openwrt/target/linux/rtl838x/files-5.4/drivers/gpio/gpio-rtl838x.c

809 lines
20 KiB
C
Raw Normal View History

rtl838x: add new architecture This adds support for the RTL838x Architecture. SoCs of this type are used in managed and un-managed Switches and Routers with 8-28 ports. Drivers are provided for SoC initialization, GPIOs, Flash, Ethernet including a DSA switch driver and internal and external PHYs used with these switches. Supported SoCs: RTL8380M RTL8381M RTL8382M The kernel will also boot on the following RTL839x SoCs, however driver support apart from spi-nor is missing: RTL8390 RTL8391 RTL8393 The following PHYs are supported: RTL8214FC (Quad QSGMII multiplexing GMAC and SFP port) RTL8218B internal: internal PHY of the RTL838x chips RTL8318b external (QSGMII 8-port GMAC phy) RTL8382M SerDes for 2 SFP ports Initialization sequences for the PHYs are provided in the form of firmware files. Flash driver supports 3 / 4 byte access DSA switch driver supports VLANs, port isolation, STP and port mirroring. The ALLNET ALL-SG8208M is supported as Proof of Concept: RTL8382M SoC 1 MIPS 4KEc core @ 500MHz 8 Internal PHYs (RTL8218B) 128MB DRAM (Nanya NT5TU128MB) 16MB NOR Flash (MXIC 25L128) 8 GBEthernet ports with one green status LED each (SoC controlled) 1 Power LED (not configurable) 1 SYS LED (configurable) 1 On-Off switch (not configurable) 1 Reset button at the right behind right air-vent (not configurable) 1 Reset button on front panel (configurable) 12V 1A barrel connector 1 serial header with populated standard pin connector and with markings GND TX RX Vcc(3.3V), connection properties: 115200 8N1 To install, upload the sysupgrade image to the OEM webpage. Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
2020-09-13 07:06:13 +00:00
// SPDX-License-Identifier: GPL-2.0-only
rtl838x: add new architecture This adds support for the RTL838x Architecture. SoCs of this type are used in managed and un-managed Switches and Routers with 8-28 ports. Drivers are provided for SoC initialization, GPIOs, Flash, Ethernet including a DSA switch driver and internal and external PHYs used with these switches. Supported SoCs: RTL8380M RTL8381M RTL8382M The kernel will also boot on the following RTL839x SoCs, however driver support apart from spi-nor is missing: RTL8390 RTL8391 RTL8393 The following PHYs are supported: RTL8214FC (Quad QSGMII multiplexing GMAC and SFP port) RTL8218B internal: internal PHY of the RTL838x chips RTL8318b external (QSGMII 8-port GMAC phy) RTL8382M SerDes for 2 SFP ports Initialization sequences for the PHYs are provided in the form of firmware files. Flash driver supports 3 / 4 byte access DSA switch driver supports VLANs, port isolation, STP and port mirroring. The ALLNET ALL-SG8208M is supported as Proof of Concept: RTL8382M SoC 1 MIPS 4KEc core @ 500MHz 8 Internal PHYs (RTL8218B) 128MB DRAM (Nanya NT5TU128MB) 16MB NOR Flash (MXIC 25L128) 8 GBEthernet ports with one green status LED each (SoC controlled) 1 Power LED (not configurable) 1 SYS LED (configurable) 1 On-Off switch (not configurable) 1 Reset button at the right behind right air-vent (not configurable) 1 Reset button on front panel (configurable) 12V 1A barrel connector 1 serial header with populated standard pin connector and with markings GND TX RX Vcc(3.3V), connection properties: 115200 8N1 To install, upload the sysupgrade image to the OEM webpage. Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
2020-09-13 07:06:13 +00:00
#include <linux/gpio/driver.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <asm/mach-rtl838x/mach-rtl838x.h>
/* RTL8231 registers for LED control */
#define RTL8231_LED_FUNC0 0x0000
#define RTL8231_GPIO_PIN_SEL(gpio) ((0x0002) + ((gpio) >> 4))
#define RTL8231_GPIO_DIR(gpio) ((0x0005) + ((gpio) >> 4))
#define RTL8231_GPIO_DATA(gpio) ((0x001C) + ((gpio) >> 4))
#define RTL8231_GPIO_PIN_SEL0 0x0002
#define RTL8231_GPIO_PIN_SEL1 0x0003
#define RTL8231_GPIO_PIN_SEL2 0x0004
#define RTL8231_GPIO_IO_SEL0 0x0005
#define RTL8231_GPIO_IO_SEL1 0x0006
#define RTL8231_GPIO_IO_SEL2 0x0007
#define MDC_WAIT { int i; for (i = 0; i < 2; i++); }
#define I2C_WAIT { int i; for (i = 0; i < 5; i++); }
struct rtl838x_gpios {
struct gpio_chip gc;
u32 id;
struct device *dev;
int irq;
int bus_id;
int num_leds;
int min_led;
int leds_per_port;
u32 led_mode;
u16 rtl8381_phy_id;
int smi_clock;
int smi_data;
int i2c_sda;
int i2c_sdc;
};
extern struct mutex smi_lock;
u32 rtl838x_rtl8231_read(u8 bus_id, u32 reg)
{
u32 t = 0;
reg &= 0x1f;
bus_id &= 0x1f;
/* Calculate read register address */
t = (bus_id << 2) | (reg << 7);
mutex_lock(&smi_lock);
/* Set execution bit: cleared when operation completed */
t |= 1;
sw_w32(t, RTL838X_EXT_GPIO_INDRT_ACCESS);
do { /* TODO: Return 0x80000000 if timeout */
t = sw_r32(RTL838X_EXT_GPIO_INDRT_ACCESS);
} while (t & 1);
pr_debug("%s: %x, %x, %x\n", __func__, bus_id, reg, (t & 0xffff0000) >> 16);
mutex_unlock(&smi_lock);
return (t & 0xffff0000) >> 16;
}
int rtl838x_rtl8231_write(u8 bus_id, u32 reg, u32 data)
{
u32 t = 0;
pr_debug("%s: %x, %x, %x\n", __func__, bus_id, reg, data);
data &= 0xffff;
reg &= 0x1f;
bus_id &= 0x1f;
mutex_lock(&smi_lock);
t = (bus_id << 2) | (reg << 7) | (data << 16);
/* Set write bit */
t |= 2;
/* Set execution bit: cleared when operation completed */
t |= 1;
sw_w32(t, RTL838X_EXT_GPIO_INDRT_ACCESS);
do { /* TODO: Return -1 if timeout */
t = sw_r32(RTL838X_EXT_GPIO_INDRT_ACCESS);
} while (t & 1);
mutex_unlock(&smi_lock);
return 0;
}
static int rtl8231_pin_dir(u8 bus_id, u32 gpio, u32 dir)
{
/* dir 1: input
* dir 0: output
*/
u32 v;
int pin_sel_addr = RTL8231_GPIO_PIN_SEL(gpio);
int pin_dir_addr = RTL8231_GPIO_DIR(gpio);
int pin = gpio % 16;
int dpin = pin;
if (gpio > 31) {
dpin = pin << 5;
pin_dir_addr = pin_sel_addr;
}
/* Select GPIO function for pin */
v = rtl838x_rtl8231_read(bus_id, pin_sel_addr);
if (v & 0x80000000) {
pr_err("Error reading RTL8231\n");
return -1;
}
rtl838x_rtl8231_write(bus_id, pin_sel_addr, v | (1 << pin));
v = rtl838x_rtl8231_read(bus_id, pin_dir_addr);
if (v & 0x80000000) {
pr_err("Error reading RTL8231\n");
return -1;
}
rtl838x_rtl8231_write(bus_id, pin_dir_addr,
(v & ~(1 << dpin)) | (dir << dpin));
return 0;
}
static int rtl8231_pin_dir_get(u8 bus_id, u32 gpio, u32 *dir)
{
/* dir 1: input
* dir 0: output
*/
u32 v;
int pin_dir_addr = RTL8231_GPIO_DIR(gpio);
int pin = gpio % 16;
if (gpio > 31) {
pin_dir_addr = RTL8231_GPIO_PIN_SEL(gpio);
pin = pin << 5;
}
v = rtl838x_rtl8231_read(bus_id, pin_dir_addr);
if (v & (1 << pin))
*dir = 1;
else
*dir = 0;
return 0;
}
static int rtl8231_pin_set(u8 bus_id, u32 gpio, u32 data)
{
u32 v = rtl838x_rtl8231_read(bus_id, RTL8231_GPIO_DATA(gpio));
if (v & 0x80000000) {
pr_err("Error reading RTL8231\n");
return -1;
}
rtl838x_rtl8231_write(bus_id, RTL8231_GPIO_DATA(gpio),
(v & ~(1 << (gpio % 16))) | (data << (gpio % 16)));
return 0;
}
static int rtl8231_pin_get(u8 bus_id, u32 gpio, u16 *state)
{
u32 v = rtl838x_rtl8231_read(bus_id, RTL8231_GPIO_DATA(gpio));
if (v & 0x80000000) {
pr_err("Error reading RTL8231\n");
return -1;
}
*state = v & 0xffff;
return 0;
}
static int rtl838x_direction_input(struct gpio_chip *gc, unsigned int offset)
{
struct rtl838x_gpios *gpios = gpiochip_get_data(gc);
pr_debug("%s: %d\n", __func__, offset);
if (offset < 32) {
rtl838x_w32_mask(1 << offset, 0, RTL838X_GPIO_PABC_DIR);
return 0;
}
/* Internal LED driver does not support input */
if (offset >= 32 && offset < 64)
return -ENOTSUPP;
if (offset >= 64 && offset < 100 && gpios->bus_id >= 0)
return rtl8231_pin_dir(gpios->bus_id, offset - 64, 1);
return -ENOTSUPP;
}
static int rtl838x_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
{
struct rtl838x_gpios *gpios = gpiochip_get_data(gc);
pr_debug("%s: %d\n", __func__, offset);
if (offset < 32)
rtl838x_w32_mask(0, 1 << offset, RTL838X_GPIO_PABC_DIR);
/* LED for PWR and SYS driver is direction output by default */
if (offset >= 32 && offset < 64)
return 0;
if (offset >= 64 && offset < 100 && gpios->bus_id >= 0)
return rtl8231_pin_dir(gpios->bus_id, offset - 64, 0);
return 0;
}
static int rtl838x_get_direction(struct gpio_chip *gc, unsigned int offset)
{
u32 v = 0;
struct rtl838x_gpios *gpios = gpiochip_get_data(gc);
pr_debug("%s: %d\n", __func__, offset);
if (offset < 32) {
v = rtl838x_r32(RTL838X_GPIO_PABC_DIR);
if (v & (1 << offset))
return 0;
return 1;
}
/* LED driver for PWR and SYS is direction output by default */
if (offset >= 32 && offset < 64)
return 0;
if (offset >= 64 && offset < 100 && gpios->bus_id >= 0) {
rtl8231_pin_dir_get(gpios->bus_id, offset - 64, &v);
return v;
}
return 0;
}
static int rtl838x_gpio_get(struct gpio_chip *gc, unsigned int offset)
{
u32 v;
u16 state = 0;
int bit;
struct rtl838x_gpios *gpios = gpiochip_get_data(gc);
pr_debug("%s: %d\n", __func__, offset);
/* Internal GPIO of the RTL8380 */
if (offset < 32) {
v = rtl838x_r32(RTL838X_GPIO_PABC_DATA);
if (v & (1 << offset))
return 1;
return 0;
}
/* LED driver for PWR and SYS */
if (offset >= 32 && offset < 64) {
v = sw_r32(RTL838X_LED_GLB_CTRL);
if (v & (1 << (offset-32)))
return 1;
return 0;
}
/* Indirect access GPIO with RTL8231 */
if (offset >= 64 && offset < 100 && gpios->bus_id >= 0) {
rtl8231_pin_get(gpios->bus_id, offset - 64, &state);
if (state & (1 << (offset % 16)))
return 1;
return 0;
}
bit = (offset - 100) % 32;
if (offset >= 100 && offset < 132) {
if (sw_r32(RTL838X_LED1_SW_P_EN_CTRL) & (1 << bit))
return 1;
return 0;
}
if (offset >= 132 && offset < 164) {
if (sw_r32(RTL838X_LED1_SW_P_EN_CTRL) & (1 << bit))
return 1;
return 0;
}
if (offset >= 164 && offset < 196) {
if (sw_r32(RTL838X_LED1_SW_P_EN_CTRL) & (1 << bit))
return 1;
return 0;
}
return 0;
}
void rtl838x_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
{
int bit;
struct rtl838x_gpios *gpios = gpiochip_get_data(gc);
pr_debug("rtl838x_set: %d, value: %d\n", offset, value);
/* Internal GPIO of the RTL8380 */
if (offset < 32) {
if (value)
rtl838x_w32_mask(0, 1 << offset, RTL838X_GPIO_PABC_DATA);
else
rtl838x_w32_mask(1 << offset, 0, RTL838X_GPIO_PABC_DATA);
}
/* LED driver for PWR and SYS */
if (offset >= 32 && offset < 64) {
bit = offset - 32;
if (value)
sw_w32_mask(0, 1 << bit, RTL838X_LED_GLB_CTRL);
else
sw_w32_mask(1 << bit, 0, RTL838X_LED_GLB_CTRL);
return;
}
/* Indirect access GPIO with RTL8231 */
if (offset >= 64 && offset < 100 && gpios->bus_id >= 0) {
rtl8231_pin_set(gpios->bus_id, offset - 64, value);
return;
}
bit = (offset - 100) % 32;
/* First Port-LED */
if (offset >= 100 && offset < 132
&& offset >= (100 + gpios->min_led)
&& offset < (100 + gpios->min_led + gpios->num_leds)) {
if (value)
sw_w32_mask(7, 5, RTL838X_LED_SW_P_CTRL(bit));
else
sw_w32_mask(7, 0, RTL838X_LED_SW_P_CTRL(bit));
}
if (offset >= 132 && offset < 164
&& offset >= (132 + gpios->min_led)
&& offset < (132 + gpios->min_led + gpios->num_leds)) {
if (value)
sw_w32_mask(7 << 3, 5 << 3, RTL838X_LED_SW_P_CTRL(bit));
else
sw_w32_mask(7 << 3, 0, RTL838X_LED_SW_P_CTRL(bit));
}
if (offset >= 164 && offset < 196
&& offset >= (164 + gpios->min_led)
&& offset < (164 + gpios->min_led + gpios->num_leds)) {
if (value)
sw_w32_mask(7 << 6, 5 << 6, RTL838X_LED_SW_P_CTRL(bit));
else
sw_w32_mask(7 << 6, 0, RTL838X_LED_SW_P_CTRL(bit));
}
__asm__ volatile ("sync");
}
int rtl8231_init(struct rtl838x_gpios *gpios)
{
uint32_t v;
u8 bus_id = gpios->bus_id;
pr_info("%s called\n", __func__);
/* Enable RTL8231 indirect access mode */
sw_w32_mask(0, 1, RTL838X_EXTRA_GPIO_CTRL);
sw_w32_mask(3, 1, RTL838X_DMY_REG5);
/* Enable RTL8231 via GPIO_A1 line */
rtl838x_w32_mask(0, 1 << RTL838X_GPIO_A1, RTL838X_GPIO_PABC_DIR);
rtl838x_w32_mask(0, 1 << RTL838X_GPIO_A1, RTL838X_GPIO_PABC_DATA);
mdelay(50); /* wait 50ms for reset */
/*Select GPIO functionality for pins 0-15, 16-31 and 32-37 */
rtl838x_rtl8231_write(bus_id, RTL8231_GPIO_PIN_SEL(0), 0xffff);
rtl838x_rtl8231_write(bus_id, RTL8231_GPIO_PIN_SEL(16), 0xffff);
rtl838x_rtl8231_write(bus_id, RTL8231_GPIO_PIN_SEL2, 0x03ff);
v = rtl838x_rtl8231_read(bus_id, RTL8231_LED_FUNC0);
pr_info("RTL8231 led function now: %x\n", v);
return 0;
}
static void smi_write_bit(struct rtl838x_gpios *gpios, u32 bit)
{
if (bit)
rtl838x_w32_mask(0, 1 << gpios->smi_data, RTL838X_GPIO_PABC_DATA);
else
rtl838x_w32_mask(1 << gpios->smi_data, 0, RTL838X_GPIO_PABC_DATA);
MDC_WAIT;
rtl838x_w32_mask(1 << gpios->smi_clock, 0, RTL838X_GPIO_PABC_DATA);
MDC_WAIT;
rtl838x_w32_mask(0, 1 << gpios->smi_clock, RTL838X_GPIO_PABC_DATA);
}
static int smi_read_bit(struct rtl838x_gpios *gpios)
{
u32 v;
MDC_WAIT;
rtl838x_w32_mask(1 << gpios->smi_clock, 0, RTL838X_GPIO_PABC_DATA);
MDC_WAIT;
rtl838x_w32_mask(0, 1 << gpios->smi_clock, RTL838X_GPIO_PABC_DATA);
v = rtl838x_r32(RTL838X_GPIO_PABC_DATA);
if (v & (1 << gpios->smi_data))
return 1;
return 0;
}
/* Tri-state of MDIO line */
static void smi_z(struct rtl838x_gpios *gpios)
{
/* MDIO pin to input */
rtl838x_w32_mask(1 << gpios->smi_data, 0, RTL838X_GPIO_PABC_DIR);
MDC_WAIT;
rtl838x_w32_mask(1 << gpios->smi_clock, 0, RTL838X_GPIO_PABC_DATA);
MDC_WAIT;
rtl838x_w32_mask(0, 1 << gpios->smi_clock, RTL838X_GPIO_PABC_DATA);
}
static void smi_write_bits(struct rtl838x_gpios *gpios, u32 data, int len)
{
while (len) {
len--;
smi_write_bit(gpios, data & (1 << len));
}
}
static void smi_read_bits(struct rtl838x_gpios *gpios, int len, u32 *data)
{
u32 v = 0;
while (len) {
len--;
v <<= 1;
v |= smi_read_bit(gpios);
}
*data = v;
}
/* Bit-banged verson of SMI write access, caller must hold smi_lock */
int rtl8380_smi_write(struct rtl838x_gpios *gpios, u16 reg, u32 data)
{
u16 bus_id = gpios->bus_id;
/* Set clock and data pins on RTL838X to output */
rtl838x_w32_mask(0, 1 << gpios->smi_clock, RTL838X_GPIO_PABC_DIR);
rtl838x_w32_mask(0, 1 << gpios->smi_data, RTL838X_GPIO_PABC_DIR);
/* Write start bits */
smi_write_bits(gpios, 0xffffffff, 32);
smi_write_bits(gpios, 0x5, 4); /* ST and write OP */
smi_write_bits(gpios, bus_id, 5); /* 5 bits: phy address */
smi_write_bits(gpios, reg, 5); /* 5 bits: register address */
smi_write_bits(gpios, 0x2, 2); /* TURNAROUND */
smi_write_bits(gpios, data, 16); /* 16 bits: data*/
smi_z(gpios);
return 0;
}
/* Bit-banged verson of SMI read access, caller must hold smi_lock */
int rtl8380_smi_read(struct rtl838x_gpios *gpios, u16 reg, u32 *data)
{
u16 bus_id = gpios->bus_id;
/* Set clock and data pins on RTL838X to output */
rtl838x_w32_mask(0, 1 << gpios->smi_clock, RTL838X_GPIO_PABC_DIR);
rtl838x_w32_mask(0, 1 << gpios->smi_data, RTL838X_GPIO_PABC_DIR);
/* Write start bits */
smi_write_bits(gpios, 0xffffffff, 32);
smi_write_bits(gpios, 0x6, 4); /* ST and read OP */
smi_write_bits(gpios, bus_id, 5); /* 5 bits: phy address */
smi_write_bits(gpios, reg, 5); /* 5 bits: register address */
smi_z(gpios); /* TURNAROUND */
smi_read_bits(gpios, 16, data);
return 0;
}
static void i2c_pin_set(struct rtl838x_gpios *gpios, int pin, u32 data)
{
u32 v;
rtl8380_smi_read(gpios, RTL8231_GPIO_DATA(pin), &v);
if (!data)
v &= ~(1 << (pin % 16));
else
v |= (1 << (pin % 16));
rtl8380_smi_write(gpios, RTL8231_GPIO_DATA(pin), v);
}
static void i2c_pin_get(struct rtl838x_gpios *gpios, int pin, u32 *data)
{
u32 v;
rtl8380_smi_read(gpios, RTL8231_GPIO_DATA(pin), &v);
if (v & (1 << (pin % 16))) {
*data = 1;
return;
}
*data = 0;
}
static void i2c_pin_dir(struct rtl838x_gpios *gpios, int pin, u16 direction)
{
u32 v;
rtl8380_smi_read(gpios, RTL8231_GPIO_DIR(pin), &v);
if (direction) // Output
v &= ~(1 << (pin % 16));
else
v |= (1 << (pin % 16));
rtl8380_smi_write(gpios, RTL8231_GPIO_DIR(pin), v);
}
static void i2c_start(struct rtl838x_gpios *gpios)
{
i2c_pin_dir(gpios, gpios->i2c_sda, 0); /* Output */
i2c_pin_dir(gpios, gpios->i2c_sdc, 0); /* Output */
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sdc, 1);
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sda, 1);
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sda, 0);
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sdc, 0);
I2C_WAIT;
}
static void i2c_stop(struct rtl838x_gpios *gpios)
{
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sdc, 1);
i2c_pin_set(gpios, gpios->i2c_sda, 0);
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sda, 1);
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sdc, 0);
i2c_pin_dir(gpios, gpios->i2c_sda, 1); /* Input */
i2c_pin_dir(gpios, gpios->i2c_sdc, 1); /* Input */
}
static void i2c_read_bits(struct rtl838x_gpios *gpios, int len, u32 *data)
{
u32 v = 0, t;
while (len) {
len--;
v <<= 1;
i2c_pin_set(gpios, gpios->i2c_sdc, 1);
I2C_WAIT;
i2c_pin_get(gpios, gpios->i2c_sda, &t);
v |= t;
i2c_pin_set(gpios, gpios->i2c_sdc, 0);
I2C_WAIT;
}
*data = v;
}
static void i2c_write_bits(struct rtl838x_gpios *gpios, u32 data, int len)
{
while (len) {
len--;
i2c_pin_set(gpios, gpios->i2c_sda, data & (1 << len));
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sdc, 1);
I2C_WAIT;
i2c_pin_set(gpios, gpios->i2c_sdc, 0);
I2C_WAIT;
}
}
/* This initializes direct external GPIOs via the RTL8231 */
int rtl8380_rtl8321_init(struct rtl838x_gpios *gpios)
{
u32 v;
int mdc = gpios->smi_clock;
int mdio = gpios->smi_data;
pr_info("Configuring SMI: Clock %d, Data %d\n", mdc, mdio);
sw_w32_mask(0, 0x2, RTL838X_IO_DRIVING_ABILITY_CTRL);
/* Enter simulated GPIO mode */
sw_w32_mask(1, 0, RTL838X_EXTRA_GPIO_CTRL);
/* MDIO clock to 2.6MHz */
sw_w32_mask(0x3 << 8, 0, RTL838X_EXTRA_GPIO_CTRL);
/* Configure SMI clock and data GPIO pins */
rtl838x_w32_mask((1 << mdc) | (1 << mdio), 0, RTL838X_GPIO_PABC_CNR);
rtl838x_w32_mask(0, (1 << mdc) | (1 << mdio), RTL838X_GPIO_PABC_DIR);
rtl8380_smi_write(gpios, RTL8231_GPIO_PIN_SEL0, 0xffff);
rtl8380_smi_write(gpios, RTL8231_GPIO_PIN_SEL1, 0xffff);
rtl8380_smi_read(gpios, RTL8231_GPIO_PIN_SEL2, &v);
v |= 0x1f;
rtl8380_smi_write(gpios, RTL8231_GPIO_PIN_SEL2, v);
rtl8380_smi_write(gpios, RTL8231_GPIO_IO_SEL0, 0xffff);
rtl8380_smi_write(gpios, RTL8231_GPIO_IO_SEL1, 0xffff);
rtl8380_smi_read(gpios, RTL8231_GPIO_IO_SEL2, &v);
v |= 0x1f << 5;
rtl8380_smi_write(gpios, RTL8231_GPIO_PIN_SEL2, v);
return 0;
}
void rtl8380_led_test(u32 mask)
{
int i;
u32 mode_sel = sw_r32(RTL838X_LED_MODE_SEL);
u32 led_gbl = sw_r32(RTL838X_LED_GLB_CTRL);
u32 led_p_en = sw_r32(RTL838X_LED_P_EN_CTRL);
/* 2 Leds for ports 0-23 and 24-27, 3 would be 0x7 */
sw_w32_mask(0x3f, 0x3 | (0x3 << 3), RTL838X_LED_GLB_CTRL);
/* Enable all leds */
sw_w32(0xFFFFFFF, RTL838X_LED_P_EN_CTRL);
/* Enable software control of all leds */
sw_w32(0xFFFFFFF, RTL838X_LED_SW_CTRL);
sw_w32(0xFFFFFFF, RTL838X_LED0_SW_P_EN_CTRL);
sw_w32(0xFFFFFFF, RTL838X_LED1_SW_P_EN_CTRL);
sw_w32(0x0000000, RTL838X_LED2_SW_P_EN_CTRL);
for (i = 0; i < 28; i++) {
if (mask & (1 << i))
sw_w32(5 | (5 << 3) | (5 << 6),
RTL838X_LED_SW_P_CTRL(i));
}
msleep(3000);
sw_w32(led_p_en, RTL838X_LED_P_EN_CTRL);
/* Disable software control of all leds */
sw_w32(0x0000000, RTL838X_LED_SW_CTRL);
sw_w32(0x0000000, RTL838X_LED0_SW_P_EN_CTRL);
sw_w32(0x0000000, RTL838X_LED1_SW_P_EN_CTRL);
sw_w32(0x0000000, RTL838X_LED2_SW_P_EN_CTRL);
sw_w32(led_gbl, RTL838X_LED_GLB_CTRL);
sw_w32(mode_sel, RTL838X_LED_MODE_SEL);
}
void take_port_leds(struct rtl838x_gpios *gpios)
{
int leds_per_port = gpios->leds_per_port;
int mode = gpios->led_mode;
pr_info("%s, %d, %x\n", __func__, leds_per_port, mode);
pr_debug("Bootloader settings: %x %x %x\n",
sw_r32(RTL838X_LED0_SW_P_EN_CTRL),
sw_r32(RTL838X_LED1_SW_P_EN_CTRL),
sw_r32(RTL838X_LED2_SW_P_EN_CTRL)
);
pr_debug("led glb: %x, sel %x\n",
sw_r32(RTL838X_LED_GLB_CTRL), sw_r32(RTL838X_LED_MODE_SEL));
pr_debug("RTL838X_LED_P_EN_CTRL: %x", sw_r32(RTL838X_LED_P_EN_CTRL));
pr_debug("RTL838X_LED_MODE_CTRL: %x", sw_r32(RTL838X_LED_MODE_CTRL));
sw_w32_mask(3, 0, RTL838X_LED_MODE_SEL);
sw_w32(mode, RTL838X_LED_MODE_CTRL);
/* Enable software control of all leds */
sw_w32(0xFFFFFFF, RTL838X_LED_SW_CTRL);
sw_w32(0xFFFFFFF, RTL838X_LED_P_EN_CTRL);
sw_w32(0x0000000, RTL838X_LED0_SW_P_EN_CTRL);
sw_w32(0x0000000, RTL838X_LED1_SW_P_EN_CTRL);
sw_w32(0x0000000, RTL838X_LED2_SW_P_EN_CTRL);
sw_w32_mask(0x3f, 0, RTL838X_LED_GLB_CTRL);
switch (leds_per_port) {
case 3:
sw_w32_mask(0, 0x7 | (0x7 << 3), RTL838X_LED_GLB_CTRL);
sw_w32(0xFFFFFFF, RTL838X_LED2_SW_P_EN_CTRL);
/* FALLTHRU */
case 2:
sw_w32_mask(0, 0x3 | (0x3 << 3), RTL838X_LED_GLB_CTRL);
sw_w32(0xFFFFFFF, RTL838X_LED1_SW_P_EN_CTRL);
/* FALLTHRU */
case 1:
sw_w32_mask(0, 0x1 | (0x1 << 3), RTL838X_LED_GLB_CTRL);
sw_w32(0xFFFFFFF, RTL838X_LED0_SW_P_EN_CTRL);
break;
default:
pr_err("No LEDS configured for software control\n");
}
}
static const struct of_device_id rtl838x_gpio_of_match[] = {
{ .compatible = "realtek,rtl838x-gpio" },
{},
};
MODULE_DEVICE_TABLE(of, rtl838x_gpio_of_match);
static int rtl838x_gpio_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct rtl838x_gpios *gpios;
int err;
u8 indirect_bus_id;
pr_info("Probing RTL838X GPIOs\n");
if (!np) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
gpios = devm_kzalloc(dev, sizeof(*gpios), GFP_KERNEL);
if (!gpios)
return -ENOMEM;
gpios->id = sw_r32(RTL838X_MODEL_NAME_INFO) >> 16;
switch (gpios->id) {
case 0x8332:
pr_debug("Found RTL8332M GPIO\n");
break;
case 0x8380:
pr_debug("Found RTL8380M GPIO\n");
break;
case 0x8381:
pr_debug("Found RTL8381M GPIO\n");
break;
case 0x8382:
pr_debug("Found RTL8382M GPIO\n");
break;
default:
pr_err("Unknown GPIO chip id (%04x)\n", gpios->id);
return -ENODEV;
}
gpios->dev = dev;
gpios->gc.base = 0;
/* 0-31: internal
* 32-63, LED control register
* 64-99: external RTL8231
* 100-131: PORT-LED 0
* 132-163: PORT-LED 1
* 164-195: PORT-LED 2
*/
gpios->gc.ngpio = 196;
gpios->gc.label = "rtl838x";
gpios->gc.parent = dev;
gpios->gc.owner = THIS_MODULE;
gpios->gc.can_sleep = true;
gpios->bus_id = -1;
gpios->irq = 31;
gpios->gc.direction_input = rtl838x_direction_input;
gpios->gc.direction_output = rtl838x_direction_output;
gpios->gc.set = rtl838x_gpio_set;
gpios->gc.get = rtl838x_gpio_get;
gpios->gc.get_direction = rtl838x_get_direction;
if (!of_property_read_u8(np, "indirect-access-bus-id", &indirect_bus_id)) {
gpios->bus_id = indirect_bus_id;
rtl8231_init(gpios);
}
if (!of_property_read_u8(np, "smi-bus-id", &indirect_bus_id)) {
gpios->bus_id = indirect_bus_id;
gpios->smi_clock = RTL838X_GPIO_A2;
gpios->smi_data = RTL838X_GPIO_A3;
gpios->i2c_sda = 1;
gpios->i2c_sdc = 2;
rtl8380_rtl8321_init(gpios);
}
if (of_property_read_bool(np, "take-port-leds")) {
if (of_property_read_u32(np, "leds-per-port", &gpios->leds_per_port))
gpios->leds_per_port = 2;
if (of_property_read_u32(np, "led-mode", &gpios->led_mode))
gpios->led_mode = (0x1ea << 15) | 0x1ea;
if (of_property_read_u32(np, "num-leds", &gpios->num_leds))
gpios->num_leds = 32;
if (of_property_read_u32(np, "min-led", &gpios->min_led))
gpios->min_led = 0;
take_port_leds(gpios);
}
err = devm_gpiochip_add_data(dev, &gpios->gc, gpios);
return err;
}
static struct platform_driver rtl838x_gpio_driver = {
.driver = {
.name = "rtl838x-gpio",
.of_match_table = rtl838x_gpio_of_match,
},
.probe = rtl838x_gpio_probe,
};
module_platform_driver(rtl838x_gpio_driver);
MODULE_DESCRIPTION("Realtek RTL838X GPIO API support");
MODULE_LICENSE("GPL v2");