openwrt/package/kernel/mac80211/patches/556-ath9k-define-all-EEPROM-fields-in-Little-Endian-form.patch

850 lines
29 KiB
Diff
Raw Normal View History

kernel: mac80211: add pending ath9k EEPROM swapping patches There are two types of swapping the EEPROM data in the ath9k driver. Before this series one type of swapping could not be used without the other. The first type of swapping looks at the "magic bytes" at the start of the EEPROM data and performs swab16 on the EEPROM contents if needed. The second type of swapping is EEPROM format specific and swaps specific fields within the EEPROM itself (swab16, swab32 - depends on the EEPROM format). With this series the second part now looks at the EEPMISC register inside the EEPROM, which uses a bit to indicate if the EEPROM data is Big Endian (this is also done by the FreeBSD kernel). This has a nice advantage: currently there are some out-of-tree hacks (in OpenWrt and LEDE) where the EEPROM has a Big Endian header on a Big Endian system (= no swab16 is performed) but the EEPROM itself indicates that it's data is Little Endian. Until now the out-of-tree code simply did a swab16 before passing the data to ath9k, so ath9k first did the swab16 - this also enabled the format specific swapping. These out-of-tree hacks are still working with the new logic, but it is recommended to remove them. This implementation is based on a discussion with Arnd Bergmann who raised concerns about the robustness and portability of the swapping logic in the original OF support patch review, see [0]. After a second round of patches (= v1 of this series) neither Arnd Bergmann nor I were really happy with the complexity of the EEPROM swapping logic. Based on a discussion (see [1] and [2]) we decided that ath9k should use a defined format (specifying the endianness of the data - I went with __le16 and __le32) when accessing the EEPROM fields. A benefit of this is that we enable the EEPMISC based swapping logic by default, just like the FreeBSD driver, see [3]. On the devices which I have tested (see below) ath9k now works without having to specify the "endian_check" field in ath9k_platform_data (or a similar logic which could provide this via devicetree) as ath9k now detects the endianness automatically. Only EEPROMs which are mangled by some out-of-tree code still need the endian_check flag (or one can simply remove that mangling from the out-of-tree code). [0] http://www.spinics.net/lists/linux-wireless/msg152634.html [1] https://marc.info/?l=linux-wireless&m=147250597503174&w=2 [2] https://marc.info/?l=linux-wireless&m=147254388611344&w=2 [3] https://github.com/freebsd/freebsd/blob/50719b56d9ce8d7d4beb53b16e9edb2e9a4a7a18/sys/dev/ath/ath_hal/ah_eeprom_9287.c#L351 Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2016-11-26 01:01:13 +01:00
From 7e1047f3cf8dcdb4825f3c785f7f708d07508096 Mon Sep 17 00:00:00 2001
From: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Date: Mon, 3 Oct 2016 00:29:13 +0200
Subject: [v2 PATCH 7/7] ath9k: define all EEPROM fields in Little Endian format
The ar9300_eeprom logic is already using only 8-bit (endian neutral),
__le16 and __le32 fields to state explicitly how the values should be
interpreted.
All other EEPROM implementations (4k, 9287 and def) were using u16 and
u32 fields with additional logic to swap the values (read from the
original EEPROM) so they match the current CPUs endianness.
The EEPROM format defaults to "all values are Little Endian", indicated
by the absence of the AR5416_EEPMISC_BIG_ENDIAN in the u8 EEPMISC
register. If we detect that the EEPROM indicates Big Endian mode
(AR5416_EEPMISC_BIG_ENDIAN is set in the EEPMISC register) then we'll
swap the values to convert them into Little Endian. This is done by
activating the EEPMISC based logic in ath9k_hw_nvram_swap_data even if
AH_NO_EEP_SWAP is set (this makes ath9k behave like the FreeBSD driver,
which also does not have a flag to enable swapping based on the
AR5416_EEPMISC_BIG_ENDIAN bit). Before this logic was only used to
enable swapping when "current CPU endianness != EEPROM endianness".
After changing all relevant fields to __le16 and __le32 sparse was used
to check that all code which reads any of these fields uses
le{16,32}_to_cpu.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
---
drivers/net/wireless/ath/ath9k/eeprom.c | 27 ++-----
drivers/net/wireless/ath/ath9k/eeprom.h | 75 ++++++++++--------
drivers/net/wireless/ath/ath9k/eeprom_4k.c | 94 +++++++++-------------
drivers/net/wireless/ath/ath9k/eeprom_9287.c | 98 ++++++++++-------------
drivers/net/wireless/ath/ath9k/eeprom_def.c | 114 ++++++++++++---------------
5 files changed, 174 insertions(+), 234 deletions(-)
--- a/drivers/net/wireless/ath/ath9k/eeprom.c
+++ b/drivers/net/wireless/ath/ath9k/eeprom.c
@@ -155,17 +155,10 @@ bool ath9k_hw_nvram_read(struct ath_hw *
return ret;
}
-#ifdef __BIG_ENDIAN
-#define EXPECTED_EEPMISC_ENDIAN AR5416_EEPMISC_BIG_ENDIAN
-#else
-#define EXPECTED_EEPMISC_ENDIAN 0
-#endif
-
int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
{
u16 magic;
u16 *eepdata;
- u8 eepmisc;
int i;
bool needs_byteswap = false;
struct ath_common *common = ath9k_hw_common(ah);
@@ -203,25 +196,17 @@ int ath9k_hw_nvram_swap_data(struct ath_
}
}
- *swap_needed = false;
-
- eepmisc = ah->eep_ops->get_eepmisc(ah);
- if ((eepmisc & AR5416_EEPMISC_BIG_ENDIAN) != EXPECTED_EEPMISC_ENDIAN) {
- if (ah->ah_flags & AH_NO_EEP_SWAP) {
- ath_info(common,
- "Ignoring endianness difference in eepmisc register.\n");
- } else {
- *swap_needed = true;
- ath_dbg(common, EEPROM,
- "EEPROM needs swapping according to the eepmisc register.\n");
- }
+ if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
+ *swap_needed = true;
+ ath_dbg(common, EEPROM,
+ "Big Endian EEPROM detected according to EEPMISC register.\n");
+ } else {
+ *swap_needed = false;
}
return 0;
}
-#undef EXPECTED_EEPMISC_VAL
-
bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
{
u32 i, sum = 0;
--- a/drivers/net/wireless/ath/ath9k/eeprom.h
+++ b/drivers/net/wireless/ath/ath9k/eeprom.h
@@ -23,6 +23,17 @@
#include <net/cfg80211.h>
#include "ar9003_eeprom.h"
+/* helpers to swap EEPROM fields, which are stored as __le16 or __le32. Since
+ * we are 100% sure about it we __force these to u16/u32 for the swab calls to
+ * silence the sparse checks. These macros are used when we have a Big Endian
+ * EEPROM (according to AR5416_EEPMISC_BIG_ENDIAN) and need to convert the
+ * fields to __le16/__le32.
+ */
+#define EEPROM_FIELD_SWAB16(field) \
+ (field = (__force __le16)swab16((__force u16)field))
+#define EEPROM_FIELD_SWAB32(field) \
+ (field = (__force __le32)swab32((__force u32)field))
+
#ifdef __BIG_ENDIAN
#define AR5416_EEPROM_MAGIC 0x5aa5
#else
@@ -270,19 +281,19 @@ enum ath9k_hal_freq_band {
};
struct base_eep_header {
- u16 length;
- u16 checksum;
- u16 version;
+ __le16 length;
+ __le16 checksum;
+ __le16 version;
u8 opCapFlags;
u8 eepMisc;
- u16 regDmn[2];
+ __le16 regDmn[2];
u8 macAddr[6];
u8 rxMask;
u8 txMask;
- u16 rfSilent;
- u16 blueToothOptions;
- u16 deviceCap;
- u32 binBuildNumber;
+ __le16 rfSilent;
+ __le16 blueToothOptions;
+ __le16 deviceCap;
+ __le32 binBuildNumber;
u8 deviceType;
u8 pwdclkind;
u8 fastClk5g;
@@ -300,33 +311,33 @@ struct base_eep_header {
} __packed;
struct base_eep_header_4k {
- u16 length;
- u16 checksum;
- u16 version;
+ __le16 length;
+ __le16 checksum;
+ __le16 version;
u8 opCapFlags;
u8 eepMisc;
- u16 regDmn[2];
+ __le16 regDmn[2];
u8 macAddr[6];
u8 rxMask;
u8 txMask;
- u16 rfSilent;
- u16 blueToothOptions;
- u16 deviceCap;
- u32 binBuildNumber;
+ __le16 rfSilent;
+ __le16 blueToothOptions;
+ __le16 deviceCap;
+ __le32 binBuildNumber;
u8 deviceType;
u8 txGainType;
} __packed;
struct spur_chan {
- u16 spurChan;
+ __le16 spurChan;
u8 spurRangeLow;
u8 spurRangeHigh;
} __packed;
struct modal_eep_header {
- u32 antCtrlChain[AR5416_MAX_CHAINS];
- u32 antCtrlCommon;
+ __le32 antCtrlChain[AR5416_MAX_CHAINS];
+ __le32 antCtrlCommon;
u8 antennaGainCh[AR5416_MAX_CHAINS];
u8 switchSettling;
u8 txRxAttenCh[AR5416_MAX_CHAINS];
@@ -361,7 +372,7 @@ struct modal_eep_header {
u8 db_ch1;
u8 lna_ctl;
u8 miscBits;
- u16 xpaBiasLvlFreq[3];
+ __le16 xpaBiasLvlFreq[3];
u8 futureModal[6];
struct spur_chan spurChans[AR_EEPROM_MODAL_SPURS];
@@ -375,8 +386,8 @@ struct calDataPerFreqOpLoop {
} __packed;
struct modal_eep_4k_header {
- u32 antCtrlChain[AR5416_EEP4K_MAX_CHAINS];
- u32 antCtrlCommon;
+ __le32 antCtrlChain[AR5416_EEP4K_MAX_CHAINS];
+ __le32 antCtrlCommon;
u8 antennaGainCh[AR5416_EEP4K_MAX_CHAINS];
u8 switchSettling;
u8 txRxAttenCh[AR5416_EEP4K_MAX_CHAINS];
@@ -440,19 +451,19 @@ struct modal_eep_4k_header {
} __packed;
struct base_eep_ar9287_header {
- u16 length;
- u16 checksum;
- u16 version;
+ __le16 length;
+ __le16 checksum;
+ __le16 version;
u8 opCapFlags;
u8 eepMisc;
- u16 regDmn[2];
+ __le16 regDmn[2];
u8 macAddr[6];
u8 rxMask;
u8 txMask;
- u16 rfSilent;
- u16 blueToothOptions;
- u16 deviceCap;
- u32 binBuildNumber;
+ __le16 rfSilent;
+ __le16 blueToothOptions;
+ __le16 deviceCap;
+ __le32 binBuildNumber;
u8 deviceType;
u8 openLoopPwrCntl;
int8_t pwrTableOffset;
@@ -462,8 +473,8 @@ struct base_eep_ar9287_header {
} __packed;
struct modal_eep_ar9287_header {
- u32 antCtrlChain[AR9287_MAX_CHAINS];
- u32 antCtrlCommon;
+ __le32 antCtrlChain[AR9287_MAX_CHAINS];
+ __le32 antCtrlCommon;
int8_t antennaGainCh[AR9287_MAX_CHAINS];
u8 switchSettling;
u8 txRxAttenCh[AR9287_MAX_CHAINS];
--- a/drivers/net/wireless/ath/ath9k/eeprom_4k.c
+++ b/drivers/net/wireless/ath/ath9k/eeprom_4k.c
@@ -20,7 +20,7 @@
static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
{
- u16 version = ah->eeprom.map4k.baseEepHeader.version;
+ u16 version = le16_to_cpu(ah->eeprom.map4k.baseEepHeader.version);
return (version & AR5416_EEP_VER_MAJOR_MASK) >>
AR5416_EEP_VER_MAJOR_SHIFT;
@@ -28,7 +28,7 @@ static int ath9k_hw_4k_get_eeprom_ver(st
static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
{
- u16 version = ah->eeprom.map4k.baseEepHeader.version;
+ u16 version = le16_to_cpu(ah->eeprom.map4k.baseEepHeader.version);
return version & AR5416_EEP_VER_MINOR_MASK;
}
@@ -76,8 +76,8 @@ static bool ath9k_hw_4k_fill_eeprom(stru
static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
struct modal_eep_4k_header *modal_hdr)
{
- PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
- PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
+ PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
+ PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
PR_EEP("Switch Settle", modal_hdr->switchSettling);
PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
@@ -132,6 +132,7 @@ static u32 ath9k_hw_4k_dump_eeprom(struc
{
struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
struct base_eep_header_4k *pBase = &eep->baseEepHeader;
+ u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
if (!dump_base_hdr) {
len += scnprintf(buf + len, size - len,
@@ -143,10 +144,10 @@ static u32 ath9k_hw_4k_dump_eeprom(struc
PR_EEP("Major Version", ath9k_hw_4k_get_eeprom_ver(ah));
PR_EEP("Minor Version", ath9k_hw_4k_get_eeprom_rev(ah));
- PR_EEP("Checksum", pBase->checksum);
- PR_EEP("Length", pBase->length);
- PR_EEP("RegDomain1", pBase->regDmn[0]);
- PR_EEP("RegDomain2", pBase->regDmn[1]);
+ PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
+ PR_EEP("Length", le16_to_cpu(pBase->length));
+ PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
+ PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
PR_EEP("TX Mask", pBase->txMask);
PR_EEP("RX Mask", pBase->rxMask);
PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
@@ -160,9 +161,9 @@ static u32 ath9k_hw_4k_dump_eeprom(struc
PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_5G_HT40));
PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
- PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
- PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
- PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
+ PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
+ PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
+ PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
PR_EEP("TX Gain type", pBase->txGainType);
len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
@@ -194,54 +195,31 @@ static int ath9k_hw_4k_check_eeprom(stru
return err;
if (need_swap)
- el = swab16(eep->baseEepHeader.length);
+ el = swab16((__force u16)eep->baseEepHeader.length);
else
- el = eep->baseEepHeader.length;
+ el = le16_to_cpu(eep->baseEepHeader.length);
el = min(el / sizeof(u16), SIZE_EEPROM_4K);
if (!ath9k_hw_nvram_validate_checksum(ah, el))
return -EINVAL;
if (need_swap) {
- u32 integer;
- u16 word;
-
- word = swab16(eep->baseEepHeader.length);
- eep->baseEepHeader.length = word;
-
- word = swab16(eep->baseEepHeader.checksum);
- eep->baseEepHeader.checksum = word;
-
- word = swab16(eep->baseEepHeader.version);
- eep->baseEepHeader.version = word;
-
- word = swab16(eep->baseEepHeader.regDmn[0]);
- eep->baseEepHeader.regDmn[0] = word;
-
- word = swab16(eep->baseEepHeader.regDmn[1]);
- eep->baseEepHeader.regDmn[1] = word;
-
- word = swab16(eep->baseEepHeader.rfSilent);
- eep->baseEepHeader.rfSilent = word;
-
- word = swab16(eep->baseEepHeader.blueToothOptions);
- eep->baseEepHeader.blueToothOptions = word;
-
- word = swab16(eep->baseEepHeader.deviceCap);
- eep->baseEepHeader.deviceCap = word;
-
- integer = swab32(eep->modalHeader.antCtrlCommon);
- eep->modalHeader.antCtrlCommon = integer;
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
+ EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
- for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
- integer = swab32(eep->modalHeader.antCtrlChain[i]);
- eep->modalHeader.antCtrlChain[i] = integer;
- }
kernel: mac80211: add pending ath9k EEPROM swapping patches There are two types of swapping the EEPROM data in the ath9k driver. Before this series one type of swapping could not be used without the other. The first type of swapping looks at the "magic bytes" at the start of the EEPROM data and performs swab16 on the EEPROM contents if needed. The second type of swapping is EEPROM format specific and swaps specific fields within the EEPROM itself (swab16, swab32 - depends on the EEPROM format). With this series the second part now looks at the EEPMISC register inside the EEPROM, which uses a bit to indicate if the EEPROM data is Big Endian (this is also done by the FreeBSD kernel). This has a nice advantage: currently there are some out-of-tree hacks (in OpenWrt and LEDE) where the EEPROM has a Big Endian header on a Big Endian system (= no swab16 is performed) but the EEPROM itself indicates that it's data is Little Endian. Until now the out-of-tree code simply did a swab16 before passing the data to ath9k, so ath9k first did the swab16 - this also enabled the format specific swapping. These out-of-tree hacks are still working with the new logic, but it is recommended to remove them. This implementation is based on a discussion with Arnd Bergmann who raised concerns about the robustness and portability of the swapping logic in the original OF support patch review, see [0]. After a second round of patches (= v1 of this series) neither Arnd Bergmann nor I were really happy with the complexity of the EEPROM swapping logic. Based on a discussion (see [1] and [2]) we decided that ath9k should use a defined format (specifying the endianness of the data - I went with __le16 and __le32) when accessing the EEPROM fields. A benefit of this is that we enable the EEPMISC based swapping logic by default, just like the FreeBSD driver, see [3]. On the devices which I have tested (see below) ath9k now works without having to specify the "endian_check" field in ath9k_platform_data (or a similar logic which could provide this via devicetree) as ath9k now detects the endianness automatically. Only EEPROMs which are mangled by some out-of-tree code still need the endian_check flag (or one can simply remove that mangling from the out-of-tree code). [0] http://www.spinics.net/lists/linux-wireless/msg152634.html [1] https://marc.info/?l=linux-wireless&m=147250597503174&w=2 [2] https://marc.info/?l=linux-wireless&m=147254388611344&w=2 [3] https://github.com/freebsd/freebsd/blob/50719b56d9ce8d7d4beb53b16e9edb2e9a4a7a18/sys/dev/ath/ath_hal/ah_eeprom_9287.c#L351 Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2016-11-26 01:01:13 +01:00
+ for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++)
+ EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
- for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
- word = swab16(eep->modalHeader.spurChans[i].spurChan);
- eep->modalHeader.spurChans[i].spurChan = word;
- }
kernel: mac80211: add pending ath9k EEPROM swapping patches There are two types of swapping the EEPROM data in the ath9k driver. Before this series one type of swapping could not be used without the other. The first type of swapping looks at the "magic bytes" at the start of the EEPROM data and performs swab16 on the EEPROM contents if needed. The second type of swapping is EEPROM format specific and swaps specific fields within the EEPROM itself (swab16, swab32 - depends on the EEPROM format). With this series the second part now looks at the EEPMISC register inside the EEPROM, which uses a bit to indicate if the EEPROM data is Big Endian (this is also done by the FreeBSD kernel). This has a nice advantage: currently there are some out-of-tree hacks (in OpenWrt and LEDE) where the EEPROM has a Big Endian header on a Big Endian system (= no swab16 is performed) but the EEPROM itself indicates that it's data is Little Endian. Until now the out-of-tree code simply did a swab16 before passing the data to ath9k, so ath9k first did the swab16 - this also enabled the format specific swapping. These out-of-tree hacks are still working with the new logic, but it is recommended to remove them. This implementation is based on a discussion with Arnd Bergmann who raised concerns about the robustness and portability of the swapping logic in the original OF support patch review, see [0]. After a second round of patches (= v1 of this series) neither Arnd Bergmann nor I were really happy with the complexity of the EEPROM swapping logic. Based on a discussion (see [1] and [2]) we decided that ath9k should use a defined format (specifying the endianness of the data - I went with __le16 and __le32) when accessing the EEPROM fields. A benefit of this is that we enable the EEPMISC based swapping logic by default, just like the FreeBSD driver, see [3]. On the devices which I have tested (see below) ath9k now works without having to specify the "endian_check" field in ath9k_platform_data (or a similar logic which could provide this via devicetree) as ath9k now detects the endianness automatically. Only EEPROMs which are mangled by some out-of-tree code still need the endian_check flag (or one can simply remove that mangling from the out-of-tree code). [0] http://www.spinics.net/lists/linux-wireless/msg152634.html [1] https://marc.info/?l=linux-wireless&m=147250597503174&w=2 [2] https://marc.info/?l=linux-wireless&m=147254388611344&w=2 [3] https://github.com/freebsd/freebsd/blob/50719b56d9ce8d7d4beb53b16e9edb2e9a4a7a18/sys/dev/ath/ath_hal/ah_eeprom_9287.c#L351 Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2016-11-26 01:01:13 +01:00
+ for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
+ EEPROM_FIELD_SWAB16(
+ eep->modalHeader.spurChans[i].spurChan);
}
if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
@@ -270,13 +248,13 @@ static u32 ath9k_hw_4k_get_eeprom(struct
case EEP_MAC_MSW:
return get_unaligned_be16(pBase->macAddr + 4);
case EEP_REG_0:
- return pBase->regDmn[0];
+ return le16_to_cpu(pBase->regDmn[0]);
case EEP_OP_CAP:
- return pBase->deviceCap;
+ return le16_to_cpu(pBase->deviceCap);
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
- return pBase->rfSilent;
+ return le16_to_cpu(pBase->rfSilent);
case EEP_OB_2:
return pModal->ob_0;
case EEP_DB_2:
@@ -724,7 +702,7 @@ static void ath9k_hw_4k_set_gain(struct
{
ENABLE_REG_RMW_BUFFER(ah);
REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0,
- pModal->antCtrlChain[0], 0);
+ le32_to_cpu(pModal->antCtrlChain[0]), 0);
REG_RMW(ah, AR_PHY_TIMING_CTRL4(0),
SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
@@ -790,7 +768,7 @@ static void ath9k_hw_4k_set_board_values
pModal = &eep->modalHeader;
txRxAttenLocal = 23;
- REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
+ REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
/* Single chain for 4K EEPROM*/
ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
@@ -1054,7 +1032,7 @@ static void ath9k_hw_4k_set_board_values
static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
{
- return ah->eeprom.map4k.modalHeader.spurChans[i].spurChan;
+ return le16_to_cpu(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan);
}
static u8 ath9k_hw_4k_get_eepmisc(struct ath_hw *ah)
--- a/drivers/net/wireless/ath/ath9k/eeprom_9287.c
+++ b/drivers/net/wireless/ath/ath9k/eeprom_9287.c
@@ -22,7 +22,7 @@
static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
{
- u16 version = ah->eeprom.map9287.baseEepHeader.version;
+ u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
return (version & AR5416_EEP_VER_MAJOR_MASK) >>
AR5416_EEP_VER_MAJOR_SHIFT;
@@ -30,7 +30,7 @@ static int ath9k_hw_ar9287_get_eeprom_ve
static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
{
- u16 version = ah->eeprom.map9287.baseEepHeader.version;
+ u16 version = le16_to_cpu(ah->eeprom.map9287.baseEepHeader.version);
return version & AR5416_EEP_VER_MINOR_MASK;
}
@@ -79,9 +79,9 @@ static bool ath9k_hw_ar9287_fill_eeprom(
static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
struct modal_eep_ar9287_header *modal_hdr)
{
- PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
- PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
- PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
+ PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
+ PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
+ PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
PR_EEP("Switch Settle", modal_hdr->switchSettling);
@@ -128,6 +128,7 @@ static u32 ath9k_hw_ar9287_dump_eeprom(s
{
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
+ u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
if (!dump_base_hdr) {
len += scnprintf(buf + len, size - len,
@@ -139,10 +140,10 @@ static u32 ath9k_hw_ar9287_dump_eeprom(s
PR_EEP("Major Version", ath9k_hw_ar9287_get_eeprom_ver(ah));
PR_EEP("Minor Version", ath9k_hw_ar9287_get_eeprom_rev(ah));
- PR_EEP("Checksum", pBase->checksum);
- PR_EEP("Length", pBase->length);
- PR_EEP("RegDomain1", pBase->regDmn[0]);
- PR_EEP("RegDomain2", pBase->regDmn[1]);
+ PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
+ PR_EEP("Length", le16_to_cpu(pBase->length));
+ PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
+ PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
PR_EEP("TX Mask", pBase->txMask);
PR_EEP("RX Mask", pBase->rxMask);
PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
@@ -156,9 +157,9 @@ static u32 ath9k_hw_ar9287_dump_eeprom(s
PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_5G_HT40));
PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
- PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
- PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
- PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
+ PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
+ PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
+ PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
PR_EEP("Power Table Offset", pBase->pwrTableOffset);
PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
@@ -182,8 +183,7 @@ static u32 ath9k_hw_ar9287_dump_eeprom(s
static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
{
- u32 el, integer;
- u16 word;
+ u32 el;
int i, err;
bool need_swap;
struct ar9287_eeprom *eep = &ah->eeprom.map9287;
@@ -193,51 +193,31 @@ static int ath9k_hw_ar9287_check_eeprom(
return err;
if (need_swap)
- el = swab16(eep->baseEepHeader.length);
+ el = swab16((__force u16)eep->baseEepHeader.length);
else
- el = eep->baseEepHeader.length;
+ el = le16_to_cpu(eep->baseEepHeader.length);
el = min(el / sizeof(u16), SIZE_EEPROM_AR9287);
if (!ath9k_hw_nvram_validate_checksum(ah, el))
return -EINVAL;
if (need_swap) {
- word = swab16(eep->baseEepHeader.length);
- eep->baseEepHeader.length = word;
-
- word = swab16(eep->baseEepHeader.checksum);
- eep->baseEepHeader.checksum = word;
-
- word = swab16(eep->baseEepHeader.version);
- eep->baseEepHeader.version = word;
-
- word = swab16(eep->baseEepHeader.regDmn[0]);
- eep->baseEepHeader.regDmn[0] = word;
-
- word = swab16(eep->baseEepHeader.regDmn[1]);
- eep->baseEepHeader.regDmn[1] = word;
-
- word = swab16(eep->baseEepHeader.rfSilent);
- eep->baseEepHeader.rfSilent = word;
-
- word = swab16(eep->baseEepHeader.blueToothOptions);
- eep->baseEepHeader.blueToothOptions = word;
-
- word = swab16(eep->baseEepHeader.deviceCap);
- eep->baseEepHeader.deviceCap = word;
-
- integer = swab32(eep->modalHeader.antCtrlCommon);
- eep->modalHeader.antCtrlCommon = integer;
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
+ EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlCommon);
- for (i = 0; i < AR9287_MAX_CHAINS; i++) {
- integer = swab32(eep->modalHeader.antCtrlChain[i]);
- eep->modalHeader.antCtrlChain[i] = integer;
- }
kernel: mac80211: add pending ath9k EEPROM swapping patches There are two types of swapping the EEPROM data in the ath9k driver. Before this series one type of swapping could not be used without the other. The first type of swapping looks at the "magic bytes" at the start of the EEPROM data and performs swab16 on the EEPROM contents if needed. The second type of swapping is EEPROM format specific and swaps specific fields within the EEPROM itself (swab16, swab32 - depends on the EEPROM format). With this series the second part now looks at the EEPMISC register inside the EEPROM, which uses a bit to indicate if the EEPROM data is Big Endian (this is also done by the FreeBSD kernel). This has a nice advantage: currently there are some out-of-tree hacks (in OpenWrt and LEDE) where the EEPROM has a Big Endian header on a Big Endian system (= no swab16 is performed) but the EEPROM itself indicates that it's data is Little Endian. Until now the out-of-tree code simply did a swab16 before passing the data to ath9k, so ath9k first did the swab16 - this also enabled the format specific swapping. These out-of-tree hacks are still working with the new logic, but it is recommended to remove them. This implementation is based on a discussion with Arnd Bergmann who raised concerns about the robustness and portability of the swapping logic in the original OF support patch review, see [0]. After a second round of patches (= v1 of this series) neither Arnd Bergmann nor I were really happy with the complexity of the EEPROM swapping logic. Based on a discussion (see [1] and [2]) we decided that ath9k should use a defined format (specifying the endianness of the data - I went with __le16 and __le32) when accessing the EEPROM fields. A benefit of this is that we enable the EEPMISC based swapping logic by default, just like the FreeBSD driver, see [3]. On the devices which I have tested (see below) ath9k now works without having to specify the "endian_check" field in ath9k_platform_data (or a similar logic which could provide this via devicetree) as ath9k now detects the endianness automatically. Only EEPROMs which are mangled by some out-of-tree code still need the endian_check flag (or one can simply remove that mangling from the out-of-tree code). [0] http://www.spinics.net/lists/linux-wireless/msg152634.html [1] https://marc.info/?l=linux-wireless&m=147250597503174&w=2 [2] https://marc.info/?l=linux-wireless&m=147254388611344&w=2 [3] https://github.com/freebsd/freebsd/blob/50719b56d9ce8d7d4beb53b16e9edb2e9a4a7a18/sys/dev/ath/ath_hal/ah_eeprom_9287.c#L351 Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2016-11-26 01:01:13 +01:00
+ for (i = 0; i < AR9287_MAX_CHAINS; i++)
+ EEPROM_FIELD_SWAB32(eep->modalHeader.antCtrlChain[i]);
- for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
- word = swab16(eep->modalHeader.spurChans[i].spurChan);
- eep->modalHeader.spurChans[i].spurChan = word;
- }
kernel: mac80211: add pending ath9k EEPROM swapping patches There are two types of swapping the EEPROM data in the ath9k driver. Before this series one type of swapping could not be used without the other. The first type of swapping looks at the "magic bytes" at the start of the EEPROM data and performs swab16 on the EEPROM contents if needed. The second type of swapping is EEPROM format specific and swaps specific fields within the EEPROM itself (swab16, swab32 - depends on the EEPROM format). With this series the second part now looks at the EEPMISC register inside the EEPROM, which uses a bit to indicate if the EEPROM data is Big Endian (this is also done by the FreeBSD kernel). This has a nice advantage: currently there are some out-of-tree hacks (in OpenWrt and LEDE) where the EEPROM has a Big Endian header on a Big Endian system (= no swab16 is performed) but the EEPROM itself indicates that it's data is Little Endian. Until now the out-of-tree code simply did a swab16 before passing the data to ath9k, so ath9k first did the swab16 - this also enabled the format specific swapping. These out-of-tree hacks are still working with the new logic, but it is recommended to remove them. This implementation is based on a discussion with Arnd Bergmann who raised concerns about the robustness and portability of the swapping logic in the original OF support patch review, see [0]. After a second round of patches (= v1 of this series) neither Arnd Bergmann nor I were really happy with the complexity of the EEPROM swapping logic. Based on a discussion (see [1] and [2]) we decided that ath9k should use a defined format (specifying the endianness of the data - I went with __le16 and __le32) when accessing the EEPROM fields. A benefit of this is that we enable the EEPMISC based swapping logic by default, just like the FreeBSD driver, see [3]. On the devices which I have tested (see below) ath9k now works without having to specify the "endian_check" field in ath9k_platform_data (or a similar logic which could provide this via devicetree) as ath9k now detects the endianness automatically. Only EEPROMs which are mangled by some out-of-tree code still need the endian_check flag (or one can simply remove that mangling from the out-of-tree code). [0] http://www.spinics.net/lists/linux-wireless/msg152634.html [1] https://marc.info/?l=linux-wireless&m=147250597503174&w=2 [2] https://marc.info/?l=linux-wireless&m=147254388611344&w=2 [3] https://github.com/freebsd/freebsd/blob/50719b56d9ce8d7d4beb53b16e9edb2e9a4a7a18/sys/dev/ath/ath_hal/ah_eeprom_9287.c#L351 Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2016-11-26 01:01:13 +01:00
+ for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
+ EEPROM_FIELD_SWAB16(
+ eep->modalHeader.spurChans[i].spurChan);
}
if (!ath9k_hw_nvram_check_version(ah, AR9287_EEP_VER,
@@ -267,13 +247,13 @@ static u32 ath9k_hw_ar9287_get_eeprom(st
case EEP_MAC_MSW:
return get_unaligned_be16(pBase->macAddr + 4);
case EEP_REG_0:
- return pBase->regDmn[0];
+ return le16_to_cpu(pBase->regDmn[0]);
case EEP_OP_CAP:
- return pBase->deviceCap;
+ return le16_to_cpu(pBase->deviceCap);
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
- return pBase->rfSilent;
+ return le16_to_cpu(pBase->rfSilent);
case EEP_TX_MASK:
return pBase->txMask;
case EEP_RX_MASK:
@@ -878,13 +858,13 @@ static void ath9k_hw_ar9287_set_board_va
pModal = &eep->modalHeader;
- REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
+ REG_WRITE(ah, AR_PHY_SWITCH_COM, le32_to_cpu(pModal->antCtrlCommon));
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
regChainOffset = i * 0x1000;
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
- pModal->antCtrlChain[i]);
+ le32_to_cpu(pModal->antCtrlChain[i]));
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
@@ -982,7 +962,9 @@ static void ath9k_hw_ar9287_set_board_va
static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
u16 i, bool is2GHz)
{
- return ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
+ __le16 spur_ch = ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
+
+ return le16_to_cpu(spur_ch);
}
static u8 ath9k_hw_ar9287_get_eepmisc(struct ath_hw *ah)
--- a/drivers/net/wireless/ath/ath9k/eeprom_def.c
+++ b/drivers/net/wireless/ath/ath9k/eeprom_def.c
@@ -79,7 +79,7 @@ static void ath9k_olc_get_pdadcs(struct
static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
{
- u16 version = ah->eeprom.def.baseEepHeader.version;
+ u16 version = le16_to_cpu(ah->eeprom.def.baseEepHeader.version);
return (version & AR5416_EEP_VER_MAJOR_MASK) >>
AR5416_EEP_VER_MAJOR_SHIFT;
@@ -87,7 +87,7 @@ static int ath9k_hw_def_get_eeprom_ver(s
static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
{
- u16 version = ah->eeprom.def.baseEepHeader.version;
+ u16 version = le16_to_cpu(ah->eeprom.def.baseEepHeader.version);
return version & AR5416_EEP_VER_MINOR_MASK;
}
@@ -135,10 +135,10 @@ static bool ath9k_hw_def_fill_eeprom(str
static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
struct modal_eep_header *modal_hdr)
{
- PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
- PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
- PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
- PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
+ PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
+ PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
+ PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
+ PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
@@ -194,9 +194,9 @@ static u32 ath9k_def_dump_modal_eeprom(c
PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
PR_EEP("LNA Control", modal_hdr->lna_ctl);
- PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
- PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
- PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
+ PR_EEP("XPA Bias Freq0", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[0]));
+ PR_EEP("XPA Bias Freq1", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[1]));
+ PR_EEP("XPA Bias Freq2", le16_to_cpu(modal_hdr->xpaBiasLvlFreq[2]));
return len;
}
@@ -206,6 +206,7 @@ static u32 ath9k_hw_def_dump_eeprom(stru
{
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
struct base_eep_header *pBase = &eep->baseEepHeader;
+ u32 binBuildNumber = le32_to_cpu(pBase->binBuildNumber);
if (!dump_base_hdr) {
len += scnprintf(buf + len, size - len,
@@ -221,10 +222,10 @@ static u32 ath9k_hw_def_dump_eeprom(stru
PR_EEP("Major Version", ath9k_hw_def_get_eeprom_ver(ah));
PR_EEP("Minor Version", ath9k_hw_def_get_eeprom_rev(ah));
- PR_EEP("Checksum", pBase->checksum);
- PR_EEP("Length", pBase->length);
- PR_EEP("RegDomain1", pBase->regDmn[0]);
- PR_EEP("RegDomain2", pBase->regDmn[1]);
+ PR_EEP("Checksum", le16_to_cpu(pBase->checksum));
+ PR_EEP("Length", le16_to_cpu(pBase->length));
+ PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
+ PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
PR_EEP("TX Mask", pBase->txMask);
PR_EEP("RX Mask", pBase->rxMask);
PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
@@ -238,9 +239,9 @@ static u32 ath9k_hw_def_dump_eeprom(stru
PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
AR5416_OPFLAGS_N_5G_HT40));
PR_EEP("Big Endian", !!(pBase->eepMisc & AR5416_EEPMISC_BIG_ENDIAN));
- PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
- PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
- PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
+ PR_EEP("Cal Bin Major Ver", (binBuildNumber >> 24) & 0xFF);
+ PR_EEP("Cal Bin Minor Ver", (binBuildNumber >> 16) & 0xFF);
+ PR_EEP("Cal Bin Build", (binBuildNumber >> 8) & 0xFF);
PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
@@ -273,61 +274,40 @@ static int ath9k_hw_def_check_eeprom(str
return err;
if (need_swap)
- el = swab16(eep->baseEepHeader.length);
+ el = swab16((__force u16)eep->baseEepHeader.length);
else
- el = eep->baseEepHeader.length;
+ el = le16_to_cpu(eep->baseEepHeader.length);
el = min(el / sizeof(u16), SIZE_EEPROM_DEF);
if (!ath9k_hw_nvram_validate_checksum(ah, el))
return -EINVAL;
if (need_swap) {
- u32 integer, j;
- u16 word;
-
kernel: mac80211: add pending ath9k EEPROM swapping patches There are two types of swapping the EEPROM data in the ath9k driver. Before this series one type of swapping could not be used without the other. The first type of swapping looks at the "magic bytes" at the start of the EEPROM data and performs swab16 on the EEPROM contents if needed. The second type of swapping is EEPROM format specific and swaps specific fields within the EEPROM itself (swab16, swab32 - depends on the EEPROM format). With this series the second part now looks at the EEPMISC register inside the EEPROM, which uses a bit to indicate if the EEPROM data is Big Endian (this is also done by the FreeBSD kernel). This has a nice advantage: currently there are some out-of-tree hacks (in OpenWrt and LEDE) where the EEPROM has a Big Endian header on a Big Endian system (= no swab16 is performed) but the EEPROM itself indicates that it's data is Little Endian. Until now the out-of-tree code simply did a swab16 before passing the data to ath9k, so ath9k first did the swab16 - this also enabled the format specific swapping. These out-of-tree hacks are still working with the new logic, but it is recommended to remove them. This implementation is based on a discussion with Arnd Bergmann who raised concerns about the robustness and portability of the swapping logic in the original OF support patch review, see [0]. After a second round of patches (= v1 of this series) neither Arnd Bergmann nor I were really happy with the complexity of the EEPROM swapping logic. Based on a discussion (see [1] and [2]) we decided that ath9k should use a defined format (specifying the endianness of the data - I went with __le16 and __le32) when accessing the EEPROM fields. A benefit of this is that we enable the EEPMISC based swapping logic by default, just like the FreeBSD driver, see [3]. On the devices which I have tested (see below) ath9k now works without having to specify the "endian_check" field in ath9k_platform_data (or a similar logic which could provide this via devicetree) as ath9k now detects the endianness automatically. Only EEPROMs which are mangled by some out-of-tree code still need the endian_check flag (or one can simply remove that mangling from the out-of-tree code). [0] http://www.spinics.net/lists/linux-wireless/msg152634.html [1] https://marc.info/?l=linux-wireless&m=147250597503174&w=2 [2] https://marc.info/?l=linux-wireless&m=147254388611344&w=2 [3] https://github.com/freebsd/freebsd/blob/50719b56d9ce8d7d4beb53b16e9edb2e9a4a7a18/sys/dev/ath/ath_hal/ah_eeprom_9287.c#L351 Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2016-11-26 01:01:13 +01:00
- word = swab16(eep->baseEepHeader.length);
- eep->baseEepHeader.length = word;
-
- word = swab16(eep->baseEepHeader.checksum);
- eep->baseEepHeader.checksum = word;
-
- word = swab16(eep->baseEepHeader.version);
- eep->baseEepHeader.version = word;
-
- word = swab16(eep->baseEepHeader.regDmn[0]);
- eep->baseEepHeader.regDmn[0] = word;
-
- word = swab16(eep->baseEepHeader.regDmn[1]);
- eep->baseEepHeader.regDmn[1] = word;
-
- word = swab16(eep->baseEepHeader.rfSilent);
- eep->baseEepHeader.rfSilent = word;
-
- word = swab16(eep->baseEepHeader.blueToothOptions);
- eep->baseEepHeader.blueToothOptions = word;
+ u32 j;
kernel: mac80211: add pending ath9k EEPROM swapping patches There are two types of swapping the EEPROM data in the ath9k driver. Before this series one type of swapping could not be used without the other. The first type of swapping looks at the "magic bytes" at the start of the EEPROM data and performs swab16 on the EEPROM contents if needed. The second type of swapping is EEPROM format specific and swaps specific fields within the EEPROM itself (swab16, swab32 - depends on the EEPROM format). With this series the second part now looks at the EEPMISC register inside the EEPROM, which uses a bit to indicate if the EEPROM data is Big Endian (this is also done by the FreeBSD kernel). This has a nice advantage: currently there are some out-of-tree hacks (in OpenWrt and LEDE) where the EEPROM has a Big Endian header on a Big Endian system (= no swab16 is performed) but the EEPROM itself indicates that it's data is Little Endian. Until now the out-of-tree code simply did a swab16 before passing the data to ath9k, so ath9k first did the swab16 - this also enabled the format specific swapping. These out-of-tree hacks are still working with the new logic, but it is recommended to remove them. This implementation is based on a discussion with Arnd Bergmann who raised concerns about the robustness and portability of the swapping logic in the original OF support patch review, see [0]. After a second round of patches (= v1 of this series) neither Arnd Bergmann nor I were really happy with the complexity of the EEPROM swapping logic. Based on a discussion (see [1] and [2]) we decided that ath9k should use a defined format (specifying the endianness of the data - I went with __le16 and __le32) when accessing the EEPROM fields. A benefit of this is that we enable the EEPMISC based swapping logic by default, just like the FreeBSD driver, see [3]. On the devices which I have tested (see below) ath9k now works without having to specify the "endian_check" field in ath9k_platform_data (or a similar logic which could provide this via devicetree) as ath9k now detects the endianness automatically. Only EEPROMs which are mangled by some out-of-tree code still need the endian_check flag (or one can simply remove that mangling from the out-of-tree code). [0] http://www.spinics.net/lists/linux-wireless/msg152634.html [1] https://marc.info/?l=linux-wireless&m=147250597503174&w=2 [2] https://marc.info/?l=linux-wireless&m=147254388611344&w=2 [3] https://github.com/freebsd/freebsd/blob/50719b56d9ce8d7d4beb53b16e9edb2e9a4a7a18/sys/dev/ath/ath_hal/ah_eeprom_9287.c#L351 Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2016-11-26 01:01:13 +01:00
- word = swab16(eep->baseEepHeader.deviceCap);
- eep->baseEepHeader.deviceCap = word;
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.length);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.checksum);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.version);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[0]);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.regDmn[1]);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.rfSilent);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.blueToothOptions);
+ EEPROM_FIELD_SWAB16(eep->baseEepHeader.deviceCap);
for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
struct modal_eep_header *pModal =
&eep->modalHeader[j];
- integer = swab32(pModal->antCtrlCommon);
- pModal->antCtrlCommon = integer;
+ EEPROM_FIELD_SWAB32(pModal->antCtrlCommon);
- for (i = 0; i < AR5416_MAX_CHAINS; i++) {
- integer = swab32(pModal->antCtrlChain[i]);
- pModal->antCtrlChain[i] = integer;
- }
- for (i = 0; i < 3; i++) {
- word = swab16(pModal->xpaBiasLvlFreq[i]);
- pModal->xpaBiasLvlFreq[i] = word;
- }
+ for (i = 0; i < AR5416_MAX_CHAINS; i++)
+ EEPROM_FIELD_SWAB32(pModal->antCtrlChain[i]);
- for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
- word = swab16(pModal->spurChans[i].spurChan);
- pModal->spurChans[i].spurChan = word;
- }
+ for (i = 0; i < 3; i++)
+ EEPROM_FIELD_SWAB16(pModal->xpaBiasLvlFreq[i]);
+
+ for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++)
+ EEPROM_FIELD_SWAB16(
+ pModal->spurChans[i].spurChan);
}
}
@@ -337,7 +317,7 @@ static int ath9k_hw_def_check_eeprom(str
/* Enable fixup for AR_AN_TOP2 if necessary */
if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
- ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
+ ((le16_to_cpu(eep->baseEepHeader.version) & 0xff) > 0x0a) &&
(eep->baseEepHeader.pwdclkind == 0))
ah->need_an_top2_fixup = true;
@@ -370,13 +350,13 @@ static u32 ath9k_hw_def_get_eeprom(struc
case EEP_MAC_MSW:
return get_unaligned_be16(pBase->macAddr + 4);
case EEP_REG_0:
- return pBase->regDmn[0];
+ return le16_to_cpu(pBase->regDmn[0]);
case EEP_OP_CAP:
- return pBase->deviceCap;
+ return le16_to_cpu(pBase->deviceCap);
case EEP_OP_MODE:
return pBase->opCapFlags;
case EEP_RF_SILENT:
- return pBase->rfSilent;
+ return le16_to_cpu(pBase->rfSilent);
case EEP_OB_5:
return pModal[0].ob;
case EEP_DB_5:
@@ -490,11 +470,13 @@ static void ath9k_hw_def_set_board_value
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
int i, regChainOffset;
u8 txRxAttenLocal;
+ u32 antCtrlCommon;
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
+ antCtrlCommon = le32_to_cpu(pModal->antCtrlCommon);
- REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
+ REG_WRITE(ah, AR_PHY_SWITCH_COM, antCtrlCommon & 0xffff);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_9280(ah)) {
@@ -508,7 +490,7 @@ static void ath9k_hw_def_set_board_value
regChainOffset = i * 0x1000;
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
- pModal->antCtrlChain[i]);
+ le32_to_cpu(pModal->antCtrlChain[i]));
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
@@ -655,7 +637,7 @@ static void ath9k_hw_def_set_board_value
static void ath9k_hw_def_set_addac(struct ath_hw *ah,
struct ath9k_channel *chan)
{
-#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
+#define XPA_LVL_FREQ(cnt) (le16_to_cpu(pModal->xpaBiasLvlFreq[cnt]))
struct modal_eep_header *pModal;
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
u8 biaslevel;
@@ -1315,7 +1297,9 @@ static void ath9k_hw_def_set_txpower(str
static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
{
- return ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan;
+ __le16 spch = ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan;
+
+ return le16_to_cpu(spch);
}
static u8 ath9k_hw_def_get_eepmisc(struct ath_hw *ah)