359 lines
8.8 KiB
Groff
Raw Normal View History

CONFIG_ALIGNMENT_TRAP=y
CONFIG_ARCH_32BIT_OFF_T=y
CONFIG_ARCH_BCM=y
CONFIG_ARCH_BCM_5301X=y
CONFIG_ARCH_BCM_53573=y
CONFIG_ARCH_BCM_IPROC=y
bcm53xx: add support for Cisco Meraki MX64/MX65 This commit adds support for the Cisco Meraki MX64 and MX65 devices which use the Broadcom NSP SoC, which is compatible with the bcm53xx platform. MX64 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 internal switch (5x 1GbE ports) - USB: 1x USB2.0 - Serial: Internal header MX65 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 switch (2x 1GbE ports, used for WAN ports 1 & 2) 2x Qualcomm QCA8337 switches (10x 1GbE ports, used for LAN ports 3-12) - PSE: Broadcom BCM59111KMLG connected to LAN ports 11 & 12 - USB: 1x USB2.0 - Serial: Internal header Notes: - The Meraki provided GPL source are available at [2]. - Wireless capability on the MX64W and MX65W exists in the form of 2x Broadcom BCM43520KMLG, which is not supported. These devices will work otherwise as standard MX64 or MX65 devices. - Early MX64 units use an A0 variant of the BCM958625 SoC which lacks cache coherency and uses a different "secondary-boot-reg". As a consequence a different device tree is needed. - Installation of OpenWrt requires changing u-boot to a custom version. This is due to the stock u-boot "nand read" command being limited to load only 2MB, in spite of the bootkernel1 and bootkernel2 partitions both being 3MB in the stock layout. It is also required to allow booting via USB, enabling cache coherency and setting up the QCA switches and Serdes link on the MX65. The modified sources for U-boot are available for the MX64[3] and MX65[4]. - Initial work on this device used a small bootloader within the OEM partition scheme. To allow booting of larger kernels, UBI and bootm support has been added, along with ability to store env variables to the NAND. The Shmoo and newly created env partitions have been moved to the extra space available after the nvram data. - Users who installed the previous non-UBI supporting bootloader will need to convert to the new one before flashing a compatible image. These steps are detailed below. References: [1] https://www.broadcom.com/products/embedded-and-networking-processors/c ommunications/bcm5862x [2] https://dl.meraki.net/wired-14-39-mx64-20190426.tar.bz2 [3] https://github.com/clayface/U-boot-MX64-20190430_MX64 [4] https://github.com/clayface/U-boot-MX64-20190430_MX65 Installation guide: Initial installation steps: 1. Compile or obtain OpenWrt files for the MX64 or MX65, including u-boot[3][4], initramfs and sysupgrade images. 2. A USB disk with DOS partition scheme and primary FAT partition is required. 3. If installing onto an MX64, set up a local web server. 4. On the device, boot into diagnostic mode by holding reset when powering on the device. Continue to hold reset until the orange LED begins to flash white. On used units the white flash may be difficult to see. 5. Plug an Ethernet cable into the first LAN port, set the host to 192.168.1.2 and confirm telnet connectivity to 192.168.1.1. U-boot installation - MX64 Only: 1. Newer fw versions require extra steps to support OpenWrt. To check, please connect via telnet and run: `cat /sys/block/mtdblock0/ro` If the result is 1, your mtd0 is locked will need to perform extra steps 4 and 5 in this section. If the result is 0 then skip these. 2. Check which SoC is in use by running the following command: `devmem 0x18000000` If devmem is not found then try: `devmem2 0x18000000` If the output begins with anything between "0x3F00-0x3F03" you will need to use the A0 release. For any other output, eg "0x3F04" or higher, use the regular MX64 image. 3 Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx64 image. If the reported size is 0x80000, please use the uboot_mx64_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` Example output: `# cat /proc/mtd cat /proc/mtd dev: size erasesize name mtd0: 00100000 00040000 "boot" mtd1: 00080000 00040000 "shmoo" mtd2: 00300000 00040000 "bootkernel1" mtd3: 00100000 00040000 "nvram" mtd4: 00300000 00040000 "bootkernel2" mtd5: 3f700000 00040000 "ubi" mtd6: 40000000 00040000 "all"` 4. Set up a webserver to serve the appropriate uboot_mx64 from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX64 5. (Only if mtd0 is locked) You will also need the mtd-rw.ko kernel module to unlock the partition from the same repo. An mtd executable is also needed to write the mtd block. Place these on the web server as well. 6. (Only if mtd0 is locked) Use wget to retrieve the files on the MX64: `wget http://192.168.1.2/mtd-rw.ko` `insmod mtd-rw.ko i_want_a_brick=1` and confirm the unlock is set with dmesg `mtd-rw: mtd0: setting writeable flag` 7. Download the appropriate u-boot image according to step 3. If you did not need to unlock the mtd0 partition then use dd to write the file, with caution: `wget http://192.168.1.2/uboot_mx64` `dd if=uboot_mx64 of=/dev/mtdblock0` If you needed to unlock the mtd0 partition using the mtd-rw module, run these commands instead to install u-boot instead: `wget http://192.168.1.2/mtd` `chmod +x mtd` `wget http://192.168.1.2/uboot_mx64` `./mtd write uboot_mx64 /dev/mtd0` 8. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". U-boot installation - MX65 Only: 1. Obtain telnet access to the MX65. 2. Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx65 image. If the reported size is 0x80000, please use the uboot_mx65_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` 3. Prepare a USB drive formatted to FAT. Download the appropriate uboot_mx65 to the USB drive from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX65 3. Once you have telnet access to the MX65, plug in the USB disk and run the following commands, with caution. The USB disk should automount but if it does not, you will need to power off and on again with reset held. Depending on step 2, use the uboot_mx65 or uboot_mx65_small image accordingly: `cd /tmp/media/sda1` `dd if=uboot_mx65 of=/dev/mtdblock0` 4. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". UBI supporting bootloader installation: These steps need to be followed if the older u-boot image was installed, either because the Meraki diagnostic partition scheme used 0x80000 as the mtd0 size, or because you installed the u-boot provided while OpenWrt support was still under development. If using OpenWrt, please make a backup before proceeding. 1. Obtain the relevant image from the MX64(A0) or MX65 u-boot repo: `openwrt-bcm5862x-generic-meraki_XXXX-initramfs-kernel.bin` 2. With the USB drive already inserted, power on the device while holding the reset button. A white/orange flashing pattern will occur shortly after power on. Let go of the reset button. The device is now booting into OpenWrt initramfs stored on the USB disk. 3. Connect by SSH to 192.168.1.1 and flash the embedded u-boot image, changing X as appropriate: `mtd write /root/uboot_mx6X /dev/mtd0` You do not need to reboot as this image can handle "Kernel-in-UBI" OpenWrt installation. 4. You can proceed to obtain and flash the appropriate OpenWrt image at "OpenWrt Installation" Step 3. 5. Reboot will take significantly longer due to Shmoo calibration. In case the device does not come online after several minute, power- cycle the device and see if it boots. If you see an orange/white flashing pattern, this indicates UBI booting was not successful and you will need to copy a new bcm53xx image to a USB disk before booting it and attempting to install OpenWrt again - refer to "OpenWrt Installation" step 1. Do not attempt to reflash u-boot in this scenario. OpenWrt Installation: 1. Having obtained an OpenWrt image, please copy the file `openwrt-bcm53xx-generic-meraki_XXXX-initramfs.bin` to the base directory of a FAT formatted USB drive using DOS partition scheme ,where XXXX is mx64, mx64_a0 or mx65 depending on which device you have. 2. With the USB drive already inserted, power on the device. Boot time will be longer than usual while Shmoo calibration takes place. A different white/orange flashing pattern will eventually occur to indicate device is now booting into OpenWrt initramfs stored on the USB disk. 3. Ensuring Ethernet is plugged into a LAN port with IP set in the 192.168.1.0/24 subnet excluding 192.168.1.1, use SCP to copy the sysupgrade file to 192.168.1.1:/tmp, eg: `scp openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin\ 192.168.1.1:/tmp` 4. Connect by SSH to 192.168.1.1 and run sysupgrade: `sysupgrade \ /tmp/openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin` 5. OpenWrt should now be installed on the device. Signed-off-by: Matthew Hagan <mnhagan88@gmail.com> [ Rebase kernel configuration for 6.6, fix failsafe by making kmod-eeprom-at24 and kmod-dsa-qca8k built-in, resolve conflicts, add LED aliases, fix eth0 MAC address at probe ] TODO: - fix multiple LED colors not applied despite aliases - due to custom /etc/diag.sh - fix race condition between preinit and probing of the DSA tree, causing no network interface available in failsafe mode (in general case - to allow moving drivers back to modules) Signed-off-by: Lech Perczak <lech.perczak@gmail.com> Link: https://github.com/openwrt/openwrt/pull/16634 Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-09-06 22:42:35 +00:00
CONFIG_ARCH_BCM_NSP=y
CONFIG_ARCH_HIBERNATION_POSSIBLE=y
CONFIG_ARCH_KEEP_MEMBLOCK=y
CONFIG_ARCH_MIGHT_HAVE_PC_PARPORT=y
CONFIG_ARCH_MULTIPLATFORM=y
CONFIG_ARCH_MULTI_V6_V7=y
CONFIG_ARCH_MULTI_V7=y
CONFIG_ARCH_OPTIONAL_KERNEL_RWX=y
CONFIG_ARCH_OPTIONAL_KERNEL_RWX_DEFAULT=y
CONFIG_ARCH_SELECT_MEMORY_MODEL=y
CONFIG_ARCH_SPARSEMEM_ENABLE=y
CONFIG_ARCH_STACKWALK=y
CONFIG_ARCH_SUSPEND_POSSIBLE=y
CONFIG_ARM=y
CONFIG_ARM_AMBA=y
CONFIG_ARM_APPENDED_DTB=y
CONFIG_ARM_ARCH_TIMER=y
CONFIG_ARM_ARCH_TIMER_EVTSTREAM=y
# CONFIG_ARM_ATAG_DTB_COMPAT is not set
CONFIG_ARM_ERRATA_754322=y
CONFIG_ARM_ERRATA_764369=y
CONFIG_ARM_ERRATA_775420=y
CONFIG_ARM_GIC=y
CONFIG_ARM_GLOBAL_TIMER=y
CONFIG_ARM_GT_INITIAL_PRESCALER_VAL=1
CONFIG_ARM_HAS_GROUP_RELOCS=y
CONFIG_ARM_HEAVY_MB=y
CONFIG_ARM_L1_CACHE_SHIFT=6
CONFIG_ARM_L1_CACHE_SHIFT_6=y
CONFIG_ARM_PATCH_IDIV=y
CONFIG_ARM_PATCH_PHYS_VIRT=y
bcm53xx: add support for Cisco Meraki MX64/MX65 This commit adds support for the Cisco Meraki MX64 and MX65 devices which use the Broadcom NSP SoC, which is compatible with the bcm53xx platform. MX64 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 internal switch (5x 1GbE ports) - USB: 1x USB2.0 - Serial: Internal header MX65 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 switch (2x 1GbE ports, used for WAN ports 1 & 2) 2x Qualcomm QCA8337 switches (10x 1GbE ports, used for LAN ports 3-12) - PSE: Broadcom BCM59111KMLG connected to LAN ports 11 & 12 - USB: 1x USB2.0 - Serial: Internal header Notes: - The Meraki provided GPL source are available at [2]. - Wireless capability on the MX64W and MX65W exists in the form of 2x Broadcom BCM43520KMLG, which is not supported. These devices will work otherwise as standard MX64 or MX65 devices. - Early MX64 units use an A0 variant of the BCM958625 SoC which lacks cache coherency and uses a different "secondary-boot-reg". As a consequence a different device tree is needed. - Installation of OpenWrt requires changing u-boot to a custom version. This is due to the stock u-boot "nand read" command being limited to load only 2MB, in spite of the bootkernel1 and bootkernel2 partitions both being 3MB in the stock layout. It is also required to allow booting via USB, enabling cache coherency and setting up the QCA switches and Serdes link on the MX65. The modified sources for U-boot are available for the MX64[3] and MX65[4]. - Initial work on this device used a small bootloader within the OEM partition scheme. To allow booting of larger kernels, UBI and bootm support has been added, along with ability to store env variables to the NAND. The Shmoo and newly created env partitions have been moved to the extra space available after the nvram data. - Users who installed the previous non-UBI supporting bootloader will need to convert to the new one before flashing a compatible image. These steps are detailed below. References: [1] https://www.broadcom.com/products/embedded-and-networking-processors/c ommunications/bcm5862x [2] https://dl.meraki.net/wired-14-39-mx64-20190426.tar.bz2 [3] https://github.com/clayface/U-boot-MX64-20190430_MX64 [4] https://github.com/clayface/U-boot-MX64-20190430_MX65 Installation guide: Initial installation steps: 1. Compile or obtain OpenWrt files for the MX64 or MX65, including u-boot[3][4], initramfs and sysupgrade images. 2. A USB disk with DOS partition scheme and primary FAT partition is required. 3. If installing onto an MX64, set up a local web server. 4. On the device, boot into diagnostic mode by holding reset when powering on the device. Continue to hold reset until the orange LED begins to flash white. On used units the white flash may be difficult to see. 5. Plug an Ethernet cable into the first LAN port, set the host to 192.168.1.2 and confirm telnet connectivity to 192.168.1.1. U-boot installation - MX64 Only: 1. Newer fw versions require extra steps to support OpenWrt. To check, please connect via telnet and run: `cat /sys/block/mtdblock0/ro` If the result is 1, your mtd0 is locked will need to perform extra steps 4 and 5 in this section. If the result is 0 then skip these. 2. Check which SoC is in use by running the following command: `devmem 0x18000000` If devmem is not found then try: `devmem2 0x18000000` If the output begins with anything between "0x3F00-0x3F03" you will need to use the A0 release. For any other output, eg "0x3F04" or higher, use the regular MX64 image. 3 Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx64 image. If the reported size is 0x80000, please use the uboot_mx64_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` Example output: `# cat /proc/mtd cat /proc/mtd dev: size erasesize name mtd0: 00100000 00040000 "boot" mtd1: 00080000 00040000 "shmoo" mtd2: 00300000 00040000 "bootkernel1" mtd3: 00100000 00040000 "nvram" mtd4: 00300000 00040000 "bootkernel2" mtd5: 3f700000 00040000 "ubi" mtd6: 40000000 00040000 "all"` 4. Set up a webserver to serve the appropriate uboot_mx64 from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX64 5. (Only if mtd0 is locked) You will also need the mtd-rw.ko kernel module to unlock the partition from the same repo. An mtd executable is also needed to write the mtd block. Place these on the web server as well. 6. (Only if mtd0 is locked) Use wget to retrieve the files on the MX64: `wget http://192.168.1.2/mtd-rw.ko` `insmod mtd-rw.ko i_want_a_brick=1` and confirm the unlock is set with dmesg `mtd-rw: mtd0: setting writeable flag` 7. Download the appropriate u-boot image according to step 3. If you did not need to unlock the mtd0 partition then use dd to write the file, with caution: `wget http://192.168.1.2/uboot_mx64` `dd if=uboot_mx64 of=/dev/mtdblock0` If you needed to unlock the mtd0 partition using the mtd-rw module, run these commands instead to install u-boot instead: `wget http://192.168.1.2/mtd` `chmod +x mtd` `wget http://192.168.1.2/uboot_mx64` `./mtd write uboot_mx64 /dev/mtd0` 8. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". U-boot installation - MX65 Only: 1. Obtain telnet access to the MX65. 2. Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx65 image. If the reported size is 0x80000, please use the uboot_mx65_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` 3. Prepare a USB drive formatted to FAT. Download the appropriate uboot_mx65 to the USB drive from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX65 3. Once you have telnet access to the MX65, plug in the USB disk and run the following commands, with caution. The USB disk should automount but if it does not, you will need to power off and on again with reset held. Depending on step 2, use the uboot_mx65 or uboot_mx65_small image accordingly: `cd /tmp/media/sda1` `dd if=uboot_mx65 of=/dev/mtdblock0` 4. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". UBI supporting bootloader installation: These steps need to be followed if the older u-boot image was installed, either because the Meraki diagnostic partition scheme used 0x80000 as the mtd0 size, or because you installed the u-boot provided while OpenWrt support was still under development. If using OpenWrt, please make a backup before proceeding. 1. Obtain the relevant image from the MX64(A0) or MX65 u-boot repo: `openwrt-bcm5862x-generic-meraki_XXXX-initramfs-kernel.bin` 2. With the USB drive already inserted, power on the device while holding the reset button. A white/orange flashing pattern will occur shortly after power on. Let go of the reset button. The device is now booting into OpenWrt initramfs stored on the USB disk. 3. Connect by SSH to 192.168.1.1 and flash the embedded u-boot image, changing X as appropriate: `mtd write /root/uboot_mx6X /dev/mtd0` You do not need to reboot as this image can handle "Kernel-in-UBI" OpenWrt installation. 4. You can proceed to obtain and flash the appropriate OpenWrt image at "OpenWrt Installation" Step 3. 5. Reboot will take significantly longer due to Shmoo calibration. In case the device does not come online after several minute, power- cycle the device and see if it boots. If you see an orange/white flashing pattern, this indicates UBI booting was not successful and you will need to copy a new bcm53xx image to a USB disk before booting it and attempting to install OpenWrt again - refer to "OpenWrt Installation" step 1. Do not attempt to reflash u-boot in this scenario. OpenWrt Installation: 1. Having obtained an OpenWrt image, please copy the file `openwrt-bcm53xx-generic-meraki_XXXX-initramfs.bin` to the base directory of a FAT formatted USB drive using DOS partition scheme ,where XXXX is mx64, mx64_a0 or mx65 depending on which device you have. 2. With the USB drive already inserted, power on the device. Boot time will be longer than usual while Shmoo calibration takes place. A different white/orange flashing pattern will eventually occur to indicate device is now booting into OpenWrt initramfs stored on the USB disk. 3. Ensuring Ethernet is plugged into a LAN port with IP set in the 192.168.1.0/24 subnet excluding 192.168.1.1, use SCP to copy the sysupgrade file to 192.168.1.1:/tmp, eg: `scp openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin\ 192.168.1.1:/tmp` 4. Connect by SSH to 192.168.1.1 and run sysupgrade: `sysupgrade \ /tmp/openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin` 5. OpenWrt should now be installed on the device. Signed-off-by: Matthew Hagan <mnhagan88@gmail.com> [ Rebase kernel configuration for 6.6, fix failsafe by making kmod-eeprom-at24 and kmod-dsa-qca8k built-in, resolve conflicts, add LED aliases, fix eth0 MAC address at probe ] TODO: - fix multiple LED colors not applied despite aliases - due to custom /etc/diag.sh - fix race condition between preinit and probing of the DSA tree, causing no network interface available in failsafe mode (in general case - to allow moving drivers back to modules) Signed-off-by: Lech Perczak <lech.perczak@gmail.com> Link: https://github.com/openwrt/openwrt/pull/16634 Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-09-06 22:42:35 +00:00
CONFIG_ARM_SP805_WATCHDOG=y
CONFIG_ARM_THUMB=y
bcm53xx: add support for Cisco Meraki MX64/MX65 This commit adds support for the Cisco Meraki MX64 and MX65 devices which use the Broadcom NSP SoC, which is compatible with the bcm53xx platform. MX64 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 internal switch (5x 1GbE ports) - USB: 1x USB2.0 - Serial: Internal header MX65 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 switch (2x 1GbE ports, used for WAN ports 1 & 2) 2x Qualcomm QCA8337 switches (10x 1GbE ports, used for LAN ports 3-12) - PSE: Broadcom BCM59111KMLG connected to LAN ports 11 & 12 - USB: 1x USB2.0 - Serial: Internal header Notes: - The Meraki provided GPL source are available at [2]. - Wireless capability on the MX64W and MX65W exists in the form of 2x Broadcom BCM43520KMLG, which is not supported. These devices will work otherwise as standard MX64 or MX65 devices. - Early MX64 units use an A0 variant of the BCM958625 SoC which lacks cache coherency and uses a different "secondary-boot-reg". As a consequence a different device tree is needed. - Installation of OpenWrt requires changing u-boot to a custom version. This is due to the stock u-boot "nand read" command being limited to load only 2MB, in spite of the bootkernel1 and bootkernel2 partitions both being 3MB in the stock layout. It is also required to allow booting via USB, enabling cache coherency and setting up the QCA switches and Serdes link on the MX65. The modified sources for U-boot are available for the MX64[3] and MX65[4]. - Initial work on this device used a small bootloader within the OEM partition scheme. To allow booting of larger kernels, UBI and bootm support has been added, along with ability to store env variables to the NAND. The Shmoo and newly created env partitions have been moved to the extra space available after the nvram data. - Users who installed the previous non-UBI supporting bootloader will need to convert to the new one before flashing a compatible image. These steps are detailed below. References: [1] https://www.broadcom.com/products/embedded-and-networking-processors/c ommunications/bcm5862x [2] https://dl.meraki.net/wired-14-39-mx64-20190426.tar.bz2 [3] https://github.com/clayface/U-boot-MX64-20190430_MX64 [4] https://github.com/clayface/U-boot-MX64-20190430_MX65 Installation guide: Initial installation steps: 1. Compile or obtain OpenWrt files for the MX64 or MX65, including u-boot[3][4], initramfs and sysupgrade images. 2. A USB disk with DOS partition scheme and primary FAT partition is required. 3. If installing onto an MX64, set up a local web server. 4. On the device, boot into diagnostic mode by holding reset when powering on the device. Continue to hold reset until the orange LED begins to flash white. On used units the white flash may be difficult to see. 5. Plug an Ethernet cable into the first LAN port, set the host to 192.168.1.2 and confirm telnet connectivity to 192.168.1.1. U-boot installation - MX64 Only: 1. Newer fw versions require extra steps to support OpenWrt. To check, please connect via telnet and run: `cat /sys/block/mtdblock0/ro` If the result is 1, your mtd0 is locked will need to perform extra steps 4 and 5 in this section. If the result is 0 then skip these. 2. Check which SoC is in use by running the following command: `devmem 0x18000000` If devmem is not found then try: `devmem2 0x18000000` If the output begins with anything between "0x3F00-0x3F03" you will need to use the A0 release. For any other output, eg "0x3F04" or higher, use the regular MX64 image. 3 Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx64 image. If the reported size is 0x80000, please use the uboot_mx64_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` Example output: `# cat /proc/mtd cat /proc/mtd dev: size erasesize name mtd0: 00100000 00040000 "boot" mtd1: 00080000 00040000 "shmoo" mtd2: 00300000 00040000 "bootkernel1" mtd3: 00100000 00040000 "nvram" mtd4: 00300000 00040000 "bootkernel2" mtd5: 3f700000 00040000 "ubi" mtd6: 40000000 00040000 "all"` 4. Set up a webserver to serve the appropriate uboot_mx64 from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX64 5. (Only if mtd0 is locked) You will also need the mtd-rw.ko kernel module to unlock the partition from the same repo. An mtd executable is also needed to write the mtd block. Place these on the web server as well. 6. (Only if mtd0 is locked) Use wget to retrieve the files on the MX64: `wget http://192.168.1.2/mtd-rw.ko` `insmod mtd-rw.ko i_want_a_brick=1` and confirm the unlock is set with dmesg `mtd-rw: mtd0: setting writeable flag` 7. Download the appropriate u-boot image according to step 3. If you did not need to unlock the mtd0 partition then use dd to write the file, with caution: `wget http://192.168.1.2/uboot_mx64` `dd if=uboot_mx64 of=/dev/mtdblock0` If you needed to unlock the mtd0 partition using the mtd-rw module, run these commands instead to install u-boot instead: `wget http://192.168.1.2/mtd` `chmod +x mtd` `wget http://192.168.1.2/uboot_mx64` `./mtd write uboot_mx64 /dev/mtd0` 8. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". U-boot installation - MX65 Only: 1. Obtain telnet access to the MX65. 2. Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx65 image. If the reported size is 0x80000, please use the uboot_mx65_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` 3. Prepare a USB drive formatted to FAT. Download the appropriate uboot_mx65 to the USB drive from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX65 3. Once you have telnet access to the MX65, plug in the USB disk and run the following commands, with caution. The USB disk should automount but if it does not, you will need to power off and on again with reset held. Depending on step 2, use the uboot_mx65 or uboot_mx65_small image accordingly: `cd /tmp/media/sda1` `dd if=uboot_mx65 of=/dev/mtdblock0` 4. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". UBI supporting bootloader installation: These steps need to be followed if the older u-boot image was installed, either because the Meraki diagnostic partition scheme used 0x80000 as the mtd0 size, or because you installed the u-boot provided while OpenWrt support was still under development. If using OpenWrt, please make a backup before proceeding. 1. Obtain the relevant image from the MX64(A0) or MX65 u-boot repo: `openwrt-bcm5862x-generic-meraki_XXXX-initramfs-kernel.bin` 2. With the USB drive already inserted, power on the device while holding the reset button. A white/orange flashing pattern will occur shortly after power on. Let go of the reset button. The device is now booting into OpenWrt initramfs stored on the USB disk. 3. Connect by SSH to 192.168.1.1 and flash the embedded u-boot image, changing X as appropriate: `mtd write /root/uboot_mx6X /dev/mtd0` You do not need to reboot as this image can handle "Kernel-in-UBI" OpenWrt installation. 4. You can proceed to obtain and flash the appropriate OpenWrt image at "OpenWrt Installation" Step 3. 5. Reboot will take significantly longer due to Shmoo calibration. In case the device does not come online after several minute, power- cycle the device and see if it boots. If you see an orange/white flashing pattern, this indicates UBI booting was not successful and you will need to copy a new bcm53xx image to a USB disk before booting it and attempting to install OpenWrt again - refer to "OpenWrt Installation" step 1. Do not attempt to reflash u-boot in this scenario. OpenWrt Installation: 1. Having obtained an OpenWrt image, please copy the file `openwrt-bcm53xx-generic-meraki_XXXX-initramfs.bin` to the base directory of a FAT formatted USB drive using DOS partition scheme ,where XXXX is mx64, mx64_a0 or mx65 depending on which device you have. 2. With the USB drive already inserted, power on the device. Boot time will be longer than usual while Shmoo calibration takes place. A different white/orange flashing pattern will eventually occur to indicate device is now booting into OpenWrt initramfs stored on the USB disk. 3. Ensuring Ethernet is plugged into a LAN port with IP set in the 192.168.1.0/24 subnet excluding 192.168.1.1, use SCP to copy the sysupgrade file to 192.168.1.1:/tmp, eg: `scp openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin\ 192.168.1.1:/tmp` 4. Connect by SSH to 192.168.1.1 and run sysupgrade: `sysupgrade \ /tmp/openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin` 5. OpenWrt should now be installed on the device. Signed-off-by: Matthew Hagan <mnhagan88@gmail.com> [ Rebase kernel configuration for 6.6, fix failsafe by making kmod-eeprom-at24 and kmod-dsa-qca8k built-in, resolve conflicts, add LED aliases, fix eth0 MAC address at probe ] TODO: - fix multiple LED colors not applied despite aliases - due to custom /etc/diag.sh - fix race condition between preinit and probing of the DSA tree, causing no network interface available in failsafe mode (in general case - to allow moving drivers back to modules) Signed-off-by: Lech Perczak <lech.perczak@gmail.com> Link: https://github.com/openwrt/openwrt/pull/16634 Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-09-06 22:42:35 +00:00
CONFIG_ARM_TIMER_SP804=y
CONFIG_ARM_UNWIND=y
CONFIG_ARM_VIRT_EXT=y
CONFIG_ATAGS=y
CONFIG_AUTO_ZRELADDR=y
CONFIG_B53=y
CONFIG_B53_MDIO_DRIVER=y
bcm53xx: add support for Cisco Meraki MX64/MX65 This commit adds support for the Cisco Meraki MX64 and MX65 devices which use the Broadcom NSP SoC, which is compatible with the bcm53xx platform. MX64 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 internal switch (5x 1GbE ports) - USB: 1x USB2.0 - Serial: Internal header MX65 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 switch (2x 1GbE ports, used for WAN ports 1 & 2) 2x Qualcomm QCA8337 switches (10x 1GbE ports, used for LAN ports 3-12) - PSE: Broadcom BCM59111KMLG connected to LAN ports 11 & 12 - USB: 1x USB2.0 - Serial: Internal header Notes: - The Meraki provided GPL source are available at [2]. - Wireless capability on the MX64W and MX65W exists in the form of 2x Broadcom BCM43520KMLG, which is not supported. These devices will work otherwise as standard MX64 or MX65 devices. - Early MX64 units use an A0 variant of the BCM958625 SoC which lacks cache coherency and uses a different "secondary-boot-reg". As a consequence a different device tree is needed. - Installation of OpenWrt requires changing u-boot to a custom version. This is due to the stock u-boot "nand read" command being limited to load only 2MB, in spite of the bootkernel1 and bootkernel2 partitions both being 3MB in the stock layout. It is also required to allow booting via USB, enabling cache coherency and setting up the QCA switches and Serdes link on the MX65. The modified sources for U-boot are available for the MX64[3] and MX65[4]. - Initial work on this device used a small bootloader within the OEM partition scheme. To allow booting of larger kernels, UBI and bootm support has been added, along with ability to store env variables to the NAND. The Shmoo and newly created env partitions have been moved to the extra space available after the nvram data. - Users who installed the previous non-UBI supporting bootloader will need to convert to the new one before flashing a compatible image. These steps are detailed below. References: [1] https://www.broadcom.com/products/embedded-and-networking-processors/c ommunications/bcm5862x [2] https://dl.meraki.net/wired-14-39-mx64-20190426.tar.bz2 [3] https://github.com/clayface/U-boot-MX64-20190430_MX64 [4] https://github.com/clayface/U-boot-MX64-20190430_MX65 Installation guide: Initial installation steps: 1. Compile or obtain OpenWrt files for the MX64 or MX65, including u-boot[3][4], initramfs and sysupgrade images. 2. A USB disk with DOS partition scheme and primary FAT partition is required. 3. If installing onto an MX64, set up a local web server. 4. On the device, boot into diagnostic mode by holding reset when powering on the device. Continue to hold reset until the orange LED begins to flash white. On used units the white flash may be difficult to see. 5. Plug an Ethernet cable into the first LAN port, set the host to 192.168.1.2 and confirm telnet connectivity to 192.168.1.1. U-boot installation - MX64 Only: 1. Newer fw versions require extra steps to support OpenWrt. To check, please connect via telnet and run: `cat /sys/block/mtdblock0/ro` If the result is 1, your mtd0 is locked will need to perform extra steps 4 and 5 in this section. If the result is 0 then skip these. 2. Check which SoC is in use by running the following command: `devmem 0x18000000` If devmem is not found then try: `devmem2 0x18000000` If the output begins with anything between "0x3F00-0x3F03" you will need to use the A0 release. For any other output, eg "0x3F04" or higher, use the regular MX64 image. 3 Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx64 image. If the reported size is 0x80000, please use the uboot_mx64_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` Example output: `# cat /proc/mtd cat /proc/mtd dev: size erasesize name mtd0: 00100000 00040000 "boot" mtd1: 00080000 00040000 "shmoo" mtd2: 00300000 00040000 "bootkernel1" mtd3: 00100000 00040000 "nvram" mtd4: 00300000 00040000 "bootkernel2" mtd5: 3f700000 00040000 "ubi" mtd6: 40000000 00040000 "all"` 4. Set up a webserver to serve the appropriate uboot_mx64 from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX64 5. (Only if mtd0 is locked) You will also need the mtd-rw.ko kernel module to unlock the partition from the same repo. An mtd executable is also needed to write the mtd block. Place these on the web server as well. 6. (Only if mtd0 is locked) Use wget to retrieve the files on the MX64: `wget http://192.168.1.2/mtd-rw.ko` `insmod mtd-rw.ko i_want_a_brick=1` and confirm the unlock is set with dmesg `mtd-rw: mtd0: setting writeable flag` 7. Download the appropriate u-boot image according to step 3. If you did not need to unlock the mtd0 partition then use dd to write the file, with caution: `wget http://192.168.1.2/uboot_mx64` `dd if=uboot_mx64 of=/dev/mtdblock0` If you needed to unlock the mtd0 partition using the mtd-rw module, run these commands instead to install u-boot instead: `wget http://192.168.1.2/mtd` `chmod +x mtd` `wget http://192.168.1.2/uboot_mx64` `./mtd write uboot_mx64 /dev/mtd0` 8. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". U-boot installation - MX65 Only: 1. Obtain telnet access to the MX65. 2. Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx65 image. If the reported size is 0x80000, please use the uboot_mx65_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` 3. Prepare a USB drive formatted to FAT. Download the appropriate uboot_mx65 to the USB drive from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX65 3. Once you have telnet access to the MX65, plug in the USB disk and run the following commands, with caution. The USB disk should automount but if it does not, you will need to power off and on again with reset held. Depending on step 2, use the uboot_mx65 or uboot_mx65_small image accordingly: `cd /tmp/media/sda1` `dd if=uboot_mx65 of=/dev/mtdblock0` 4. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". UBI supporting bootloader installation: These steps need to be followed if the older u-boot image was installed, either because the Meraki diagnostic partition scheme used 0x80000 as the mtd0 size, or because you installed the u-boot provided while OpenWrt support was still under development. If using OpenWrt, please make a backup before proceeding. 1. Obtain the relevant image from the MX64(A0) or MX65 u-boot repo: `openwrt-bcm5862x-generic-meraki_XXXX-initramfs-kernel.bin` 2. With the USB drive already inserted, power on the device while holding the reset button. A white/orange flashing pattern will occur shortly after power on. Let go of the reset button. The device is now booting into OpenWrt initramfs stored on the USB disk. 3. Connect by SSH to 192.168.1.1 and flash the embedded u-boot image, changing X as appropriate: `mtd write /root/uboot_mx6X /dev/mtd0` You do not need to reboot as this image can handle "Kernel-in-UBI" OpenWrt installation. 4. You can proceed to obtain and flash the appropriate OpenWrt image at "OpenWrt Installation" Step 3. 5. Reboot will take significantly longer due to Shmoo calibration. In case the device does not come online after several minute, power- cycle the device and see if it boots. If you see an orange/white flashing pattern, this indicates UBI booting was not successful and you will need to copy a new bcm53xx image to a USB disk before booting it and attempting to install OpenWrt again - refer to "OpenWrt Installation" step 1. Do not attempt to reflash u-boot in this scenario. OpenWrt Installation: 1. Having obtained an OpenWrt image, please copy the file `openwrt-bcm53xx-generic-meraki_XXXX-initramfs.bin` to the base directory of a FAT formatted USB drive using DOS partition scheme ,where XXXX is mx64, mx64_a0 or mx65 depending on which device you have. 2. With the USB drive already inserted, power on the device. Boot time will be longer than usual while Shmoo calibration takes place. A different white/orange flashing pattern will eventually occur to indicate device is now booting into OpenWrt initramfs stored on the USB disk. 3. Ensuring Ethernet is plugged into a LAN port with IP set in the 192.168.1.0/24 subnet excluding 192.168.1.1, use SCP to copy the sysupgrade file to 192.168.1.1:/tmp, eg: `scp openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin\ 192.168.1.1:/tmp` 4. Connect by SSH to 192.168.1.1 and run sysupgrade: `sysupgrade \ /tmp/openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin` 5. OpenWrt should now be installed on the device. Signed-off-by: Matthew Hagan <mnhagan88@gmail.com> [ Rebase kernel configuration for 6.6, fix failsafe by making kmod-eeprom-at24 and kmod-dsa-qca8k built-in, resolve conflicts, add LED aliases, fix eth0 MAC address at probe ] TODO: - fix multiple LED colors not applied despite aliases - due to custom /etc/diag.sh - fix race condition between preinit and probing of the DSA tree, causing no network interface available in failsafe mode (in general case - to allow moving drivers back to modules) Signed-off-by: Lech Perczak <lech.perczak@gmail.com> Link: https://github.com/openwrt/openwrt/pull/16634 Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-09-06 22:42:35 +00:00
CONFIG_B53_SERDES=y
CONFIG_B53_SRAB_DRIVER=y
CONFIG_BCM47XX_NVRAM=y
CONFIG_BCM47XX_SPROM=y
CONFIG_BCM47XX_WDT=y
CONFIG_BCMA=y
CONFIG_BCMA_BLOCKIO=y
CONFIG_BCMA_DEBUG=y
CONFIG_BCMA_DRIVER_GMAC_CMN=y
CONFIG_BCMA_DRIVER_GPIO=y
CONFIG_BCMA_DRIVER_PCI=y
CONFIG_BCMA_FALLBACK_SPROM=y
CONFIG_BCMA_HOST_PCI=y
CONFIG_BCMA_HOST_PCI_POSSIBLE=y
CONFIG_BCMA_HOST_SOC=y
CONFIG_BCMA_SFLASH=y
# CONFIG_BCM_CYGNUS_PHY is not set
CONFIG_BCM_NET_PHYLIB=y
CONFIG_BCM_NS_THERMAL=y
CONFIG_BCM_SR_THERMAL=y
CONFIG_BGMAC=y
CONFIG_BGMAC_BCMA=y
bcm53xx: add support for Cisco Meraki MX64/MX65 This commit adds support for the Cisco Meraki MX64 and MX65 devices which use the Broadcom NSP SoC, which is compatible with the bcm53xx platform. MX64 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 internal switch (5x 1GbE ports) - USB: 1x USB2.0 - Serial: Internal header MX65 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 switch (2x 1GbE ports, used for WAN ports 1 & 2) 2x Qualcomm QCA8337 switches (10x 1GbE ports, used for LAN ports 3-12) - PSE: Broadcom BCM59111KMLG connected to LAN ports 11 & 12 - USB: 1x USB2.0 - Serial: Internal header Notes: - The Meraki provided GPL source are available at [2]. - Wireless capability on the MX64W and MX65W exists in the form of 2x Broadcom BCM43520KMLG, which is not supported. These devices will work otherwise as standard MX64 or MX65 devices. - Early MX64 units use an A0 variant of the BCM958625 SoC which lacks cache coherency and uses a different "secondary-boot-reg". As a consequence a different device tree is needed. - Installation of OpenWrt requires changing u-boot to a custom version. This is due to the stock u-boot "nand read" command being limited to load only 2MB, in spite of the bootkernel1 and bootkernel2 partitions both being 3MB in the stock layout. It is also required to allow booting via USB, enabling cache coherency and setting up the QCA switches and Serdes link on the MX65. The modified sources for U-boot are available for the MX64[3] and MX65[4]. - Initial work on this device used a small bootloader within the OEM partition scheme. To allow booting of larger kernels, UBI and bootm support has been added, along with ability to store env variables to the NAND. The Shmoo and newly created env partitions have been moved to the extra space available after the nvram data. - Users who installed the previous non-UBI supporting bootloader will need to convert to the new one before flashing a compatible image. These steps are detailed below. References: [1] https://www.broadcom.com/products/embedded-and-networking-processors/c ommunications/bcm5862x [2] https://dl.meraki.net/wired-14-39-mx64-20190426.tar.bz2 [3] https://github.com/clayface/U-boot-MX64-20190430_MX64 [4] https://github.com/clayface/U-boot-MX64-20190430_MX65 Installation guide: Initial installation steps: 1. Compile or obtain OpenWrt files for the MX64 or MX65, including u-boot[3][4], initramfs and sysupgrade images. 2. A USB disk with DOS partition scheme and primary FAT partition is required. 3. If installing onto an MX64, set up a local web server. 4. On the device, boot into diagnostic mode by holding reset when powering on the device. Continue to hold reset until the orange LED begins to flash white. On used units the white flash may be difficult to see. 5. Plug an Ethernet cable into the first LAN port, set the host to 192.168.1.2 and confirm telnet connectivity to 192.168.1.1. U-boot installation - MX64 Only: 1. Newer fw versions require extra steps to support OpenWrt. To check, please connect via telnet and run: `cat /sys/block/mtdblock0/ro` If the result is 1, your mtd0 is locked will need to perform extra steps 4 and 5 in this section. If the result is 0 then skip these. 2. Check which SoC is in use by running the following command: `devmem 0x18000000` If devmem is not found then try: `devmem2 0x18000000` If the output begins with anything between "0x3F00-0x3F03" you will need to use the A0 release. For any other output, eg "0x3F04" or higher, use the regular MX64 image. 3 Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx64 image. If the reported size is 0x80000, please use the uboot_mx64_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` Example output: `# cat /proc/mtd cat /proc/mtd dev: size erasesize name mtd0: 00100000 00040000 "boot" mtd1: 00080000 00040000 "shmoo" mtd2: 00300000 00040000 "bootkernel1" mtd3: 00100000 00040000 "nvram" mtd4: 00300000 00040000 "bootkernel2" mtd5: 3f700000 00040000 "ubi" mtd6: 40000000 00040000 "all"` 4. Set up a webserver to serve the appropriate uboot_mx64 from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX64 5. (Only if mtd0 is locked) You will also need the mtd-rw.ko kernel module to unlock the partition from the same repo. An mtd executable is also needed to write the mtd block. Place these on the web server as well. 6. (Only if mtd0 is locked) Use wget to retrieve the files on the MX64: `wget http://192.168.1.2/mtd-rw.ko` `insmod mtd-rw.ko i_want_a_brick=1` and confirm the unlock is set with dmesg `mtd-rw: mtd0: setting writeable flag` 7. Download the appropriate u-boot image according to step 3. If you did not need to unlock the mtd0 partition then use dd to write the file, with caution: `wget http://192.168.1.2/uboot_mx64` `dd if=uboot_mx64 of=/dev/mtdblock0` If you needed to unlock the mtd0 partition using the mtd-rw module, run these commands instead to install u-boot instead: `wget http://192.168.1.2/mtd` `chmod +x mtd` `wget http://192.168.1.2/uboot_mx64` `./mtd write uboot_mx64 /dev/mtd0` 8. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". U-boot installation - MX65 Only: 1. Obtain telnet access to the MX65. 2. Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx65 image. If the reported size is 0x80000, please use the uboot_mx65_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` 3. Prepare a USB drive formatted to FAT. Download the appropriate uboot_mx65 to the USB drive from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX65 3. Once you have telnet access to the MX65, plug in the USB disk and run the following commands, with caution. The USB disk should automount but if it does not, you will need to power off and on again with reset held. Depending on step 2, use the uboot_mx65 or uboot_mx65_small image accordingly: `cd /tmp/media/sda1` `dd if=uboot_mx65 of=/dev/mtdblock0` 4. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". UBI supporting bootloader installation: These steps need to be followed if the older u-boot image was installed, either because the Meraki diagnostic partition scheme used 0x80000 as the mtd0 size, or because you installed the u-boot provided while OpenWrt support was still under development. If using OpenWrt, please make a backup before proceeding. 1. Obtain the relevant image from the MX64(A0) or MX65 u-boot repo: `openwrt-bcm5862x-generic-meraki_XXXX-initramfs-kernel.bin` 2. With the USB drive already inserted, power on the device while holding the reset button. A white/orange flashing pattern will occur shortly after power on. Let go of the reset button. The device is now booting into OpenWrt initramfs stored on the USB disk. 3. Connect by SSH to 192.168.1.1 and flash the embedded u-boot image, changing X as appropriate: `mtd write /root/uboot_mx6X /dev/mtd0` You do not need to reboot as this image can handle "Kernel-in-UBI" OpenWrt installation. 4. You can proceed to obtain and flash the appropriate OpenWrt image at "OpenWrt Installation" Step 3. 5. Reboot will take significantly longer due to Shmoo calibration. In case the device does not come online after several minute, power- cycle the device and see if it boots. If you see an orange/white flashing pattern, this indicates UBI booting was not successful and you will need to copy a new bcm53xx image to a USB disk before booting it and attempting to install OpenWrt again - refer to "OpenWrt Installation" step 1. Do not attempt to reflash u-boot in this scenario. OpenWrt Installation: 1. Having obtained an OpenWrt image, please copy the file `openwrt-bcm53xx-generic-meraki_XXXX-initramfs.bin` to the base directory of a FAT formatted USB drive using DOS partition scheme ,where XXXX is mx64, mx64_a0 or mx65 depending on which device you have. 2. With the USB drive already inserted, power on the device. Boot time will be longer than usual while Shmoo calibration takes place. A different white/orange flashing pattern will eventually occur to indicate device is now booting into OpenWrt initramfs stored on the USB disk. 3. Ensuring Ethernet is plugged into a LAN port with IP set in the 192.168.1.0/24 subnet excluding 192.168.1.1, use SCP to copy the sysupgrade file to 192.168.1.1:/tmp, eg: `scp openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin\ 192.168.1.1:/tmp` 4. Connect by SSH to 192.168.1.1 and run sysupgrade: `sysupgrade \ /tmp/openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin` 5. OpenWrt should now be installed on the device. Signed-off-by: Matthew Hagan <mnhagan88@gmail.com> [ Rebase kernel configuration for 6.6, fix failsafe by making kmod-eeprom-at24 and kmod-dsa-qca8k built-in, resolve conflicts, add LED aliases, fix eth0 MAC address at probe ] TODO: - fix multiple LED colors not applied despite aliases - due to custom /etc/diag.sh - fix race condition between preinit and probing of the DSA tree, causing no network interface available in failsafe mode (in general case - to allow moving drivers back to modules) Signed-off-by: Lech Perczak <lech.perczak@gmail.com> Link: https://github.com/openwrt/openwrt/pull/16634 Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-09-06 22:42:35 +00:00
CONFIG_BGMAC_PLATFORM=y
CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK=y
CONFIG_BLK_MQ_PCI=y
CONFIG_BOUNCE=y
CONFIG_BROADCOM_PHY=y
CONFIG_CACHE_L2X0=y
CONFIG_CC_HAVE_STACKPROTECTOR_TLS=y
CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK=y
CONFIG_CLKSRC_MMIO=y
# CONFIG_CLK_BCM_NS2 is not set
CONFIG_CLK_BCM_NSP=y
# CONFIG_CLK_BCM_SR is not set
CONFIG_CLONE_BACKWARDS=y
CONFIG_COMMON_CLK=y
CONFIG_COMMON_CLK_IPROC=y
CONFIG_COMPACT_UNEVICTABLE_DEFAULT=1
CONFIG_COMPAT_32BIT_TIME=y
CONFIG_CONTEXT_TRACKING=y
CONFIG_CONTEXT_TRACKING_IDLE=y
CONFIG_CPU_32v6K=y
CONFIG_CPU_32v7=y
CONFIG_CPU_ABRT_EV7=y
CONFIG_CPU_CACHE_V7=y
CONFIG_CPU_CACHE_VIPT=y
CONFIG_CPU_COPY_V6=y
CONFIG_CPU_CP15=y
CONFIG_CPU_CP15_MMU=y
CONFIG_CPU_HAS_ASID=y
CONFIG_CPU_LITTLE_ENDIAN=y
CONFIG_CPU_PABRT_V7=y
CONFIG_CPU_RMAP=y
CONFIG_CPU_SPECTRE=y
CONFIG_CPU_THUMB_CAPABLE=y
CONFIG_CPU_TLB_V7=y
CONFIG_CPU_V7=y
CONFIG_CRC16=y
CONFIG_CRYPTO_DEFLATE=y
CONFIG_CRYPTO_HASH_INFO=y
CONFIG_CRYPTO_LIB_BLAKE2S_GENERIC=y
CONFIG_CRYPTO_LIB_GF128MUL=y
CONFIG_CRYPTO_LIB_SHA1=y
CONFIG_CRYPTO_LIB_UTILS=y
CONFIG_CRYPTO_LZO=y
CONFIG_CRYPTO_ZSTD=y
CONFIG_CURRENT_POINTER_IN_TPIDRURO=y
CONFIG_DCACHE_WORD_ACCESS=y
CONFIG_DEBUG_BCM_5301X=y
CONFIG_DEBUG_INFO=y
CONFIG_DEBUG_LL=y
CONFIG_DEBUG_LL_INCLUDE="debug/8250.S"
CONFIG_DEBUG_MISC=y
CONFIG_DEBUG_UART_8250=y
CONFIG_DEBUG_UART_8250_SHIFT=0
CONFIG_DEBUG_UART_PHYS=0x18000300
CONFIG_DEBUG_UART_VIRT=0xf1000300
CONFIG_DEBUG_USER=y
CONFIG_DMA_OPS=y
CONFIG_DTC=y
CONFIG_EARLY_PRINTK=y
CONFIG_EDAC_ATOMIC_SCRUB=y
CONFIG_EDAC_SUPPORT=y
CONFIG_EEPROM_AT24=y
CONFIG_EXCLUSIVE_SYSTEM_RAM=y
CONFIG_EXTCON=y
CONFIG_FIXED_PHY=y
CONFIG_FIX_EARLYCON_MEM=y
CONFIG_FS_IOMAP=y
CONFIG_FUNCTION_ALIGNMENT=0
CONFIG_FWNODE_MDIO=y
CONFIG_FW_LOADER_PAGED_BUF=y
CONFIG_FW_LOADER_SYSFS=y
# CONFIG_FW_LOADER_USER_HELPER_FALLBACK is not set
CONFIG_GCC_ASM_GOTO_OUTPUT_WORKAROUND=y
CONFIG_GENERIC_ALLOCATOR=y
CONFIG_GENERIC_ARCH_TOPOLOGY=y
CONFIG_GENERIC_BUG=y
CONFIG_GENERIC_CLOCKEVENTS=y
CONFIG_GENERIC_CLOCKEVENTS_BROADCAST=y
CONFIG_GENERIC_CPU_AUTOPROBE=y
CONFIG_GENERIC_CPU_VULNERABILITIES=y
CONFIG_GENERIC_EARLY_IOREMAP=y
CONFIG_GENERIC_GETTIMEOFDAY=y
CONFIG_GENERIC_IDLE_POLL_SETUP=y
CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK=y
CONFIG_GENERIC_IRQ_MULTI_HANDLER=y
CONFIG_GENERIC_IRQ_SHOW=y
CONFIG_GENERIC_IRQ_SHOW_LEVEL=y
CONFIG_GENERIC_LIB_DEVMEM_IS_ALLOWED=y
CONFIG_GENERIC_PCI_IOMAP=y
CONFIG_GENERIC_PHY=y
CONFIG_GENERIC_PINCONF=y
CONFIG_GENERIC_PINCTRL_GROUPS=y
CONFIG_GENERIC_PINMUX_FUNCTIONS=y
CONFIG_GENERIC_SCHED_CLOCK=y
CONFIG_GENERIC_SMP_IDLE_THREAD=y
CONFIG_GENERIC_STRNCPY_FROM_USER=y
CONFIG_GENERIC_STRNLEN_USER=y
CONFIG_GENERIC_TIME_VSYSCALL=y
CONFIG_GENERIC_VDSO_32=y
CONFIG_GPIOLIB_IRQCHIP=y
CONFIG_GPIO_74X164=y
CONFIG_GPIO_BCM_XGS_IPROC=y
CONFIG_GPIO_CDEV=y
CONFIG_GPIO_GENERIC=y
CONFIG_GRO_CELLS=y
CONFIG_HARDEN_BRANCH_PREDICTOR=y
CONFIG_HARDIRQS_SW_RESEND=y
CONFIG_HAS_DMA=y
CONFIG_HAS_IOMEM=y
CONFIG_HAS_IOPORT=y
CONFIG_HAS_IOPORT_MAP=y
CONFIG_HAVE_SMP=y
CONFIG_HIGHMEM=y
CONFIG_HIGHPTE=y
CONFIG_HW_RANDOM=y
CONFIG_HW_RANDOM_BCM2835=y
CONFIG_HZ_FIXED=0
CONFIG_HZ_PERIODIC=y
CONFIG_I2C=y
CONFIG_I2C_BCM_IPROC=y
# CONFIG_I2C_SLAVE_TESTUNIT is not set
CONFIG_INITRAMFS_SOURCE=""
CONFIG_IRQCHIP=y
CONFIG_IRQSTACKS=y
CONFIG_IRQ_DOMAIN=y
CONFIG_IRQ_DOMAIN_HIERARCHY=y
CONFIG_IRQ_FORCED_THREADING=y
CONFIG_IRQ_WORK=y
CONFIG_KMAP_LOCAL=y
CONFIG_KMAP_LOCAL_NON_LINEAR_PTE_ARRAY=y
# CONFIG_LEDS_BCM63138 is not set
CONFIG_LIBFDT=y
CONFIG_LOCK_DEBUGGING_SUPPORT=y
CONFIG_LOCK_SPIN_ON_OWNER=y
CONFIG_LZO_COMPRESS=y
CONFIG_LZO_DECOMPRESS=y
CONFIG_MDIO_BCM_IPROC=y
CONFIG_MDIO_BUS=y
CONFIG_MDIO_BUS_MUX=y
# CONFIG_MDIO_BUS_MUX_BCM_IPROC is not set
CONFIG_MDIO_BUS_MUX_MMIOREG=y
CONFIG_MDIO_DEVICE=y
CONFIG_MDIO_DEVRES=y
CONFIG_MFD_SYSCON=y
CONFIG_MIGHT_HAVE_CACHE_L2X0=y
CONFIG_MIGRATION=y
CONFIG_MMU_LAZY_TLB_REFCOUNT=y
CONFIG_MODULES_USE_ELF_REL=y
CONFIG_MTD_BCM47XXSFLASH=y
CONFIG_MTD_BCM47XX_PARTS=y
CONFIG_MTD_NAND_BRCMNAND=y
CONFIG_MTD_NAND_BRCMNAND_IPROC=y
CONFIG_MTD_NAND_CORE=y
CONFIG_MTD_NAND_ECC=y
CONFIG_MTD_NAND_ECC_SW_HAMMING=y
CONFIG_MTD_OF_PARTS_LINKSYS_NS=y
CONFIG_MTD_PARSER_TPLINK_SAFELOADER=y
CONFIG_MTD_PARSER_TRX=y
CONFIG_MTD_RAW_NAND=y
CONFIG_MTD_SPI_NOR=y
CONFIG_MTD_SPLIT_SEAMA_FW=y
CONFIG_MTD_UBI=y
CONFIG_MTD_UBI_BEB_LIMIT=20
CONFIG_MTD_UBI_BLOCK=y
CONFIG_MTD_UBI_WL_THRESHOLD=4096
CONFIG_MUTEX_SPIN_ON_OWNER=y
CONFIG_NEED_DMA_MAP_STATE=y
CONFIG_NEED_SRCU_NMI_SAFE=y
CONFIG_NET_DEVLINK=y
CONFIG_NET_DSA=y
CONFIG_NET_DSA_QCA8K=y
CONFIG_NET_DSA_QCA8K_LEDS_SUPPORT=y
CONFIG_NET_DSA_TAG_BRCM=y
CONFIG_NET_DSA_TAG_BRCM_COMMON=y
CONFIG_NET_DSA_TAG_BRCM_LEGACY=y
CONFIG_NET_DSA_TAG_BRCM_PREPEND=y
CONFIG_NET_DSA_TAG_NONE=y
CONFIG_NET_DSA_TAG_QCA=y
CONFIG_NET_EGRESS=y
CONFIG_NET_FLOW_LIMIT=y
CONFIG_NET_INGRESS=y
CONFIG_NET_SELFTESTS=y
CONFIG_NET_SWITCHDEV=y
CONFIG_NET_XGRESS=y
CONFIG_NR_CPUS=2
CONFIG_NVMEM=y
CONFIG_NVMEM_BRCM_NVRAM=y
CONFIG_NVMEM_LAYOUTS=y
CONFIG_NVMEM_SYSFS=y
CONFIG_OF=y
CONFIG_OF_ADDRESS=y
CONFIG_OF_EARLY_FLATTREE=y
CONFIG_OF_FLATTREE=y
CONFIG_OF_GPIO=y
CONFIG_OF_IRQ=y
CONFIG_OF_KOBJ=y
CONFIG_OF_MDIO=y
CONFIG_OLD_SIGACTION=y
CONFIG_OLD_SIGSUSPEND3=y
CONFIG_OUTER_CACHE=y
CONFIG_OUTER_CACHE_SYNC=y
CONFIG_PADATA=y
CONFIG_PAGE_OFFSET=0xC0000000
CONFIG_PAGE_POOL=y
CONFIG_PAGE_SIZE_LESS_THAN_256KB=y
CONFIG_PAGE_SIZE_LESS_THAN_64KB=y
CONFIG_PCI=y
CONFIG_PCIE_IPROC=y
CONFIG_PCIE_IPROC_BCMA=y
# CONFIG_PCIE_IPROC_PLATFORM is not set
CONFIG_PCI_DOMAINS=y
CONFIG_PCI_DOMAINS_GENERIC=y
CONFIG_PERF_USE_VMALLOC=y
CONFIG_PGTABLE_LEVELS=2
CONFIG_PHYLIB=y
CONFIG_PHYLIB_LEDS=y
CONFIG_PHYLINK=y
# CONFIG_PHY_BCM_NS_USB2 is not set
# CONFIG_PHY_BCM_NS_USB3 is not set
# CONFIG_PHY_BCM_SR_PCIE is not set
CONFIG_PHY_BCM_SR_USB=y
# CONFIG_PHY_BRCM_SATA is not set
# CONFIG_PHY_NS2_USB_DRD is not set
CONFIG_PINCTRL=y
bcm53xx: add support for Cisco Meraki MX64/MX65 This commit adds support for the Cisco Meraki MX64 and MX65 devices which use the Broadcom NSP SoC, which is compatible with the bcm53xx platform. MX64 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 internal switch (5x 1GbE ports) - USB: 1x USB2.0 - Serial: Internal header MX65 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 switch (2x 1GbE ports, used for WAN ports 1 & 2) 2x Qualcomm QCA8337 switches (10x 1GbE ports, used for LAN ports 3-12) - PSE: Broadcom BCM59111KMLG connected to LAN ports 11 & 12 - USB: 1x USB2.0 - Serial: Internal header Notes: - The Meraki provided GPL source are available at [2]. - Wireless capability on the MX64W and MX65W exists in the form of 2x Broadcom BCM43520KMLG, which is not supported. These devices will work otherwise as standard MX64 or MX65 devices. - Early MX64 units use an A0 variant of the BCM958625 SoC which lacks cache coherency and uses a different "secondary-boot-reg". As a consequence a different device tree is needed. - Installation of OpenWrt requires changing u-boot to a custom version. This is due to the stock u-boot "nand read" command being limited to load only 2MB, in spite of the bootkernel1 and bootkernel2 partitions both being 3MB in the stock layout. It is also required to allow booting via USB, enabling cache coherency and setting up the QCA switches and Serdes link on the MX65. The modified sources for U-boot are available for the MX64[3] and MX65[4]. - Initial work on this device used a small bootloader within the OEM partition scheme. To allow booting of larger kernels, UBI and bootm support has been added, along with ability to store env variables to the NAND. The Shmoo and newly created env partitions have been moved to the extra space available after the nvram data. - Users who installed the previous non-UBI supporting bootloader will need to convert to the new one before flashing a compatible image. These steps are detailed below. References: [1] https://www.broadcom.com/products/embedded-and-networking-processors/c ommunications/bcm5862x [2] https://dl.meraki.net/wired-14-39-mx64-20190426.tar.bz2 [3] https://github.com/clayface/U-boot-MX64-20190430_MX64 [4] https://github.com/clayface/U-boot-MX64-20190430_MX65 Installation guide: Initial installation steps: 1. Compile or obtain OpenWrt files for the MX64 or MX65, including u-boot[3][4], initramfs and sysupgrade images. 2. A USB disk with DOS partition scheme and primary FAT partition is required. 3. If installing onto an MX64, set up a local web server. 4. On the device, boot into diagnostic mode by holding reset when powering on the device. Continue to hold reset until the orange LED begins to flash white. On used units the white flash may be difficult to see. 5. Plug an Ethernet cable into the first LAN port, set the host to 192.168.1.2 and confirm telnet connectivity to 192.168.1.1. U-boot installation - MX64 Only: 1. Newer fw versions require extra steps to support OpenWrt. To check, please connect via telnet and run: `cat /sys/block/mtdblock0/ro` If the result is 1, your mtd0 is locked will need to perform extra steps 4 and 5 in this section. If the result is 0 then skip these. 2. Check which SoC is in use by running the following command: `devmem 0x18000000` If devmem is not found then try: `devmem2 0x18000000` If the output begins with anything between "0x3F00-0x3F03" you will need to use the A0 release. For any other output, eg "0x3F04" or higher, use the regular MX64 image. 3 Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx64 image. If the reported size is 0x80000, please use the uboot_mx64_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` Example output: `# cat /proc/mtd cat /proc/mtd dev: size erasesize name mtd0: 00100000 00040000 "boot" mtd1: 00080000 00040000 "shmoo" mtd2: 00300000 00040000 "bootkernel1" mtd3: 00100000 00040000 "nvram" mtd4: 00300000 00040000 "bootkernel2" mtd5: 3f700000 00040000 "ubi" mtd6: 40000000 00040000 "all"` 4. Set up a webserver to serve the appropriate uboot_mx64 from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX64 5. (Only if mtd0 is locked) You will also need the mtd-rw.ko kernel module to unlock the partition from the same repo. An mtd executable is also needed to write the mtd block. Place these on the web server as well. 6. (Only if mtd0 is locked) Use wget to retrieve the files on the MX64: `wget http://192.168.1.2/mtd-rw.ko` `insmod mtd-rw.ko i_want_a_brick=1` and confirm the unlock is set with dmesg `mtd-rw: mtd0: setting writeable flag` 7. Download the appropriate u-boot image according to step 3. If you did not need to unlock the mtd0 partition then use dd to write the file, with caution: `wget http://192.168.1.2/uboot_mx64` `dd if=uboot_mx64 of=/dev/mtdblock0` If you needed to unlock the mtd0 partition using the mtd-rw module, run these commands instead to install u-boot instead: `wget http://192.168.1.2/mtd` `chmod +x mtd` `wget http://192.168.1.2/uboot_mx64` `./mtd write uboot_mx64 /dev/mtd0` 8. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". U-boot installation - MX65 Only: 1. Obtain telnet access to the MX65. 2. Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx65 image. If the reported size is 0x80000, please use the uboot_mx65_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` 3. Prepare a USB drive formatted to FAT. Download the appropriate uboot_mx65 to the USB drive from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX65 3. Once you have telnet access to the MX65, plug in the USB disk and run the following commands, with caution. The USB disk should automount but if it does not, you will need to power off and on again with reset held. Depending on step 2, use the uboot_mx65 or uboot_mx65_small image accordingly: `cd /tmp/media/sda1` `dd if=uboot_mx65 of=/dev/mtdblock0` 4. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". UBI supporting bootloader installation: These steps need to be followed if the older u-boot image was installed, either because the Meraki diagnostic partition scheme used 0x80000 as the mtd0 size, or because you installed the u-boot provided while OpenWrt support was still under development. If using OpenWrt, please make a backup before proceeding. 1. Obtain the relevant image from the MX64(A0) or MX65 u-boot repo: `openwrt-bcm5862x-generic-meraki_XXXX-initramfs-kernel.bin` 2. With the USB drive already inserted, power on the device while holding the reset button. A white/orange flashing pattern will occur shortly after power on. Let go of the reset button. The device is now booting into OpenWrt initramfs stored on the USB disk. 3. Connect by SSH to 192.168.1.1 and flash the embedded u-boot image, changing X as appropriate: `mtd write /root/uboot_mx6X /dev/mtd0` You do not need to reboot as this image can handle "Kernel-in-UBI" OpenWrt installation. 4. You can proceed to obtain and flash the appropriate OpenWrt image at "OpenWrt Installation" Step 3. 5. Reboot will take significantly longer due to Shmoo calibration. In case the device does not come online after several minute, power- cycle the device and see if it boots. If you see an orange/white flashing pattern, this indicates UBI booting was not successful and you will need to copy a new bcm53xx image to a USB disk before booting it and attempting to install OpenWrt again - refer to "OpenWrt Installation" step 1. Do not attempt to reflash u-boot in this scenario. OpenWrt Installation: 1. Having obtained an OpenWrt image, please copy the file `openwrt-bcm53xx-generic-meraki_XXXX-initramfs.bin` to the base directory of a FAT formatted USB drive using DOS partition scheme ,where XXXX is mx64, mx64_a0 or mx65 depending on which device you have. 2. With the USB drive already inserted, power on the device. Boot time will be longer than usual while Shmoo calibration takes place. A different white/orange flashing pattern will eventually occur to indicate device is now booting into OpenWrt initramfs stored on the USB disk. 3. Ensuring Ethernet is plugged into a LAN port with IP set in the 192.168.1.0/24 subnet excluding 192.168.1.1, use SCP to copy the sysupgrade file to 192.168.1.1:/tmp, eg: `scp openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin\ 192.168.1.1:/tmp` 4. Connect by SSH to 192.168.1.1 and run sysupgrade: `sysupgrade \ /tmp/openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin` 5. OpenWrt should now be installed on the device. Signed-off-by: Matthew Hagan <mnhagan88@gmail.com> [ Rebase kernel configuration for 6.6, fix failsafe by making kmod-eeprom-at24 and kmod-dsa-qca8k built-in, resolve conflicts, add LED aliases, fix eth0 MAC address at probe ] TODO: - fix multiple LED colors not applied despite aliases - due to custom /etc/diag.sh - fix race condition between preinit and probing of the DSA tree, causing no network interface available in failsafe mode (in general case - to allow moving drivers back to modules) Signed-off-by: Lech Perczak <lech.perczak@gmail.com> Link: https://github.com/openwrt/openwrt/pull/16634 Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-09-06 22:42:35 +00:00
CONFIG_PINCTRL_IPROC_GPIO=y
CONFIG_PINCTRL_NS=y
# CONFIG_PINCTRL_NS2_MUX is not set
bcm53xx: add support for Cisco Meraki MX64/MX65 This commit adds support for the Cisco Meraki MX64 and MX65 devices which use the Broadcom NSP SoC, which is compatible with the bcm53xx platform. MX64 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 internal switch (5x 1GbE ports) - USB: 1x USB2.0 - Serial: Internal header MX65 Hardware info: - CPU: Broadcom BCM58625 Cortex A9 @ 1200Mhz - RAM: 2 GB (4 x 4Gb SK Hynix H5TC4G83CFR) - Storage: 1 GB (Micron MT29F8G08ABACA) - Networking: BCM58625 switch (2x 1GbE ports, used for WAN ports 1 & 2) 2x Qualcomm QCA8337 switches (10x 1GbE ports, used for LAN ports 3-12) - PSE: Broadcom BCM59111KMLG connected to LAN ports 11 & 12 - USB: 1x USB2.0 - Serial: Internal header Notes: - The Meraki provided GPL source are available at [2]. - Wireless capability on the MX64W and MX65W exists in the form of 2x Broadcom BCM43520KMLG, which is not supported. These devices will work otherwise as standard MX64 or MX65 devices. - Early MX64 units use an A0 variant of the BCM958625 SoC which lacks cache coherency and uses a different "secondary-boot-reg". As a consequence a different device tree is needed. - Installation of OpenWrt requires changing u-boot to a custom version. This is due to the stock u-boot "nand read" command being limited to load only 2MB, in spite of the bootkernel1 and bootkernel2 partitions both being 3MB in the stock layout. It is also required to allow booting via USB, enabling cache coherency and setting up the QCA switches and Serdes link on the MX65. The modified sources for U-boot are available for the MX64[3] and MX65[4]. - Initial work on this device used a small bootloader within the OEM partition scheme. To allow booting of larger kernels, UBI and bootm support has been added, along with ability to store env variables to the NAND. The Shmoo and newly created env partitions have been moved to the extra space available after the nvram data. - Users who installed the previous non-UBI supporting bootloader will need to convert to the new one before flashing a compatible image. These steps are detailed below. References: [1] https://www.broadcom.com/products/embedded-and-networking-processors/c ommunications/bcm5862x [2] https://dl.meraki.net/wired-14-39-mx64-20190426.tar.bz2 [3] https://github.com/clayface/U-boot-MX64-20190430_MX64 [4] https://github.com/clayface/U-boot-MX64-20190430_MX65 Installation guide: Initial installation steps: 1. Compile or obtain OpenWrt files for the MX64 or MX65, including u-boot[3][4], initramfs and sysupgrade images. 2. A USB disk with DOS partition scheme and primary FAT partition is required. 3. If installing onto an MX64, set up a local web server. 4. On the device, boot into diagnostic mode by holding reset when powering on the device. Continue to hold reset until the orange LED begins to flash white. On used units the white flash may be difficult to see. 5. Plug an Ethernet cable into the first LAN port, set the host to 192.168.1.2 and confirm telnet connectivity to 192.168.1.1. U-boot installation - MX64 Only: 1. Newer fw versions require extra steps to support OpenWrt. To check, please connect via telnet and run: `cat /sys/block/mtdblock0/ro` If the result is 1, your mtd0 is locked will need to perform extra steps 4 and 5 in this section. If the result is 0 then skip these. 2. Check which SoC is in use by running the following command: `devmem 0x18000000` If devmem is not found then try: `devmem2 0x18000000` If the output begins with anything between "0x3F00-0x3F03" you will need to use the A0 release. For any other output, eg "0x3F04" or higher, use the regular MX64 image. 3 Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx64 image. If the reported size is 0x80000, please use the uboot_mx64_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` Example output: `# cat /proc/mtd cat /proc/mtd dev: size erasesize name mtd0: 00100000 00040000 "boot" mtd1: 00080000 00040000 "shmoo" mtd2: 00300000 00040000 "bootkernel1" mtd3: 00100000 00040000 "nvram" mtd4: 00300000 00040000 "bootkernel2" mtd5: 3f700000 00040000 "ubi" mtd6: 40000000 00040000 "all"` 4. Set up a webserver to serve the appropriate uboot_mx64 from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX64 5. (Only if mtd0 is locked) You will also need the mtd-rw.ko kernel module to unlock the partition from the same repo. An mtd executable is also needed to write the mtd block. Place these on the web server as well. 6. (Only if mtd0 is locked) Use wget to retrieve the files on the MX64: `wget http://192.168.1.2/mtd-rw.ko` `insmod mtd-rw.ko i_want_a_brick=1` and confirm the unlock is set with dmesg `mtd-rw: mtd0: setting writeable flag` 7. Download the appropriate u-boot image according to step 3. If you did not need to unlock the mtd0 partition then use dd to write the file, with caution: `wget http://192.168.1.2/uboot_mx64` `dd if=uboot_mx64 of=/dev/mtdblock0` If you needed to unlock the mtd0 partition using the mtd-rw module, run these commands instead to install u-boot instead: `wget http://192.168.1.2/mtd` `chmod +x mtd` `wget http://192.168.1.2/uboot_mx64` `./mtd write uboot_mx64 /dev/mtd0` 8. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". U-boot installation - MX65 Only: 1. Obtain telnet access to the MX65. 2. Confirm the size of the device's boot(mtd0) partition. In most cases it should be 0x100000 or larger. If this is the case, please proceed to use the uboot_mx65 image. If the reported size is 0x80000, please use the uboot_mx65_small image, then follow the later guide to change to the larger image. `cat /proc/mtd` 3. Prepare a USB drive formatted to FAT. Download the appropriate uboot_mx65 to the USB drive from the following location and verify the SHA512: https://github.com/clayface/U-boot-MX64-20190430_MX65 3. Once you have telnet access to the MX65, plug in the USB disk and run the following commands, with caution. The USB disk should automount but if it does not, you will need to power off and on again with reset held. Depending on step 2, use the uboot_mx65 or uboot_mx65_small image accordingly: `cd /tmp/media/sda1` `dd if=uboot_mx65 of=/dev/mtdblock0` 4. Once this has successfully completed, power off the device. If you did not need to install the small u-boot image, proceed to "OpenWrt Installation". Otherwise proceed to "UBI supporting bootloader installation". UBI supporting bootloader installation: These steps need to be followed if the older u-boot image was installed, either because the Meraki diagnostic partition scheme used 0x80000 as the mtd0 size, or because you installed the u-boot provided while OpenWrt support was still under development. If using OpenWrt, please make a backup before proceeding. 1. Obtain the relevant image from the MX64(A0) or MX65 u-boot repo: `openwrt-bcm5862x-generic-meraki_XXXX-initramfs-kernel.bin` 2. With the USB drive already inserted, power on the device while holding the reset button. A white/orange flashing pattern will occur shortly after power on. Let go of the reset button. The device is now booting into OpenWrt initramfs stored on the USB disk. 3. Connect by SSH to 192.168.1.1 and flash the embedded u-boot image, changing X as appropriate: `mtd write /root/uboot_mx6X /dev/mtd0` You do not need to reboot as this image can handle "Kernel-in-UBI" OpenWrt installation. 4. You can proceed to obtain and flash the appropriate OpenWrt image at "OpenWrt Installation" Step 3. 5. Reboot will take significantly longer due to Shmoo calibration. In case the device does not come online after several minute, power- cycle the device and see if it boots. If you see an orange/white flashing pattern, this indicates UBI booting was not successful and you will need to copy a new bcm53xx image to a USB disk before booting it and attempting to install OpenWrt again - refer to "OpenWrt Installation" step 1. Do not attempt to reflash u-boot in this scenario. OpenWrt Installation: 1. Having obtained an OpenWrt image, please copy the file `openwrt-bcm53xx-generic-meraki_XXXX-initramfs.bin` to the base directory of a FAT formatted USB drive using DOS partition scheme ,where XXXX is mx64, mx64_a0 or mx65 depending on which device you have. 2. With the USB drive already inserted, power on the device. Boot time will be longer than usual while Shmoo calibration takes place. A different white/orange flashing pattern will eventually occur to indicate device is now booting into OpenWrt initramfs stored on the USB disk. 3. Ensuring Ethernet is plugged into a LAN port with IP set in the 192.168.1.0/24 subnet excluding 192.168.1.1, use SCP to copy the sysupgrade file to 192.168.1.1:/tmp, eg: `scp openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin\ 192.168.1.1:/tmp` 4. Connect by SSH to 192.168.1.1 and run sysupgrade: `sysupgrade \ /tmp/openwrt-bcm53xx-generic-meraki_XXXX-squashfs.sysupgrade.bin` 5. OpenWrt should now be installed on the device. Signed-off-by: Matthew Hagan <mnhagan88@gmail.com> [ Rebase kernel configuration for 6.6, fix failsafe by making kmod-eeprom-at24 and kmod-dsa-qca8k built-in, resolve conflicts, add LED aliases, fix eth0 MAC address at probe ] TODO: - fix multiple LED colors not applied despite aliases - due to custom /etc/diag.sh - fix race condition between preinit and probing of the DSA tree, causing no network interface available in failsafe mode (in general case - to allow moving drivers back to modules) Signed-off-by: Lech Perczak <lech.perczak@gmail.com> Link: https://github.com/openwrt/openwrt/pull/16634 Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2021-09-06 22:42:35 +00:00
CONFIG_PINCTRL_NSP_GPIO=y
CONFIG_PINCTRL_NSP_MUX=y
CONFIG_PREEMPT_NONE_BUILD=y
CONFIG_PTP_1588_CLOCK_OPTIONAL=y
CONFIG_PWM=y
CONFIG_PWM_BCM_IPROC=y
CONFIG_PWM_SYSFS=y
CONFIG_RANDSTRUCT_NONE=y
CONFIG_RATIONAL=y
CONFIG_REGMAP=y
CONFIG_REGMAP_I2C=y
CONFIG_REGMAP_MMIO=y
CONFIG_RFS_ACCEL=y
CONFIG_RPS=y
CONFIG_RWSEM_SPIN_ON_OWNER=y
CONFIG_SERIAL_8250_FSL=y
CONFIG_SERIAL_MCTRL_GPIO=y
CONFIG_SERIAL_OF_PLATFORM=y
CONFIG_SGL_ALLOC=y
CONFIG_SMP=y
CONFIG_SMP_ON_UP=y
CONFIG_SOCK_RX_QUEUE_MAPPING=y
CONFIG_SOFTIRQ_ON_OWN_STACK=y
CONFIG_SPARSE_IRQ=y
CONFIG_SPI=y
CONFIG_SPI_BCM_QSPI=y
CONFIG_SPI_BITBANG=y
CONFIG_SPI_GPIO=y
CONFIG_SPI_MASTER=y
CONFIG_SPI_MEM=y
CONFIG_SQUASHFS_DECOMP_MULTI_PERCPU=y
CONFIG_SWPHY=y
CONFIG_SWP_EMULATE=y
CONFIG_SYS_SUPPORTS_APM_EMULATION=y
CONFIG_THERMAL=y
CONFIG_THERMAL_DEFAULT_GOV_STEP_WISE=y
CONFIG_THERMAL_EMERGENCY_POWEROFF_DELAY_MS=0
CONFIG_THERMAL_GOV_STEP_WISE=y
CONFIG_THERMAL_OF=y
CONFIG_THREAD_INFO_IN_TASK=y
CONFIG_TICK_CPU_ACCOUNTING=y
CONFIG_TIMER_OF=y
CONFIG_TIMER_PROBE=y
CONFIG_TREE_RCU=y
CONFIG_TREE_SRCU=y
CONFIG_UBIFS_FS=y
CONFIG_UNCOMPRESS_INCLUDE="debug/uncompress.h"
CONFIG_UNWINDER_ARM=y
CONFIG_USB_SUPPORT=y
CONFIG_USE_OF=y
# CONFIG_VFP is not set
CONFIG_WATCHDOG_CORE=y
CONFIG_XPS=y
CONFIG_XXHASH=y
CONFIG_XZ_DEC_ARM=y
CONFIG_XZ_DEC_BCJ=y
CONFIG_ZBOOT_ROM_BSS=0x0
CONFIG_ZBOOT_ROM_TEXT=0x0
CONFIG_ZLIB_DEFLATE=y
CONFIG_ZLIB_INFLATE=y
CONFIG_ZSTD_COMMON=y
CONFIG_ZSTD_COMPRESS=y
CONFIG_ZSTD_DECOMPRESS=y