_PORT_VLAN0_DEF_CVID_S;
ar40xx_write(priv, AR40XX_REG_PORT_VLAN0(port), t);
t = AR40XX_PORT_VLAN1_PORT_VLAN_PROP;
t |= egress << AR40XX_PORT_VLAN1_OUT_MODE_S;
ar40xx_write(priv, AR40XX_REG_PORT_VLAN1(port), t);
t = members;
t |= AR40XX_PORT_LOOKUP_LEARN;
t |= ingress << AR40XX_PORT_LOOKUP_IN_MODE_S;
t |= AR40XX_PORT_STATE_FORWARD << AR40XX_PORT_LOOKUP_STATE_S;
ar40xx_write(priv, AR40XX_REG_PORT_LOOKUP(port), t);
}
static void
ar40xx_vtu_op(struct ar40xx_priv *priv, u32 op, u32 val)
{
if (ar40xx_wait_bit(priv, AR40XX_REG_VTU_FUNC1,
AR40XX_VTU_FUNC1_BUSY, 0))
return;
if ((op & AR40XX_VTU_FUNC1_OP) == AR40XX_VTU_FUNC1_OP_LOAD)
ar40xx_write(priv, AR40XX_REG_VTU_FUNC0, val);
op |= AR40XX_VTU_FUNC1_BUSY;
ar40xx_write(priv, AR40XX_REG_VTU_FUNC1, op);
}
static void
ar40xx_vtu_load_vlan(struct ar40xx_priv *priv, u32 vid, u32 port_mask)
{
u32 op;
u32 val;
int i;
op = AR40XX_VTU_FUNC1_OP_LOAD | (vid << AR40XX_VTU_FUNC1_VID_S);
val = AR40XX_VTU_FUNC0_VALID | AR40XX_VTU_FUNC0_IVL;
for (i = 0; i < AR40XX_NUM_PORTS; i++) {
u32 mode;
if ((port_mask & BIT(i)) == 0)
mode = AR40XX_VTU_FUNC0_EG_MODE_NOT;
else if (priv->vlan == 0)
mode = AR40XX_VTU_FUNC0_EG_MODE_KEEP;
else if ((priv->vlan_tagged & BIT(i)) ||
(priv->vlan_id[priv->pvid[i]] != vid))
mode = AR40XX_VTU_FUNC0_EG_MODE_TAG;
else
mode = AR40XX_VTU_FUNC0_EG_MODE_UNTAG;
val |= mode << AR40XX_VTU_FUNC0_EG_MODE_S(i);
}
ar40xx_vtu_op(priv, op, val);
}
static void
ar40xx_vtu_flush(struct ar40xx_priv *priv)
{
ar40xx_vtu_op(priv, AR40XX_VTU_FUNC1_OP_FLUSH, 0);
}
static int
ar40xx_sw_hw_apply(struct switch_dev *dev)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
u8 portmask[AR40XX_NUM_PORTS];
int i, j;
mutex_lock(&priv->reg_mutex);
/* flush all vlan entries */
ar40xx_vtu_flush(priv);
memset(portmask, 0, sizeof(portmask));
if (priv->vlan) {
for (j = 0; j < AR40XX_MAX_VLANS; j++) {
u8 vp = priv->vlan_table[j];
if (!vp)
continue;
for (i = 0; i < dev->ports; i++) {
u8 mask = BIT(i);
if (vp & mask)
portmask[i] |= vp & ~mask;
}
ar40xx_vtu_load_vlan(priv, priv->vlan_id[j],
priv->vlan_table[j]);
}
} else {
/* 8021q vlan disabled */
for (i = 0; i < dev->ports; i++) {
if (i == AR40XX_PORT_CPU)
continue;
portmask[i] = BIT(AR40XX_PORT_CPU);
portmask[AR40XX_PORT_CPU] |= BIT(i);
}
}
/* update the port destination mask registers and tag settings */
for (i = 0; i < dev->ports; i++)
ar40xx_setup_port(priv, i, portmask[i]);
ar40xx_set_mirror_regs(priv);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar40xx_sw_reset_switch(struct switch_dev *dev)
{
struct ar40xx_priv *priv = swdev_to_ar40xx(dev);
int i, rv;
mutex_lock(&priv->reg_mutex);
memset(&priv->vlan, 0, sizeof(struct ar40xx_priv) -
offsetof(struct ar40xx_priv, vlan));
for (i = 0; i < AR40XX_MAX_VLANS; i++)
priv->vlan_id[i] = i;
ar40xx_vlan_init(priv);
priv->mirror_rx = false;
priv->mirror_tx = false;
priv->source_port = 0;
priv->monitor_port = 0;
mutex_unlock(&priv->reg_mutex);
rv = ar40xx_sw_hw_apply(dev);
return rv;
}
static int
ar40xx_start(struct ar40xx_priv *priv)
{
int ret;
ret = ar40xx_hw_init(priv);
if (ret)
return ret;
ret = ar40xx_sw_reset_switch(&priv->dev);
if (ret)
return ret;
/* at last, setup cpu port */
ret = ar40xx_cpuport_setup(priv);
if (ret)
return ret;
schedule_delayed_work(&priv->mib_work,
msecs_to_jiffies(AR40XX_MIB_WORK_DELAY));
ar40xx_qm_err_check_work_start(priv);
return 0;
}
static const struct switch_dev_ops ar40xx_sw_ops = {
.attr_global = {
.attr = ar40xx_sw_attr_globals,
.n_attr = ARRAY_SIZE(ar40xx_sw_attr_globals),
},
.attr_port = {
.attr = ar40xx_sw_attr_port,
.n_attr = ARRAY_SIZE(ar40xx_sw_attr_port),
},
.attr_vlan = {
.attr = ar40xx_sw_attr_vlan,
.n_attr = ARRAY_SIZE(ar40xx_sw_attr_vlan),
},
.get_port_pvid = ar40xx_sw_get_pvid,
.set_port_pvid = ar40xx_sw_set_pvid,
.get_vlan_ports = ar40xx_sw_get_ports,
.set_vlan_ports = ar40xx_sw_set_ports,
.apply_config = ar40xx_sw_hw_apply,
.reset_switch = ar40xx_sw_reset_switch,
.get_port_link = ar40xx_sw_get_port_link,
};
/* Platform driver probe function */
static int ar40xx_probe(struct platform_device *pdev)
{
struct device_node *switch_node;
struct device_node *psgmii_node;
struct device_node *mdio_node;
const __be32 *mac_mode;
struct clk *ess_clk;
struct switch_dev *swdev;
struct ar40xx_priv *priv;
u32 len;
u32 num_mibs;
struct resource psgmii_base = {0};
struct resource switch_base = {0};
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, priv);
ar40xx_priv = priv;
switch_node = of_node_get(pdev->dev.of_node);
if (of_address_to_resource(switch_node, 0, &switch_base) != 0)
return -EIO;
priv->hw_addr = devm_ioremap_resource(&pdev->dev, &switch_base);
if (IS_ERR(priv->hw_addr)) {
dev_err(&pdev->dev, "Failed to ioremap switch_base!\n");
return PTR_ERR(priv->hw_addr);
}
/*psgmii dts get*/
psgmii_node = of_find_node_by_name(NULL, "ess-psgmii");
if (!psgmii_node) {
dev_err(&pdev->dev, "Failed to find ess-psgmii node!\n");
return -EINVAL;
}
if (of_address_to_resource(psgmii_node, 0, &psgmii_base) != 0)
return -EIO;
priv->psgmii_hw_addr = devm_ioremap_resource(&pdev->dev, &psgmii_base);
if (IS_ERR(priv->psgmii_hw_addr)) {
dev_err(&pdev->dev, "psgmii ioremap fail!\n");
return PTR_ERR(priv->psgmii_hw_addr);
}
mac_mode = of_get_property(switch_node, "switch_mac_mode", &len);
if (!mac_mode) {
dev_err(&pdev->dev, "Failed to read switch_mac_mode\n");
return -EINVAL;
}
priv->mac_mode = be32_to_cpup(mac_mode);
ess_clk = of_clk_get_by_name(switch_node, "ess_clk");
if (ess_clk)
clk_prepare_enable(ess_clk);
priv->ess_rst = devm_reset_control_get(&pdev->dev, "ess_rst");
if (IS_ERR(priv->ess_rst)) {
dev_err(&pdev->dev, "Failed to get ess_rst control!\n");
return PTR_ERR(priv->ess_rst);
}
if (of_property_read_u32(switch_node, "switch_cpu_bmp",
&priv->cpu_bmp) ||
of_property_read_u32(switch_node, "switch_lan_bmp",
&priv->lan_bmp) ||
of_property_read_u32(switch_node, "switch_wan_bmp",
&priv->wan_bmp)) {
dev_err(&pdev->dev, "Failed to read port properties\n");
return -EIO;
}
mutex_init(&priv->reg_mutex);
mutex_init(&priv->mib_lock);
INIT_DELAYED_WORK(&priv->mib_work, ar40xx_mib_work_func);
/* register switch */
swdev = &priv->dev;
mdio_node = of_find_compatible_node(NULL, NULL, "qcom,ipq4019-mdio");
if (!mdio_node) {
dev_err(&pdev->dev, "Probe failed - Cannot find mdio node by phandle!\n");
ret = -ENODEV;
goto err_missing_phy;
}
priv->mii_bus = of_mdio_find_bus(mdio_node);
if (priv->mii_bus == NULL) {
dev_err(&pdev->dev, "Probe failed - Missing PHYs!\n");
ret = -ENODEV;
goto err_missing_phy;
}
swdev->alias = dev_name(&priv->mii_bus->dev);
swdev->cpu_port = AR40XX_PORT_CPU;
swdev->name = "QCA AR40xx";
swdev->vlans = AR40XX_MAX_VLANS;
swdev->ports = AR40XX_NUM_PORTS;
swdev->ops = &ar40xx_sw_ops;
ret = register_switch(swdev, NULL);
if (ret < 0) {
dev_err(&pdev->dev, "Switch registration failed!\n");
return ret;
}
num_mibs = ARRAY_SIZE(ar40xx_mibs);
len = priv->dev.ports * num_mibs *
sizeof(*priv->mib_stats);
priv->mib_stats = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!priv->mib_stats) {
ret = -ENOMEM;
goto err_unregister_switch;
}
ar40xx_start(priv);
return 0;
err_unregister_switch:
unregister_switch(&priv->dev);
err_missing_phy:
platform_set_drvdata(pdev, NULL);
return ret;
}
static int ar40xx_remove(struct platform_device *pdev)
{
struct ar40xx_priv *priv = platform_get_drvdata(pdev);
cancel_delayed_work_sync(&priv->qm_dwork);
cancel_delayed_work_sync(&priv->mib_work);
unregister_switch(&priv->dev);
return 0;
}
static const struct of_device_id ar40xx_of_mtable[] = {
{.compatible = "qcom,ess-switch" },
{}
};
struct platform_driver ar40xx_drv = {
.probe = ar40xx_probe,
.remove = ar40xx_remove,
.driver = {
.name = "ar40xx",
.of_match_table = ar40xx_of_mtable,
},
};
module_platform_driver(ar40xx_drv);
MODULE_DESCRIPTION("IPQ40XX ESS driver");
MODULE_LICENSE("Dual BSD/GPL");