openwrt/target/linux/ath79/dts/ar9344_samsung_wam250.dts

162 lines
2.4 KiB
Plaintext
Raw Normal View History

ath79: add support for Samsung WAM250 Samsung WAM250 is a dual-band (selectable, not simultaneous) wireless hub, dedicated for Samsung Shape Wireless Audio System. The device is based on Atheros AR9344 (FCC ID: A3LWAM250). Support for this device was first introduced in e58e49bdbe (ar71xx target). Specifications: - Atheros AR9344 - 560/450/225 MHz (CPU/DDR/AHB) - 64 MB of RAM (DDR2) - 16 MB of flash (SPI NOR) - 2x 10/100 Mbps Ethernet - 2T2R 2.4/5 GHz Wi-Fi, with ext. PA (SE2598L, SE5003L) and LNA - 1x USB 2.0 - 4x LED (all are driven by GPIO) - 2x button (reset, wps/speaker add) - DC jack for main power input (14 V) - UART header on PCB (J4, RX: 3, TX: 5) Flash instruction: This device uses dual-image (switched between upgrades) with a common jffs2 config partition. Fortunately, there is a way to disable this mode so that more flash space can be used by OpenWrt image. You can easily access this device over telnet, using root/root credentials (the same also work for serial console access). 1. Make sure that your device uses second (bootpart=2) image using command: "fw_printenv bootpart". 2. If your device uses first image (bootpart=1), perform upgrade to the latest vendor firmware (after the update, device should boot from second partition) using web gui (default login: admin/1234567890). 3. Rename "sysupgrade" image to "firmware.bin", download it (you can use wget, tftp or ftpget) to "/tmp" and issue below commands: mtd_debug erase /dev/mtd3 0 $(wc -c /tmp/firmware.bin | awk -F' ' '{print $1}') mtd_debug write /dev/mtd3 0 $(wc -c /tmp/firmware.bin) fw_setenv bootpart fw_setenv bootcmd "bootm 0x9f070000" reboot Revert to vendor firmware instruction: 1. Download vendor firmware to "/tmp" device and issue below commands: fw_setenv bootpart 1 sysupgrade -n -F SS_BHUB_v2.2.05.bin Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-18 12:11:13 +00:00
// SPDX-License-Identifier: GPL-2.0-or-later OR MIT
#include "ar9344.dtsi"
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/input/input.h>
/ {
model = "Samsung WAM250";
compatible = "samsung,wam250", "qca,ar9344";
aliases {
led-boot = &led_power;
led-failsafe = &led_power;
led-running = &led_power;
led-upgrade = &led_power;
};
keys {
compatible = "gpio-keys";
reset {
label = "reset";
linux,code = <KEY_RESTART>;
gpios = <&gpio 17 GPIO_ACTIVE_LOW>;
debounce-interval = <60>;
};
wps {
label = "wps";
linux,code = <KEY_WPS_BUTTON>;
gpios = <&gpio 1 GPIO_ACTIVE_LOW>;
debounce-interval = <60>;
};
};
leds {
compatible = "gpio-leds";
lan {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-26 15:31:17 +00:00
label = "white:lan";
ath79: add support for Samsung WAM250 Samsung WAM250 is a dual-band (selectable, not simultaneous) wireless hub, dedicated for Samsung Shape Wireless Audio System. The device is based on Atheros AR9344 (FCC ID: A3LWAM250). Support for this device was first introduced in e58e49bdbe (ar71xx target). Specifications: - Atheros AR9344 - 560/450/225 MHz (CPU/DDR/AHB) - 64 MB of RAM (DDR2) - 16 MB of flash (SPI NOR) - 2x 10/100 Mbps Ethernet - 2T2R 2.4/5 GHz Wi-Fi, with ext. PA (SE2598L, SE5003L) and LNA - 1x USB 2.0 - 4x LED (all are driven by GPIO) - 2x button (reset, wps/speaker add) - DC jack for main power input (14 V) - UART header on PCB (J4, RX: 3, TX: 5) Flash instruction: This device uses dual-image (switched between upgrades) with a common jffs2 config partition. Fortunately, there is a way to disable this mode so that more flash space can be used by OpenWrt image. You can easily access this device over telnet, using root/root credentials (the same also work for serial console access). 1. Make sure that your device uses second (bootpart=2) image using command: "fw_printenv bootpart". 2. If your device uses first image (bootpart=1), perform upgrade to the latest vendor firmware (after the update, device should boot from second partition) using web gui (default login: admin/1234567890). 3. Rename "sysupgrade" image to "firmware.bin", download it (you can use wget, tftp or ftpget) to "/tmp" and issue below commands: mtd_debug erase /dev/mtd3 0 $(wc -c /tmp/firmware.bin | awk -F' ' '{print $1}') mtd_debug write /dev/mtd3 0 $(wc -c /tmp/firmware.bin) fw_setenv bootpart fw_setenv bootcmd "bootm 0x9f070000" reboot Revert to vendor firmware instruction: 1. Download vendor firmware to "/tmp" device and issue below commands: fw_setenv bootpart 1 sysupgrade -n -F SS_BHUB_v2.2.05.bin Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-18 12:11:13 +00:00
gpios = <&gpio 13 GPIO_ACTIVE_LOW>;
};
led_power: power {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-26 15:31:17 +00:00
label = "white:power";
ath79: add support for Samsung WAM250 Samsung WAM250 is a dual-band (selectable, not simultaneous) wireless hub, dedicated for Samsung Shape Wireless Audio System. The device is based on Atheros AR9344 (FCC ID: A3LWAM250). Support for this device was first introduced in e58e49bdbe (ar71xx target). Specifications: - Atheros AR9344 - 560/450/225 MHz (CPU/DDR/AHB) - 64 MB of RAM (DDR2) - 16 MB of flash (SPI NOR) - 2x 10/100 Mbps Ethernet - 2T2R 2.4/5 GHz Wi-Fi, with ext. PA (SE2598L, SE5003L) and LNA - 1x USB 2.0 - 4x LED (all are driven by GPIO) - 2x button (reset, wps/speaker add) - DC jack for main power input (14 V) - UART header on PCB (J4, RX: 3, TX: 5) Flash instruction: This device uses dual-image (switched between upgrades) with a common jffs2 config partition. Fortunately, there is a way to disable this mode so that more flash space can be used by OpenWrt image. You can easily access this device over telnet, using root/root credentials (the same also work for serial console access). 1. Make sure that your device uses second (bootpart=2) image using command: "fw_printenv bootpart". 2. If your device uses first image (bootpart=1), perform upgrade to the latest vendor firmware (after the update, device should boot from second partition) using web gui (default login: admin/1234567890). 3. Rename "sysupgrade" image to "firmware.bin", download it (you can use wget, tftp or ftpget) to "/tmp" and issue below commands: mtd_debug erase /dev/mtd3 0 $(wc -c /tmp/firmware.bin | awk -F' ' '{print $1}') mtd_debug write /dev/mtd3 0 $(wc -c /tmp/firmware.bin) fw_setenv bootpart fw_setenv bootcmd "bootm 0x9f070000" reboot Revert to vendor firmware instruction: 1. Download vendor firmware to "/tmp" device and issue below commands: fw_setenv bootpart 1 sysupgrade -n -F SS_BHUB_v2.2.05.bin Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-18 12:11:13 +00:00
gpios = <&gpio 15 GPIO_ACTIVE_LOW>;
default-state = "keep";
};
repeater {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-26 15:31:17 +00:00
label = "white:repeater";
ath79: add support for Samsung WAM250 Samsung WAM250 is a dual-band (selectable, not simultaneous) wireless hub, dedicated for Samsung Shape Wireless Audio System. The device is based on Atheros AR9344 (FCC ID: A3LWAM250). Support for this device was first introduced in e58e49bdbe (ar71xx target). Specifications: - Atheros AR9344 - 560/450/225 MHz (CPU/DDR/AHB) - 64 MB of RAM (DDR2) - 16 MB of flash (SPI NOR) - 2x 10/100 Mbps Ethernet - 2T2R 2.4/5 GHz Wi-Fi, with ext. PA (SE2598L, SE5003L) and LNA - 1x USB 2.0 - 4x LED (all are driven by GPIO) - 2x button (reset, wps/speaker add) - DC jack for main power input (14 V) - UART header on PCB (J4, RX: 3, TX: 5) Flash instruction: This device uses dual-image (switched between upgrades) with a common jffs2 config partition. Fortunately, there is a way to disable this mode so that more flash space can be used by OpenWrt image. You can easily access this device over telnet, using root/root credentials (the same also work for serial console access). 1. Make sure that your device uses second (bootpart=2) image using command: "fw_printenv bootpart". 2. If your device uses first image (bootpart=1), perform upgrade to the latest vendor firmware (after the update, device should boot from second partition) using web gui (default login: admin/1234567890). 3. Rename "sysupgrade" image to "firmware.bin", download it (you can use wget, tftp or ftpget) to "/tmp" and issue below commands: mtd_debug erase /dev/mtd3 0 $(wc -c /tmp/firmware.bin | awk -F' ' '{print $1}') mtd_debug write /dev/mtd3 0 $(wc -c /tmp/firmware.bin) fw_setenv bootpart fw_setenv bootcmd "bootm 0x9f070000" reboot Revert to vendor firmware instruction: 1. Download vendor firmware to "/tmp" device and issue below commands: fw_setenv bootpart 1 sysupgrade -n -F SS_BHUB_v2.2.05.bin Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-18 12:11:13 +00:00
gpios = <&gpio 14 GPIO_ACTIVE_LOW>;
};
wlan {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-26 15:31:17 +00:00
label = "white:wlan";
ath79: add support for Samsung WAM250 Samsung WAM250 is a dual-band (selectable, not simultaneous) wireless hub, dedicated for Samsung Shape Wireless Audio System. The device is based on Atheros AR9344 (FCC ID: A3LWAM250). Support for this device was first introduced in e58e49bdbe (ar71xx target). Specifications: - Atheros AR9344 - 560/450/225 MHz (CPU/DDR/AHB) - 64 MB of RAM (DDR2) - 16 MB of flash (SPI NOR) - 2x 10/100 Mbps Ethernet - 2T2R 2.4/5 GHz Wi-Fi, with ext. PA (SE2598L, SE5003L) and LNA - 1x USB 2.0 - 4x LED (all are driven by GPIO) - 2x button (reset, wps/speaker add) - DC jack for main power input (14 V) - UART header on PCB (J4, RX: 3, TX: 5) Flash instruction: This device uses dual-image (switched between upgrades) with a common jffs2 config partition. Fortunately, there is a way to disable this mode so that more flash space can be used by OpenWrt image. You can easily access this device over telnet, using root/root credentials (the same also work for serial console access). 1. Make sure that your device uses second (bootpart=2) image using command: "fw_printenv bootpart". 2. If your device uses first image (bootpart=1), perform upgrade to the latest vendor firmware (after the update, device should boot from second partition) using web gui (default login: admin/1234567890). 3. Rename "sysupgrade" image to "firmware.bin", download it (you can use wget, tftp or ftpget) to "/tmp" and issue below commands: mtd_debug erase /dev/mtd3 0 $(wc -c /tmp/firmware.bin | awk -F' ' '{print $1}') mtd_debug write /dev/mtd3 0 $(wc -c /tmp/firmware.bin) fw_setenv bootpart fw_setenv bootcmd "bootm 0x9f070000" reboot Revert to vendor firmware instruction: 1. Download vendor firmware to "/tmp" device and issue below commands: fw_setenv bootpart 1 sysupgrade -n -F SS_BHUB_v2.2.05.bin Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: maurerr <mariusd84@gmail.com>
2020-09-18 12:11:13 +00:00
gpios = <&gpio 12 GPIO_ACTIVE_LOW>;
linux,default-trigger = "phy0tpt";
};
};
};
&eth0 {
status = "okay";
phy-handle = <&swphy0>;
mtd-mac-address = <&art 0x1002>;
mtd-mac-address-increment = <1>;
gmac-config {
device = <&gmac>;
switch-phy-swap = <1>;
};
};
&eth1 {
status = "okay";
mtd-mac-address = <&art 0x1002>;
};
&gpio {
lna0 {
line-name = "wam250:ext:lna0";
gpios = <19 GPIO_ACTIVE_HIGH>;
output-high;
gpio-hog;
};
};
&ref {
clock-frequency = <40000000>;
};
&spi {
status = "okay";
flash@0 {
compatible = "jedec,spi-nor";
reg = <0>;
spi-max-frequency = <50000000>;
m25p,fast-read;
partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;
partition@0 {
label = "u-boot";
reg = <0x000000 0x040000>;
read-only;
};
partition@40000 {
label = "u-boot-env";
reg = <0x040000 0x010000>;
};
partition@50000 {
label = "nvram";
reg = <0x050000 0x020000>;
read-only;
};
partition@70000 {
compatible = "denx,uimage";
label = "firmware";
reg = <0x070000 0xf80000>;
};
art: partition@ff0000 {
label = "art";
reg = <0xff0000 0x010000>;
read-only;
};
};
};
};
&uart {
status = "okay";
};
&usb {
status = "okay";
};
&usb_phy {
status = "okay";
};
&wmac {
status = "okay";
mtd-cal-data = <&art 0x1000>;
};