mirror of
https://github.com/openwrt/openwrt.git
synced 2025-01-21 20:08:24 +00:00
575 lines
19 KiB
C
575 lines
19 KiB
C
|
/*
|
||
|
* Copyright (c) 1991, 1993
|
||
|
* The Regents of the University of California. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. Neither the name of the University nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* @(#)queue.h 8.5 (Berkeley) 8/20/94
|
||
|
*/
|
||
|
|
||
|
#ifndef _SYS_QUEUE_H_
|
||
|
#define _SYS_QUEUE_H_
|
||
|
|
||
|
/*
|
||
|
* This file defines five types of data structures: singly-linked lists,
|
||
|
* lists, simple queues, tail queues, and circular queues.
|
||
|
*
|
||
|
* A singly-linked list is headed by a single forward pointer. The
|
||
|
* elements are singly linked for minimum space and pointer manipulation
|
||
|
* overhead at the expense of O(n) removal for arbitrary elements. New
|
||
|
* elements can be added to the list after an existing element or at the
|
||
|
* head of the list. Elements being removed from the head of the list
|
||
|
* should use the explicit macro for this purpose for optimum
|
||
|
* efficiency. A singly-linked list may only be traversed in the forward
|
||
|
* direction. Singly-linked lists are ideal for applications with large
|
||
|
* datasets and few or no removals or for implementing a LIFO queue.
|
||
|
*
|
||
|
* A list is headed by a single forward pointer (or an array of forward
|
||
|
* pointers for a hash table header). The elements are doubly linked
|
||
|
* so that an arbitrary element can be removed without a need to
|
||
|
* traverse the list. New elements can be added to the list before
|
||
|
* or after an existing element or at the head of the list. A list
|
||
|
* may only be traversed in the forward direction.
|
||
|
*
|
||
|
* A simple queue is headed by a pair of pointers, one the head of the
|
||
|
* list and the other to the tail of the list. The elements are singly
|
||
|
* linked to save space, so elements can only be removed from the
|
||
|
* head of the list. New elements can be added to the list after
|
||
|
* an existing element, at the head of the list, or at the end of the
|
||
|
* list. A simple queue may only be traversed in the forward direction.
|
||
|
*
|
||
|
* A tail queue is headed by a pair of pointers, one to the head of the
|
||
|
* list and the other to the tail of the list. The elements are doubly
|
||
|
* linked so that an arbitrary element can be removed without a need to
|
||
|
* traverse the list. New elements can be added to the list before or
|
||
|
* after an existing element, at the head of the list, or at the end of
|
||
|
* the list. A tail queue may be traversed in either direction.
|
||
|
*
|
||
|
* A circle queue is headed by a pair of pointers, one to the head of the
|
||
|
* list and the other to the tail of the list. The elements are doubly
|
||
|
* linked so that an arbitrary element can be removed without a need to
|
||
|
* traverse the list. New elements can be added to the list before or after
|
||
|
* an existing element, at the head of the list, or at the end of the list.
|
||
|
* A circle queue may be traversed in either direction, but has a more
|
||
|
* complex end of list detection.
|
||
|
*
|
||
|
* For details on the use of these macros, see the queue(3) manual page.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* List definitions.
|
||
|
*/
|
||
|
#define LIST_HEAD(name, type) \
|
||
|
struct name { \
|
||
|
struct type *lh_first; /* first element */ \
|
||
|
}
|
||
|
|
||
|
#define LIST_HEAD_INITIALIZER(head) \
|
||
|
{ NULL }
|
||
|
|
||
|
#define LIST_ENTRY(type) \
|
||
|
struct { \
|
||
|
struct type *le_next; /* next element */ \
|
||
|
struct type **le_prev; /* address of previous next element */ \
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* List functions.
|
||
|
*/
|
||
|
#define LIST_INIT(head) do { \
|
||
|
(head)->lh_first = NULL; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define LIST_INSERT_AFTER(listelm, elm, field) do { \
|
||
|
if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
|
||
|
(listelm)->field.le_next->field.le_prev = \
|
||
|
&(elm)->field.le_next; \
|
||
|
(listelm)->field.le_next = (elm); \
|
||
|
(elm)->field.le_prev = &(listelm)->field.le_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define LIST_INSERT_BEFORE(listelm, elm, field) do { \
|
||
|
(elm)->field.le_prev = (listelm)->field.le_prev; \
|
||
|
(elm)->field.le_next = (listelm); \
|
||
|
*(listelm)->field.le_prev = (elm); \
|
||
|
(listelm)->field.le_prev = &(elm)->field.le_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define LIST_INSERT_HEAD(head, elm, field) do { \
|
||
|
if (((elm)->field.le_next = (head)->lh_first) != NULL) \
|
||
|
(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
|
||
|
(head)->lh_first = (elm); \
|
||
|
(elm)->field.le_prev = &(head)->lh_first; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define LIST_REMOVE(elm, field) do { \
|
||
|
if ((elm)->field.le_next != NULL) \
|
||
|
(elm)->field.le_next->field.le_prev = \
|
||
|
(elm)->field.le_prev; \
|
||
|
*(elm)->field.le_prev = (elm)->field.le_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define LIST_FOREACH(var, head, field) \
|
||
|
for ((var) = ((head)->lh_first); \
|
||
|
(var); \
|
||
|
(var) = ((var)->field.le_next))
|
||
|
|
||
|
/*
|
||
|
* List access methods.
|
||
|
*/
|
||
|
#define LIST_EMPTY(head) ((head)->lh_first == NULL)
|
||
|
#define LIST_FIRST(head) ((head)->lh_first)
|
||
|
#define LIST_NEXT(elm, field) ((elm)->field.le_next)
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Singly-linked List definitions.
|
||
|
*/
|
||
|
#define SLIST_HEAD(name, type) \
|
||
|
struct name { \
|
||
|
struct type *slh_first; /* first element */ \
|
||
|
}
|
||
|
|
||
|
#define SLIST_HEAD_INITIALIZER(head) \
|
||
|
{ NULL }
|
||
|
|
||
|
#define SLIST_ENTRY(type) \
|
||
|
struct { \
|
||
|
struct type *sle_next; /* next element */ \
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Singly-linked List functions.
|
||
|
*/
|
||
|
#define SLIST_INIT(head) do { \
|
||
|
(head)->slh_first = NULL; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
|
||
|
(elm)->field.sle_next = (slistelm)->field.sle_next; \
|
||
|
(slistelm)->field.sle_next = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SLIST_INSERT_HEAD(head, elm, field) do { \
|
||
|
(elm)->field.sle_next = (head)->slh_first; \
|
||
|
(head)->slh_first = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SLIST_REMOVE_HEAD(head, field) do { \
|
||
|
(head)->slh_first = (head)->slh_first->field.sle_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SLIST_REMOVE(head, elm, type, field) do { \
|
||
|
if ((head)->slh_first == (elm)) { \
|
||
|
SLIST_REMOVE_HEAD((head), field); \
|
||
|
} \
|
||
|
else { \
|
||
|
struct type *curelm = (head)->slh_first; \
|
||
|
while(curelm->field.sle_next != (elm)) \
|
||
|
curelm = curelm->field.sle_next; \
|
||
|
curelm->field.sle_next = \
|
||
|
curelm->field.sle_next->field.sle_next; \
|
||
|
} \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SLIST_FOREACH(var, head, field) \
|
||
|
for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
|
||
|
|
||
|
/*
|
||
|
* Singly-linked List access methods.
|
||
|
*/
|
||
|
#define SLIST_EMPTY(head) ((head)->slh_first == NULL)
|
||
|
#define SLIST_FIRST(head) ((head)->slh_first)
|
||
|
#define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Singly-linked Tail queue declarations.
|
||
|
*/
|
||
|
#define STAILQ_HEAD(name, type) \
|
||
|
struct name { \
|
||
|
struct type *stqh_first; /* first element */ \
|
||
|
struct type **stqh_last; /* addr of last next element */ \
|
||
|
}
|
||
|
|
||
|
#define STAILQ_HEAD_INITIALIZER(head) \
|
||
|
{ NULL, &(head).stqh_first }
|
||
|
|
||
|
#define STAILQ_ENTRY(type) \
|
||
|
struct { \
|
||
|
struct type *stqe_next; /* next element */ \
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Singly-linked Tail queue functions.
|
||
|
*/
|
||
|
#define STAILQ_INIT(head) do { \
|
||
|
(head)->stqh_first = NULL; \
|
||
|
(head)->stqh_last = &(head)->stqh_first; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define STAILQ_INSERT_HEAD(head, elm, field) do { \
|
||
|
if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
|
||
|
(head)->stqh_last = &(elm)->field.stqe_next; \
|
||
|
(head)->stqh_first = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define STAILQ_INSERT_TAIL(head, elm, field) do { \
|
||
|
(elm)->field.stqe_next = NULL; \
|
||
|
*(head)->stqh_last = (elm); \
|
||
|
(head)->stqh_last = &(elm)->field.stqe_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
|
||
|
if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
|
||
|
(head)->stqh_last = &(elm)->field.stqe_next; \
|
||
|
(listelm)->field.stqe_next = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define STAILQ_REMOVE_HEAD(head, field) do { \
|
||
|
if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
|
||
|
(head)->stqh_last = &(head)->stqh_first; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define STAILQ_REMOVE(head, elm, type, field) do { \
|
||
|
if ((head)->stqh_first == (elm)) { \
|
||
|
STAILQ_REMOVE_HEAD((head), field); \
|
||
|
} else { \
|
||
|
struct type *curelm = (head)->stqh_first; \
|
||
|
while (curelm->field.stqe_next != (elm)) \
|
||
|
curelm = curelm->field.stqe_next; \
|
||
|
if ((curelm->field.stqe_next = \
|
||
|
curelm->field.stqe_next->field.stqe_next) == NULL) \
|
||
|
(head)->stqh_last = &(curelm)->field.stqe_next; \
|
||
|
} \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define STAILQ_FOREACH(var, head, field) \
|
||
|
for ((var) = ((head)->stqh_first); \
|
||
|
(var); \
|
||
|
(var) = ((var)->field.stqe_next))
|
||
|
|
||
|
#define STAILQ_CONCAT(head1, head2) do { \
|
||
|
if (!STAILQ_EMPTY((head2))) { \
|
||
|
*(head1)->stqh_last = (head2)->stqh_first; \
|
||
|
(head1)->stqh_last = (head2)->stqh_last; \
|
||
|
STAILQ_INIT((head2)); \
|
||
|
} \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/*
|
||
|
* Singly-linked Tail queue access methods.
|
||
|
*/
|
||
|
#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
|
||
|
#define STAILQ_FIRST(head) ((head)->stqh_first)
|
||
|
#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Simple queue definitions.
|
||
|
*/
|
||
|
#define SIMPLEQ_HEAD(name, type) \
|
||
|
struct name { \
|
||
|
struct type *sqh_first; /* first element */ \
|
||
|
struct type **sqh_last; /* addr of last next element */ \
|
||
|
}
|
||
|
|
||
|
#define SIMPLEQ_HEAD_INITIALIZER(head) \
|
||
|
{ NULL, &(head).sqh_first }
|
||
|
|
||
|
#define SIMPLEQ_ENTRY(type) \
|
||
|
struct { \
|
||
|
struct type *sqe_next; /* next element */ \
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Simple queue functions.
|
||
|
*/
|
||
|
#define SIMPLEQ_INIT(head) do { \
|
||
|
(head)->sqh_first = NULL; \
|
||
|
(head)->sqh_last = &(head)->sqh_first; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
|
||
|
if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
|
||
|
(head)->sqh_last = &(elm)->field.sqe_next; \
|
||
|
(head)->sqh_first = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
|
||
|
(elm)->field.sqe_next = NULL; \
|
||
|
*(head)->sqh_last = (elm); \
|
||
|
(head)->sqh_last = &(elm)->field.sqe_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
|
||
|
if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
|
||
|
(head)->sqh_last = &(elm)->field.sqe_next; \
|
||
|
(listelm)->field.sqe_next = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SIMPLEQ_REMOVE_HEAD(head, field) do { \
|
||
|
if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
|
||
|
(head)->sqh_last = &(head)->sqh_first; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SIMPLEQ_REMOVE(head, elm, type, field) do { \
|
||
|
if ((head)->sqh_first == (elm)) { \
|
||
|
SIMPLEQ_REMOVE_HEAD((head), field); \
|
||
|
} else { \
|
||
|
struct type *curelm = (head)->sqh_first; \
|
||
|
while (curelm->field.sqe_next != (elm)) \
|
||
|
curelm = curelm->field.sqe_next; \
|
||
|
if ((curelm->field.sqe_next = \
|
||
|
curelm->field.sqe_next->field.sqe_next) == NULL) \
|
||
|
(head)->sqh_last = &(curelm)->field.sqe_next; \
|
||
|
} \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define SIMPLEQ_FOREACH(var, head, field) \
|
||
|
for ((var) = ((head)->sqh_first); \
|
||
|
(var); \
|
||
|
(var) = ((var)->field.sqe_next))
|
||
|
|
||
|
/*
|
||
|
* Simple queue access methods.
|
||
|
*/
|
||
|
#define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL)
|
||
|
#define SIMPLEQ_FIRST(head) ((head)->sqh_first)
|
||
|
#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Tail queue definitions.
|
||
|
*/
|
||
|
#define _TAILQ_HEAD(name, type, qual) \
|
||
|
struct name { \
|
||
|
qual type *tqh_first; /* first element */ \
|
||
|
qual type *qual *tqh_last; /* addr of last next element */ \
|
||
|
}
|
||
|
#define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,)
|
||
|
|
||
|
#define TAILQ_HEAD_INITIALIZER(head) \
|
||
|
{ NULL, &(head).tqh_first }
|
||
|
|
||
|
#define _TAILQ_ENTRY(type, qual) \
|
||
|
struct { \
|
||
|
qual type *tqe_next; /* next element */ \
|
||
|
qual type *qual *tqe_prev; /* address of previous next element */\
|
||
|
}
|
||
|
#define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,)
|
||
|
|
||
|
/*
|
||
|
* Tail queue functions.
|
||
|
*/
|
||
|
#define TAILQ_INIT(head) do { \
|
||
|
(head)->tqh_first = NULL; \
|
||
|
(head)->tqh_last = &(head)->tqh_first; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define TAILQ_INSERT_HEAD(head, elm, field) do { \
|
||
|
if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
|
||
|
(head)->tqh_first->field.tqe_prev = \
|
||
|
&(elm)->field.tqe_next; \
|
||
|
else \
|
||
|
(head)->tqh_last = &(elm)->field.tqe_next; \
|
||
|
(head)->tqh_first = (elm); \
|
||
|
(elm)->field.tqe_prev = &(head)->tqh_first; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define TAILQ_INSERT_TAIL(head, elm, field) do { \
|
||
|
(elm)->field.tqe_next = NULL; \
|
||
|
(elm)->field.tqe_prev = (head)->tqh_last; \
|
||
|
*(head)->tqh_last = (elm); \
|
||
|
(head)->tqh_last = &(elm)->field.tqe_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
|
||
|
if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
|
||
|
(elm)->field.tqe_next->field.tqe_prev = \
|
||
|
&(elm)->field.tqe_next; \
|
||
|
else \
|
||
|
(head)->tqh_last = &(elm)->field.tqe_next; \
|
||
|
(listelm)->field.tqe_next = (elm); \
|
||
|
(elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
|
||
|
(elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
|
||
|
(elm)->field.tqe_next = (listelm); \
|
||
|
*(listelm)->field.tqe_prev = (elm); \
|
||
|
(listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define TAILQ_REMOVE(head, elm, field) do { \
|
||
|
if (((elm)->field.tqe_next) != NULL) \
|
||
|
(elm)->field.tqe_next->field.tqe_prev = \
|
||
|
(elm)->field.tqe_prev; \
|
||
|
else \
|
||
|
(head)->tqh_last = (elm)->field.tqe_prev; \
|
||
|
*(elm)->field.tqe_prev = (elm)->field.tqe_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define TAILQ_FOREACH(var, head, field) \
|
||
|
for ((var) = ((head)->tqh_first); \
|
||
|
(var); \
|
||
|
(var) = ((var)->field.tqe_next))
|
||
|
|
||
|
#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
|
||
|
for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \
|
||
|
(var); \
|
||
|
(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
|
||
|
|
||
|
#define TAILQ_CONCAT(head1, head2, field) do { \
|
||
|
if (!TAILQ_EMPTY(head2)) { \
|
||
|
*(head1)->tqh_last = (head2)->tqh_first; \
|
||
|
(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
|
||
|
(head1)->tqh_last = (head2)->tqh_last; \
|
||
|
TAILQ_INIT((head2)); \
|
||
|
} \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/*
|
||
|
* Tail queue access methods.
|
||
|
*/
|
||
|
#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
|
||
|
#define TAILQ_FIRST(head) ((head)->tqh_first)
|
||
|
#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
|
||
|
|
||
|
#define TAILQ_LAST(head, headname) \
|
||
|
(*(((struct headname *)((head)->tqh_last))->tqh_last))
|
||
|
#define TAILQ_PREV(elm, headname, field) \
|
||
|
(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Circular queue definitions.
|
||
|
*/
|
||
|
#define CIRCLEQ_HEAD(name, type) \
|
||
|
struct name { \
|
||
|
struct type *cqh_first; /* first element */ \
|
||
|
struct type *cqh_last; /* last element */ \
|
||
|
}
|
||
|
|
||
|
#define CIRCLEQ_HEAD_INITIALIZER(head) \
|
||
|
{ (void *)&head, (void *)&head }
|
||
|
|
||
|
#define CIRCLEQ_ENTRY(type) \
|
||
|
struct { \
|
||
|
struct type *cqe_next; /* next element */ \
|
||
|
struct type *cqe_prev; /* previous element */ \
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Circular queue functions.
|
||
|
*/
|
||
|
#define CIRCLEQ_INIT(head) do { \
|
||
|
(head)->cqh_first = (void *)(head); \
|
||
|
(head)->cqh_last = (void *)(head); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
|
||
|
(elm)->field.cqe_next = (listelm)->field.cqe_next; \
|
||
|
(elm)->field.cqe_prev = (listelm); \
|
||
|
if ((listelm)->field.cqe_next == (void *)(head)) \
|
||
|
(head)->cqh_last = (elm); \
|
||
|
else \
|
||
|
(listelm)->field.cqe_next->field.cqe_prev = (elm); \
|
||
|
(listelm)->field.cqe_next = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
|
||
|
(elm)->field.cqe_next = (listelm); \
|
||
|
(elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
|
||
|
if ((listelm)->field.cqe_prev == (void *)(head)) \
|
||
|
(head)->cqh_first = (elm); \
|
||
|
else \
|
||
|
(listelm)->field.cqe_prev->field.cqe_next = (elm); \
|
||
|
(listelm)->field.cqe_prev = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
|
||
|
(elm)->field.cqe_next = (head)->cqh_first; \
|
||
|
(elm)->field.cqe_prev = (void *)(head); \
|
||
|
if ((head)->cqh_last == (void *)(head)) \
|
||
|
(head)->cqh_last = (elm); \
|
||
|
else \
|
||
|
(head)->cqh_first->field.cqe_prev = (elm); \
|
||
|
(head)->cqh_first = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
|
||
|
(elm)->field.cqe_next = (void *)(head); \
|
||
|
(elm)->field.cqe_prev = (head)->cqh_last; \
|
||
|
if ((head)->cqh_first == (void *)(head)) \
|
||
|
(head)->cqh_first = (elm); \
|
||
|
else \
|
||
|
(head)->cqh_last->field.cqe_next = (elm); \
|
||
|
(head)->cqh_last = (elm); \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define CIRCLEQ_REMOVE(head, elm, field) do { \
|
||
|
if ((elm)->field.cqe_next == (void *)(head)) \
|
||
|
(head)->cqh_last = (elm)->field.cqe_prev; \
|
||
|
else \
|
||
|
(elm)->field.cqe_next->field.cqe_prev = \
|
||
|
(elm)->field.cqe_prev; \
|
||
|
if ((elm)->field.cqe_prev == (void *)(head)) \
|
||
|
(head)->cqh_first = (elm)->field.cqe_next; \
|
||
|
else \
|
||
|
(elm)->field.cqe_prev->field.cqe_next = \
|
||
|
(elm)->field.cqe_next; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
#define CIRCLEQ_FOREACH(var, head, field) \
|
||
|
for ((var) = ((head)->cqh_first); \
|
||
|
(var) != (const void *)(head); \
|
||
|
(var) = ((var)->field.cqe_next))
|
||
|
|
||
|
#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
|
||
|
for ((var) = ((head)->cqh_last); \
|
||
|
(var) != (const void *)(head); \
|
||
|
(var) = ((var)->field.cqe_prev))
|
||
|
|
||
|
/*
|
||
|
* Circular queue access methods.
|
||
|
*/
|
||
|
#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
|
||
|
#define CIRCLEQ_FIRST(head) ((head)->cqh_first)
|
||
|
#define CIRCLEQ_LAST(head) ((head)->cqh_last)
|
||
|
#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
|
||
|
#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
|
||
|
|
||
|
#define CIRCLEQ_LOOP_NEXT(head, elm, field) \
|
||
|
(((elm)->field.cqe_next == (void *)(head)) \
|
||
|
? ((head)->cqh_first) \
|
||
|
: (elm->field.cqe_next))
|
||
|
#define CIRCLEQ_LOOP_PREV(head, elm, field) \
|
||
|
(((elm)->field.cqe_prev == (void *)(head)) \
|
||
|
? ((head)->cqh_last) \
|
||
|
: (elm->field.cqe_prev))
|
||
|
|
||
|
#endif /* sys/queue.h */
|