ramips: add support for Archer C50 v4
This adds support for the TP-Link Archer C50 v4.
It uses the same hardware as the v3 variant, sharing the same FCC-ID.
CPU: MediaTek MT7628 (580MHz)
RAM: 64M DDR2
FLASH: 8M SPI
WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated
WiFI: 5GHz 2x2 MT7612 a/n/ac
ETH: 1x WAN 4x LAN
LED: Power, WiFi2, WiFi5, LAN, WAN, WPS
BTN: WPS/WiFi, RESET
UART: Near ETH ports, 115200 8n1, TP-Link pinout
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
Image (and we do not ship one with the image) we are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image from their Wesite and a OpenWRT sysupgrade
image for the device and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is the first TP-Link MediaTek device to feature a split-uboot
design. The first (factory-uboot) provides recovery via TFTP and HTTP,
jumping straight into the second (firmware-uboot) if no recovery needs
to be performed. The firmware-uboot unpacks and executed the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition
before beginning to write and removes it afterwards. If the router boots
with this flag set, bootloader will automatically start Web-recovery and
listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT
factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Signed-off-by: David Bauer <mail@david-bauer.net>
2018-12-31 15:24:26 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later OR MIT
|
|
|
|
#include "mt7628an.dtsi"
|
|
|
|
|
|
|
|
/ {
|
|
|
|
chosen {
|
|
|
|
bootargs = "console=ttyS0,115200";
|
|
|
|
};
|
ramips: provide label MAC address
This patch adds the label MAC address for several devices in
ramips.
Some devices require setting the MAC address in 02_network:
For the following devices, the netif device can be linked in
device tree, but the MAC address cannot be read:
- cudy,wr1000
- dlink,dir-615-d
- dlink,dir-615-h1
- dlink,dir-860l-b1
- glinet,gl-mt300a
- glinet,gl-mt300n
- glinet,gl-mt750
- vocore,vocore2
- vocore,vocore2-lite
- zbtlink,zbt-we1326
- zbtlink,zbt-wg3526
For the following devices, label MAC address is tied to lan or
wan, so no node to link to exists in device tree:
- dlink,dir-510l
- dlink,dwr-116-a1
- dlink,dwr-118-a1
- dlink,dwr-118-a2
- dlink,dwr-921-c1
- dlink,dwr-922-e2
- all hiwifi devices
- lava,lr-25g001
- xiaomi,mir3p
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-06-24 15:57:15 +00:00
|
|
|
|
|
|
|
aliases {
|
|
|
|
label-mac-device = ðernet;
|
|
|
|
};
|
ramips: add support for Archer C50 v4
This adds support for the TP-Link Archer C50 v4.
It uses the same hardware as the v3 variant, sharing the same FCC-ID.
CPU: MediaTek MT7628 (580MHz)
RAM: 64M DDR2
FLASH: 8M SPI
WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated
WiFI: 5GHz 2x2 MT7612 a/n/ac
ETH: 1x WAN 4x LAN
LED: Power, WiFi2, WiFi5, LAN, WAN, WPS
BTN: WPS/WiFi, RESET
UART: Near ETH ports, 115200 8n1, TP-Link pinout
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
Image (and we do not ship one with the image) we are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image from their Wesite and a OpenWRT sysupgrade
image for the device and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is the first TP-Link MediaTek device to feature a split-uboot
design. The first (factory-uboot) provides recovery via TFTP and HTTP,
jumping straight into the second (firmware-uboot) if no recovery needs
to be performed. The firmware-uboot unpacks and executed the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition
before beginning to write and removes it afterwards. If the router boots
with this flag set, bootloader will automatically start Web-recovery and
listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT
factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Signed-off-by: David Bauer <mail@david-bauer.net>
2018-12-31 15:24:26 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
&spi0 {
|
|
|
|
status = "okay";
|
|
|
|
|
|
|
|
flash@0 {
|
|
|
|
compatible = "jedec,spi-nor";
|
|
|
|
reg = <0>;
|
|
|
|
spi-max-frequency = <10000000>;
|
|
|
|
|
|
|
|
partitions {
|
|
|
|
compatible = "fixed-partitions";
|
|
|
|
#address-cells = <1>;
|
|
|
|
#size-cells = <1>;
|
|
|
|
|
|
|
|
partition@0 {
|
|
|
|
label = "factory-uboot";
|
|
|
|
reg = <0x0 0x30000>;
|
|
|
|
read-only;
|
|
|
|
};
|
|
|
|
|
|
|
|
partition@30000 {
|
|
|
|
label = "boot";
|
|
|
|
reg = <0x30000 0x20000>;
|
|
|
|
read-only;
|
|
|
|
};
|
|
|
|
|
|
|
|
partition@50000 {
|
|
|
|
compatible = "tplink,firmware";
|
|
|
|
label = "firmware";
|
|
|
|
reg = <0x50000 0x770000>;
|
|
|
|
};
|
|
|
|
|
|
|
|
partition@7c0000 {
|
|
|
|
label = "config";
|
|
|
|
reg = <0x7c0000 0x10000>;
|
|
|
|
read-only;
|
|
|
|
};
|
|
|
|
|
|
|
|
rom: partition@7d0000 {
|
|
|
|
label = "rom";
|
|
|
|
reg = <0x7d0000 0x10000>;
|
|
|
|
read-only;
|
|
|
|
};
|
|
|
|
|
|
|
|
partition@7e0000 {
|
|
|
|
label = "romfile";
|
|
|
|
reg = <0x7e0000 0x10000>;
|
|
|
|
};
|
|
|
|
|
|
|
|
radio: partition@7f0000 {
|
|
|
|
label = "radio";
|
|
|
|
reg = <0x7f0000 0x10000>;
|
|
|
|
read-only;
|
|
|
|
};
|
|
|
|
};
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
&ehci {
|
|
|
|
status = "disabled";
|
|
|
|
};
|
|
|
|
|
|
|
|
&ohci {
|
|
|
|
status = "disabled";
|
|
|
|
};
|
|
|
|
|
|
|
|
&wmac {
|
|
|
|
status = "okay";
|
|
|
|
mtd-mac-address = <&rom 0xf100>;
|
|
|
|
mediatek,mtd-eeprom = <&radio 0x0>;
|
|
|
|
};
|
|
|
|
|
|
|
|
ðernet {
|
|
|
|
mtd-mac-address = <&rom 0xf100>;
|
2019-12-18 07:06:14 +00:00
|
|
|
mediatek,portmap = "wllll";
|
ramips: add support for Archer C50 v4
This adds support for the TP-Link Archer C50 v4.
It uses the same hardware as the v3 variant, sharing the same FCC-ID.
CPU: MediaTek MT7628 (580MHz)
RAM: 64M DDR2
FLASH: 8M SPI
WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated
WiFI: 5GHz 2x2 MT7612 a/n/ac
ETH: 1x WAN 4x LAN
LED: Power, WiFi2, WiFi5, LAN, WAN, WPS
BTN: WPS/WiFi, RESET
UART: Near ETH ports, 115200 8n1, TP-Link pinout
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
Image (and we do not ship one with the image) we are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image from their Wesite and a OpenWRT sysupgrade
image for the device and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is the first TP-Link MediaTek device to feature a split-uboot
design. The first (factory-uboot) provides recovery via TFTP and HTTP,
jumping straight into the second (firmware-uboot) if no recovery needs
to be performed. The firmware-uboot unpacks and executed the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition
before beginning to write and removes it afterwards. If the router boots
with this flag set, bootloader will automatically start Web-recovery and
listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT
factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Signed-off-by: David Bauer <mail@david-bauer.net>
2018-12-31 15:24:26 +00:00
|
|
|
};
|