mirror of
https://github.com/openwrt/openwrt.git
synced 2024-12-25 00:11:13 +00:00
3104 lines
72 KiB
C
3104 lines
72 KiB
C
|
/*
|
||
|
* Misc utility routines for accessing chip-specific features
|
||
|
* of the SiliconBackplane-based Broadcom chips.
|
||
|
*
|
||
|
* Copyright 2006, Broadcom Corporation
|
||
|
* All Rights Reserved.
|
||
|
*
|
||
|
* THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY
|
||
|
* KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM
|
||
|
* SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
|
||
|
* FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE.
|
||
|
* $Id: sbutils.c,v 1.10 2006/04/08 07:12:42 honor Exp $
|
||
|
*/
|
||
|
|
||
|
#include <typedefs.h>
|
||
|
#include <bcmdefs.h>
|
||
|
#include <osl.h>
|
||
|
#include <bcmutils.h>
|
||
|
#include <sbutils.h>
|
||
|
#include <bcmdevs.h>
|
||
|
#include <sbconfig.h>
|
||
|
#include <sbchipc.h>
|
||
|
#include <sbpci.h>
|
||
|
#include <sbpcie.h>
|
||
|
#include <pcicfg.h>
|
||
|
#include <sbpcmcia.h>
|
||
|
#include <sbextif.h>
|
||
|
#include <sbsocram.h>
|
||
|
#include <bcmsrom.h>
|
||
|
#ifdef __mips__
|
||
|
#include <mipsinc.h>
|
||
|
#endif /* __mips__ */
|
||
|
|
||
|
/* debug/trace */
|
||
|
#define SB_ERROR(args)
|
||
|
|
||
|
typedef uint32 (*sb_intrsoff_t)(void *intr_arg);
|
||
|
typedef void (*sb_intrsrestore_t)(void *intr_arg, uint32 arg);
|
||
|
typedef bool (*sb_intrsenabled_t)(void *intr_arg);
|
||
|
|
||
|
/* misc sb info needed by some of the routines */
|
||
|
typedef struct sb_info {
|
||
|
|
||
|
struct sb_pub sb; /* back plane public state (must be first field) */
|
||
|
|
||
|
void *osh; /* osl os handle */
|
||
|
void *sdh; /* bcmsdh handle */
|
||
|
|
||
|
void *curmap; /* current regs va */
|
||
|
void *regs[SB_MAXCORES]; /* other regs va */
|
||
|
|
||
|
uint curidx; /* current core index */
|
||
|
uint dev_coreid; /* the core provides driver functions */
|
||
|
|
||
|
bool memseg; /* flag to toggle MEM_SEG register */
|
||
|
|
||
|
uint gpioidx; /* gpio control core index */
|
||
|
uint gpioid; /* gpio control coretype */
|
||
|
|
||
|
uint numcores; /* # discovered cores */
|
||
|
uint coreid[SB_MAXCORES]; /* id of each core */
|
||
|
|
||
|
void *intr_arg; /* interrupt callback function arg */
|
||
|
sb_intrsoff_t intrsoff_fn; /* turns chip interrupts off */
|
||
|
sb_intrsrestore_t intrsrestore_fn; /* restore chip interrupts */
|
||
|
sb_intrsenabled_t intrsenabled_fn; /* check if interrupts are enabled */
|
||
|
|
||
|
} sb_info_t;
|
||
|
|
||
|
/* local prototypes */
|
||
|
static sb_info_t * sb_doattach(sb_info_t *si, uint devid, osl_t *osh, void *regs,
|
||
|
uint bustype, void *sdh, char **vars, uint *varsz);
|
||
|
static void sb_scan(sb_info_t *si);
|
||
|
static uint sb_corereg(sb_info_t *si, uint coreidx, uint regoff, uint mask, uint val);
|
||
|
static uint _sb_coreidx(sb_info_t *si);
|
||
|
static uint sb_findcoreidx(sb_info_t *si, uint coreid, uint coreunit);
|
||
|
static uint sb_pcidev2chip(uint pcidev);
|
||
|
static uint sb_chip2numcores(uint chip);
|
||
|
static bool sb_ispcie(sb_info_t *si);
|
||
|
static bool sb_find_pci_capability(sb_info_t *si, uint8 req_cap_id, uchar *buf, uint32 *buflen);
|
||
|
static int sb_pci_fixcfg(sb_info_t *si);
|
||
|
|
||
|
/* routines to access mdio slave device registers */
|
||
|
static int sb_pcie_mdiowrite(sb_info_t *si, uint physmedia, uint readdr, uint val);
|
||
|
static void sb_war30841(sb_info_t *si);
|
||
|
|
||
|
/* delay needed between the mdio control/ mdiodata register data access */
|
||
|
#define PR28829_DELAY() OSL_DELAY(10)
|
||
|
|
||
|
/* size that can take bitfielddump */
|
||
|
#define BITFIELD_DUMP_SIZE 32
|
||
|
|
||
|
/* global variable to indicate reservation/release of gpio's */
|
||
|
static uint32 sb_gpioreservation = 0;
|
||
|
|
||
|
#define SB_INFO(sbh) (sb_info_t*)sbh
|
||
|
#define SET_SBREG(si, r, mask, val) \
|
||
|
W_SBREG((si), (r), ((R_SBREG((si), (r)) & ~(mask)) | (val)))
|
||
|
#define GOODCOREADDR(x) (((x) >= SB_ENUM_BASE) && ((x) <= SB_ENUM_LIM) && \
|
||
|
ISALIGNED((x), SB_CORE_SIZE))
|
||
|
#define GOODREGS(regs) ((regs) && ISALIGNED((uintptr)(regs), SB_CORE_SIZE))
|
||
|
#define REGS2SB(va) (sbconfig_t*) ((int8*)(va) + SBCONFIGOFF)
|
||
|
#define GOODIDX(idx) (((uint)idx) < SB_MAXCORES)
|
||
|
#define BADIDX (SB_MAXCORES+1)
|
||
|
#define NOREV -1 /* Invalid rev */
|
||
|
|
||
|
#define PCI(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCI))
|
||
|
#define PCIE(si) ((BUSTYPE(si->sb.bustype) == PCI_BUS) && (si->sb.buscoretype == SB_PCIE))
|
||
|
|
||
|
/* sonicsrev */
|
||
|
#define SONICS_2_2 (SBIDL_RV_2_2 >> SBIDL_RV_SHIFT)
|
||
|
#define SONICS_2_3 (SBIDL_RV_2_3 >> SBIDL_RV_SHIFT)
|
||
|
|
||
|
#define R_SBREG(si, sbr) sb_read_sbreg((si), (sbr))
|
||
|
#define W_SBREG(si, sbr, v) sb_write_sbreg((si), (sbr), (v))
|
||
|
#define AND_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) & (v)))
|
||
|
#define OR_SBREG(si, sbr, v) W_SBREG((si), (sbr), (R_SBREG((si), (sbr)) | (v)))
|
||
|
|
||
|
/*
|
||
|
* Macros to disable/restore function core(D11, ENET, ILINE20, etc) interrupts before/
|
||
|
* after core switching to avoid invalid register accesss inside ISR.
|
||
|
*/
|
||
|
#define INTR_OFF(si, intr_val) \
|
||
|
if ((si)->intrsoff_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \
|
||
|
intr_val = (*(si)->intrsoff_fn)((si)->intr_arg); }
|
||
|
#define INTR_RESTORE(si, intr_val) \
|
||
|
if ((si)->intrsrestore_fn && (si)->coreid[(si)->curidx] == (si)->dev_coreid) { \
|
||
|
(*(si)->intrsrestore_fn)((si)->intr_arg, intr_val); }
|
||
|
|
||
|
/* dynamic clock control defines */
|
||
|
#define LPOMINFREQ 25000 /* low power oscillator min */
|
||
|
#define LPOMAXFREQ 43000 /* low power oscillator max */
|
||
|
#define XTALMINFREQ 19800000 /* 20 MHz - 1% */
|
||
|
#define XTALMAXFREQ 20200000 /* 20 MHz + 1% */
|
||
|
#define PCIMINFREQ 25000000 /* 25 MHz */
|
||
|
#define PCIMAXFREQ 34000000 /* 33 MHz + fudge */
|
||
|
|
||
|
#define ILP_DIV_5MHZ 0 /* ILP = 5 MHz */
|
||
|
#define ILP_DIV_1MHZ 4 /* ILP = 1 MHz */
|
||
|
|
||
|
/* different register spaces to access thr'u pcie indirect access */
|
||
|
#define PCIE_CONFIGREGS 1 /* Access to config space */
|
||
|
#define PCIE_PCIEREGS 2 /* Access to pcie registers */
|
||
|
|
||
|
/* force HT war check */
|
||
|
#define FORCEHT_WAR32414(si) \
|
||
|
((PCIE(si)) && (((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev == 1)) || \
|
||
|
((si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev <= 3))))
|
||
|
|
||
|
/* GPIO Based LED powersave defines */
|
||
|
#define DEFAULT_GPIO_ONTIME 10 /* Default: 10% on */
|
||
|
#define DEFAULT_GPIO_OFFTIME 90 /* Default: 10% on */
|
||
|
|
||
|
#define DEFAULT_GPIOTIMERVAL ((DEFAULT_GPIO_ONTIME << GPIO_ONTIME_SHIFT) | DEFAULT_GPIO_OFFTIME)
|
||
|
|
||
|
static uint32
|
||
|
sb_read_sbreg(sb_info_t *si, volatile uint32 *sbr)
|
||
|
{
|
||
|
uint8 tmp;
|
||
|
uint32 val, intr_val = 0;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* compact flash only has 11 bits address, while we needs 12 bits address.
|
||
|
* MEM_SEG will be OR'd with other 11 bits address in hardware,
|
||
|
* so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
|
||
|
* For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
|
||
|
*/
|
||
|
if (si->memseg) {
|
||
|
INTR_OFF(si, intr_val);
|
||
|
tmp = 1;
|
||
|
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
|
||
|
sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */
|
||
|
}
|
||
|
|
||
|
val = R_REG(si->osh, sbr);
|
||
|
|
||
|
if (si->memseg) {
|
||
|
tmp = 0;
|
||
|
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
}
|
||
|
|
||
|
return (val);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
sb_write_sbreg(sb_info_t *si, volatile uint32 *sbr, uint32 v)
|
||
|
{
|
||
|
uint8 tmp;
|
||
|
volatile uint32 dummy;
|
||
|
uint32 intr_val = 0;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* compact flash only has 11 bits address, while we needs 12 bits address.
|
||
|
* MEM_SEG will be OR'd with other 11 bits address in hardware,
|
||
|
* so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
|
||
|
* For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
|
||
|
*/
|
||
|
if (si->memseg) {
|
||
|
INTR_OFF(si, intr_val);
|
||
|
tmp = 1;
|
||
|
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
|
||
|
sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */
|
||
|
}
|
||
|
|
||
|
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
|
||
|
#ifdef IL_BIGENDIAN
|
||
|
dummy = R_REG(si->osh, sbr);
|
||
|
W_REG(si->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff));
|
||
|
dummy = R_REG(si->osh, sbr);
|
||
|
W_REG(si->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff));
|
||
|
#else
|
||
|
dummy = R_REG(si->osh, sbr);
|
||
|
W_REG(si->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff));
|
||
|
dummy = R_REG(si->osh, sbr);
|
||
|
W_REG(si->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff));
|
||
|
#endif /* IL_BIGENDIAN */
|
||
|
} else
|
||
|
W_REG(si->osh, sbr, v);
|
||
|
|
||
|
if (si->memseg) {
|
||
|
tmp = 0;
|
||
|
OSL_PCMCIA_WRITE_ATTR(si->osh, MEM_SEG, &tmp, 1);
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a sb handle.
|
||
|
* devid - pci device id (used to determine chip#)
|
||
|
* osh - opaque OS handle
|
||
|
* regs - virtual address of initial core registers
|
||
|
* bustype - pci/pcmcia/sb/sdio/etc
|
||
|
* vars - pointer to a pointer area for "environment" variables
|
||
|
* varsz - pointer to int to return the size of the vars
|
||
|
*/
|
||
|
sb_t *
|
||
|
BCMINITFN(sb_attach)(uint devid, osl_t *osh, void *regs,
|
||
|
uint bustype, void *sdh, char **vars, uint *varsz)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
/* alloc sb_info_t */
|
||
|
if ((si = MALLOC(osh, sizeof (sb_info_t))) == NULL) {
|
||
|
SB_ERROR(("sb_attach: malloc failed! malloced %d bytes\n", MALLOCED(osh)));
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
if (sb_doattach(si, devid, osh, regs, bustype, sdh, vars, (uint*)varsz) == NULL) {
|
||
|
MFREE(osh, si, sizeof(sb_info_t));
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
return (sb_t *)si;
|
||
|
}
|
||
|
|
||
|
/* Using sb_kattach depends on SB_BUS support, either implicit */
|
||
|
/* no limiting BCMBUSTYPE value) or explicit (value is SB_BUS). */
|
||
|
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS)
|
||
|
|
||
|
/* global kernel resource */
|
||
|
static sb_info_t ksi;
|
||
|
static bool ksi_attached = FALSE;
|
||
|
|
||
|
/* generic kernel variant of sb_attach() */
|
||
|
sb_t *
|
||
|
BCMINITFN(sb_kattach)(void)
|
||
|
{
|
||
|
osl_t *osh = NULL;
|
||
|
uint32 *regs;
|
||
|
|
||
|
if (!ksi_attached) {
|
||
|
uint32 cid;
|
||
|
|
||
|
regs = (uint32 *)REG_MAP(SB_ENUM_BASE, SB_CORE_SIZE);
|
||
|
cid = R_REG(osh, (uint32 *)regs);
|
||
|
if (((cid & CID_ID_MASK) == BCM4712_CHIP_ID) &&
|
||
|
((cid & CID_PKG_MASK) != BCM4712LARGE_PKG_ID) &&
|
||
|
((cid & CID_REV_MASK) <= (3 << CID_REV_SHIFT))) {
|
||
|
uint32 *scc, val;
|
||
|
|
||
|
scc = (uint32 *)((uchar*)regs + OFFSETOF(chipcregs_t, slow_clk_ctl));
|
||
|
val = R_REG(osh, scc);
|
||
|
SB_ERROR((" initial scc = 0x%x\n", val));
|
||
|
val |= SCC_SS_XTAL;
|
||
|
W_REG(osh, scc, val);
|
||
|
}
|
||
|
|
||
|
if (sb_doattach(&ksi, BCM4710_DEVICE_ID, osh, (void*)regs,
|
||
|
SB_BUS, NULL, NULL, NULL) == NULL) {
|
||
|
return NULL;
|
||
|
}
|
||
|
else
|
||
|
ksi_attached = TRUE;
|
||
|
}
|
||
|
|
||
|
return (sb_t *)&ksi;
|
||
|
}
|
||
|
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */
|
||
|
|
||
|
void
|
||
|
BCMINITFN(sb_war32414_forceHT)(sb_t *sbh, bool forceHT)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
|
||
|
if (FORCEHT_WAR32414(si)) {
|
||
|
uint32 val = 0;
|
||
|
if (forceHT)
|
||
|
val = SYCC_HR;
|
||
|
sb_corereg((void*)si, SB_CC_IDX, OFFSETOF(chipcregs_t, system_clk_ctl),
|
||
|
SYCC_HR, val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static sb_info_t *
|
||
|
BCMINITFN(sb_doattach)(sb_info_t *si, uint devid, osl_t *osh, void *regs,
|
||
|
uint bustype, void *sdh, char **vars, uint *varsz)
|
||
|
{
|
||
|
uint origidx;
|
||
|
chipcregs_t *cc;
|
||
|
sbconfig_t *sb;
|
||
|
uint32 w;
|
||
|
|
||
|
ASSERT(GOODREGS(regs));
|
||
|
|
||
|
bzero((uchar*)si, sizeof(sb_info_t));
|
||
|
|
||
|
si->sb.buscoreidx = si->gpioidx = BADIDX;
|
||
|
|
||
|
si->curmap = regs;
|
||
|
si->sdh = sdh;
|
||
|
si->osh = osh;
|
||
|
|
||
|
/* check to see if we are a sb core mimic'ing a pci core */
|
||
|
if (bustype == PCI_BUS) {
|
||
|
if (OSL_PCI_READ_CONFIG(si->osh, PCI_SPROM_CONTROL, sizeof(uint32)) == 0xffffffff) {
|
||
|
SB_ERROR(("%s: incoming bus is PCI but it's a lie, switching to SB "
|
||
|
"devid:0x%x\n", __FUNCTION__, devid));
|
||
|
bustype = SB_BUS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
si->sb.bustype = bustype;
|
||
|
if (si->sb.bustype != BUSTYPE(si->sb.bustype)) {
|
||
|
SB_ERROR(("sb_doattach: bus type %d does not match configured bus type %d\n",
|
||
|
si->sb.bustype, BUSTYPE(si->sb.bustype)));
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* need to set memseg flag for CF card first before any sb registers access */
|
||
|
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS)
|
||
|
si->memseg = TRUE;
|
||
|
|
||
|
/* kludge to enable the clock on the 4306 which lacks a slowclock */
|
||
|
if (BUSTYPE(si->sb.bustype) == PCI_BUS)
|
||
|
sb_clkctl_xtal(&si->sb, XTAL|PLL, ON);
|
||
|
|
||
|
if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
|
||
|
w = OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32));
|
||
|
if (!GOODCOREADDR(w))
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32), SB_ENUM_BASE);
|
||
|
}
|
||
|
|
||
|
/* initialize current core index value */
|
||
|
si->curidx = _sb_coreidx(si);
|
||
|
|
||
|
if (si->curidx == BADIDX) {
|
||
|
SB_ERROR(("sb_doattach: bad core index\n"));
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* get sonics backplane revision */
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
si->sb.sonicsrev = (R_SBREG(si, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT;
|
||
|
|
||
|
/* keep and reuse the initial register mapping */
|
||
|
origidx = si->curidx;
|
||
|
if (BUSTYPE(si->sb.bustype) == SB_BUS)
|
||
|
si->regs[origidx] = regs;
|
||
|
|
||
|
/* is core-0 a chipcommon core? */
|
||
|
si->numcores = 1;
|
||
|
cc = (chipcregs_t*) sb_setcoreidx(&si->sb, 0);
|
||
|
if (sb_coreid(&si->sb) != SB_CC)
|
||
|
cc = NULL;
|
||
|
|
||
|
/* determine chip id and rev */
|
||
|
if (cc) {
|
||
|
/* chip common core found! */
|
||
|
si->sb.chip = R_REG(si->osh, &cc->chipid) & CID_ID_MASK;
|
||
|
si->sb.chiprev = (R_REG(si->osh, &cc->chipid) & CID_REV_MASK) >> CID_REV_SHIFT;
|
||
|
si->sb.chippkg = (R_REG(si->osh, &cc->chipid) & CID_PKG_MASK) >> CID_PKG_SHIFT;
|
||
|
} else {
|
||
|
/* no chip common core -- must convert device id to chip id */
|
||
|
if ((si->sb.chip = sb_pcidev2chip(devid)) == 0) {
|
||
|
SB_ERROR(("sb_doattach: unrecognized device id 0x%04x\n", devid));
|
||
|
sb_setcoreidx(&si->sb, origidx);
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* get chipcommon rev */
|
||
|
si->sb.ccrev = cc ? (int)sb_corerev(&si->sb) : NOREV;
|
||
|
|
||
|
/* determine numcores */
|
||
|
if (cc && ((si->sb.ccrev == 4) || (si->sb.ccrev >= 6)))
|
||
|
si->numcores = (R_REG(si->osh, &cc->chipid) & CID_CC_MASK) >> CID_CC_SHIFT;
|
||
|
else
|
||
|
si->numcores = sb_chip2numcores(si->sb.chip);
|
||
|
|
||
|
/* return to original core */
|
||
|
sb_setcoreidx(&si->sb, origidx);
|
||
|
|
||
|
/* sanity checks */
|
||
|
ASSERT(si->sb.chip);
|
||
|
|
||
|
/* scan for cores */
|
||
|
sb_scan(si);
|
||
|
|
||
|
/* fixup necessary chip/core configurations */
|
||
|
if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
|
||
|
if (sb_pci_fixcfg(si)) {
|
||
|
SB_ERROR(("sb_doattach: sb_pci_fixcfg failed\n"));
|
||
|
return NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* srom_var_init() depends on sb_scan() info */
|
||
|
if (srom_var_init(si, si->sb.bustype, si->curmap, si->osh, vars, varsz)) {
|
||
|
SB_ERROR(("sb_doattach: srom_var_init failed: bad srom\n"));
|
||
|
return (NULL);
|
||
|
}
|
||
|
|
||
|
if (cc == NULL) {
|
||
|
/*
|
||
|
* The chip revision number is hardwired into all
|
||
|
* of the pci function config rev fields and is
|
||
|
* independent from the individual core revision numbers.
|
||
|
* For example, the "A0" silicon of each chip is chip rev 0.
|
||
|
* For PCMCIA we get it from the CIS instead.
|
||
|
*/
|
||
|
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
|
||
|
ASSERT(vars);
|
||
|
si->sb.chiprev = getintvar(*vars, "chiprev");
|
||
|
} else if (BUSTYPE(si->sb.bustype) == PCI_BUS) {
|
||
|
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_REV, sizeof(uint32));
|
||
|
si->sb.chiprev = w & 0xff;
|
||
|
} else
|
||
|
si->sb.chiprev = 0;
|
||
|
}
|
||
|
|
||
|
if (BUSTYPE(si->sb.bustype) == PCMCIA_BUS) {
|
||
|
w = getintvar(*vars, "regwindowsz");
|
||
|
si->memseg = (w <= CFTABLE_REGWIN_2K) ? TRUE : FALSE;
|
||
|
}
|
||
|
|
||
|
/* gpio control core is required */
|
||
|
if (!GOODIDX(si->gpioidx)) {
|
||
|
SB_ERROR(("sb_doattach: gpio control core not found\n"));
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/* get boardtype and boardrev */
|
||
|
switch (BUSTYPE(si->sb.bustype)) {
|
||
|
case PCI_BUS:
|
||
|
/* do a pci config read to get subsystem id and subvendor id */
|
||
|
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_SVID, sizeof(uint32));
|
||
|
si->sb.boardvendor = w & 0xffff;
|
||
|
si->sb.boardtype = (w >> 16) & 0xffff;
|
||
|
break;
|
||
|
|
||
|
case PCMCIA_BUS:
|
||
|
case SDIO_BUS:
|
||
|
si->sb.boardvendor = getintvar(*vars, "manfid");
|
||
|
si->sb.boardtype = getintvar(*vars, "prodid");
|
||
|
break;
|
||
|
|
||
|
case SB_BUS:
|
||
|
case JTAG_BUS:
|
||
|
si->sb.boardvendor = VENDOR_BROADCOM;
|
||
|
if ((si->sb.boardtype = getintvar(NULL, "boardtype")) == 0)
|
||
|
si->sb.boardtype = 0xffff;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (si->sb.boardtype == 0) {
|
||
|
SB_ERROR(("sb_doattach: unknown board type\n"));
|
||
|
ASSERT(si->sb.boardtype);
|
||
|
}
|
||
|
|
||
|
/* setup the GPIO based LED powersave register */
|
||
|
if (si->sb.ccrev >= 16) {
|
||
|
if ((vars == NULL) || ((w = getintvar(*vars, "leddc")) == 0))
|
||
|
w = DEFAULT_GPIOTIMERVAL;
|
||
|
sb_corereg(si, 0, OFFSETOF(chipcregs_t, gpiotimerval), ~0, w);
|
||
|
}
|
||
|
if (FORCEHT_WAR32414(si)) {
|
||
|
/* set proper clk setup delays before forcing HT */
|
||
|
sb_clkctl_init((void *)si);
|
||
|
sb_war32414_forceHT((void *)si, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
return (si);
|
||
|
}
|
||
|
|
||
|
|
||
|
uint
|
||
|
sb_coreid(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT);
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
sb_coreidx(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->curidx);
|
||
|
}
|
||
|
|
||
|
/* return current index of core */
|
||
|
static uint
|
||
|
_sb_coreidx(sb_info_t *si)
|
||
|
{
|
||
|
sbconfig_t *sb;
|
||
|
uint32 sbaddr = 0;
|
||
|
|
||
|
ASSERT(si);
|
||
|
|
||
|
switch (BUSTYPE(si->sb.bustype)) {
|
||
|
case SB_BUS:
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
sbaddr = sb_base(R_SBREG(si, &sb->sbadmatch0));
|
||
|
break;
|
||
|
|
||
|
case PCI_BUS:
|
||
|
sbaddr = OSL_PCI_READ_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32));
|
||
|
break;
|
||
|
|
||
|
case PCMCIA_BUS: {
|
||
|
uint8 tmp = 0;
|
||
|
|
||
|
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1);
|
||
|
sbaddr = (uint)tmp << 12;
|
||
|
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1);
|
||
|
sbaddr |= (uint)tmp << 16;
|
||
|
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1);
|
||
|
sbaddr |= (uint)tmp << 24;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
#ifdef BCMJTAG
|
||
|
case JTAG_BUS:
|
||
|
sbaddr = (uint32)si->curmap;
|
||
|
break;
|
||
|
#endif /* BCMJTAG */
|
||
|
|
||
|
default:
|
||
|
ASSERT(0);
|
||
|
}
|
||
|
|
||
|
if (!GOODCOREADDR(sbaddr))
|
||
|
return BADIDX;
|
||
|
|
||
|
return ((sbaddr - SB_ENUM_BASE) / SB_CORE_SIZE);
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
sb_corevendor(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
return ((R_SBREG(si, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT);
|
||
|
}
|
||
|
|
||
|
uint
|
||
|
sb_corerev(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
uint sbidh;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
sbidh = R_SBREG(si, &sb->sbidhigh);
|
||
|
|
||
|
return (SBCOREREV(sbidh));
|
||
|
}
|
||
|
|
||
|
void *
|
||
|
sb_osh(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return si->osh;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sb_setosh(sb_t *sbh, osl_t *osh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
if (si->osh != NULL) {
|
||
|
SB_ERROR(("osh is already set....\n"));
|
||
|
ASSERT(!si->osh);
|
||
|
}
|
||
|
si->osh = osh;
|
||
|
}
|
||
|
|
||
|
/* set/clear sbtmstatelow core-specific flags */
|
||
|
uint32
|
||
|
sb_coreflags(sb_t *sbh, uint32 mask, uint32 val)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
uint32 w;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
ASSERT((val & ~mask) == 0);
|
||
|
|
||
|
/* mask and set */
|
||
|
if (mask || val) {
|
||
|
w = (R_SBREG(si, &sb->sbtmstatelow) & ~mask) | val;
|
||
|
W_SBREG(si, &sb->sbtmstatelow, w);
|
||
|
}
|
||
|
|
||
|
/* return the new value */
|
||
|
return (R_SBREG(si, &sb->sbtmstatelow));
|
||
|
}
|
||
|
|
||
|
/* set/clear sbtmstatehigh core-specific flags */
|
||
|
uint32
|
||
|
sb_coreflagshi(sb_t *sbh, uint32 mask, uint32 val)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
uint32 w;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
ASSERT((val & ~mask) == 0);
|
||
|
ASSERT((mask & ~SBTMH_FL_MASK) == 0);
|
||
|
|
||
|
/* mask and set */
|
||
|
if (mask || val) {
|
||
|
w = (R_SBREG(si, &sb->sbtmstatehigh) & ~mask) | val;
|
||
|
W_SBREG(si, &sb->sbtmstatehigh, w);
|
||
|
}
|
||
|
|
||
|
/* return the new value */
|
||
|
return (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_FL_MASK);
|
||
|
}
|
||
|
|
||
|
/* Run bist on current core. Caller needs to take care of core-specific bist hazards */
|
||
|
int
|
||
|
sb_corebist(sb_t *sbh)
|
||
|
{
|
||
|
uint32 sblo;
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
int result = 0;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
sblo = R_SBREG(si, &sb->sbtmstatelow);
|
||
|
W_SBREG(si, &sb->sbtmstatelow, (sblo | SBTML_FGC | SBTML_BE));
|
||
|
|
||
|
SPINWAIT(((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTD) == 0), 100000);
|
||
|
|
||
|
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BISTF)
|
||
|
result = BCME_ERROR;
|
||
|
|
||
|
W_SBREG(si, &sb->sbtmstatelow, sblo);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
sb_iscoreup(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
return ((R_SBREG(si, &sb->sbtmstatelow) &
|
||
|
(SBTML_RESET | SBTML_REJ_MASK | SBTML_CLK)) == SBTML_CLK);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
|
||
|
* switch back to the original core, and return the new value.
|
||
|
*
|
||
|
* When using the silicon backplane, no fidleing with interrupts or core switches are needed.
|
||
|
*
|
||
|
* Also, when using pci/pcie, we can optimize away the core switching for pci registers
|
||
|
* and (on newer pci cores) chipcommon registers.
|
||
|
*/
|
||
|
static uint
|
||
|
sb_corereg(sb_info_t *si, uint coreidx, uint regoff, uint mask, uint val)
|
||
|
{
|
||
|
uint origidx = 0;
|
||
|
uint32 *r = NULL;
|
||
|
uint w;
|
||
|
uint intr_val = 0;
|
||
|
bool fast = FALSE;
|
||
|
|
||
|
ASSERT(GOODIDX(coreidx));
|
||
|
ASSERT(regoff < SB_CORE_SIZE);
|
||
|
ASSERT((val & ~mask) == 0);
|
||
|
|
||
|
#ifdef notyet
|
||
|
if (si->sb.bustype == SB_BUS) {
|
||
|
/* If internal bus, we can always get at everything */
|
||
|
fast = TRUE;
|
||
|
r = (uint32 *)((uchar *)si->regs[coreidx] + regoff);
|
||
|
} else if (si->sb.bustype == PCI_BUS) {
|
||
|
/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */
|
||
|
|
||
|
if ((si->coreid[coreidx] == SB_CC) &&
|
||
|
((si->sb.buscoretype == SB_PCIE) ||
|
||
|
(si->sb.buscorerev >= 13))) {
|
||
|
/* Chipc registers are mapped at 12KB */
|
||
|
|
||
|
fast = TRUE;
|
||
|
r = (uint32 *)((char *)si->curmap + PCI_16KB0_CCREGS_OFFSET + regoff);
|
||
|
} else if (si->sb.buscoreidx == coreidx) {
|
||
|
/* pci registers are at either in the last 2KB of an 8KB window
|
||
|
* or, in pcie and pci rev 13 at 8KB
|
||
|
*/
|
||
|
fast = TRUE;
|
||
|
if ((si->sb.buscoretype == SB_PCIE) ||
|
||
|
(si->sb.buscorerev >= 13))
|
||
|
r = (uint32 *)((char *)si->curmap +
|
||
|
PCI_16KB0_PCIREGS_OFFSET + regoff);
|
||
|
else
|
||
|
r = (uint32 *)((char *)si->curmap +
|
||
|
((regoff >= SBCONFIGOFF) ?
|
||
|
PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
|
||
|
regoff);
|
||
|
}
|
||
|
}
|
||
|
#endif /* notyet */
|
||
|
|
||
|
if (!fast) {
|
||
|
INTR_OFF(si, intr_val);
|
||
|
|
||
|
/* save current core index */
|
||
|
origidx = sb_coreidx(&si->sb);
|
||
|
|
||
|
/* switch core */
|
||
|
r = (uint32*) ((uchar*) sb_setcoreidx(&si->sb, coreidx) + regoff);
|
||
|
}
|
||
|
ASSERT(r);
|
||
|
|
||
|
/* mask and set */
|
||
|
if (mask || val) {
|
||
|
if (regoff >= SBCONFIGOFF) {
|
||
|
w = (R_SBREG(si, r) & ~mask) | val;
|
||
|
W_SBREG(si, r, w);
|
||
|
} else {
|
||
|
w = (R_REG(si->osh, r) & ~mask) | val;
|
||
|
W_REG(si->osh, r, w);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* readback */
|
||
|
if (regoff >= SBCONFIGOFF)
|
||
|
w = R_SBREG(si, r);
|
||
|
else
|
||
|
w = R_REG(si->osh, r);
|
||
|
|
||
|
if (!fast) {
|
||
|
/* restore core index */
|
||
|
if (origidx != coreidx)
|
||
|
sb_setcoreidx(&si->sb, origidx);
|
||
|
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
}
|
||
|
|
||
|
return (w);
|
||
|
}
|
||
|
|
||
|
#define DWORD_ALIGN(x) (x & ~(0x03))
|
||
|
#define BYTE_POS(x) (x & 0x3)
|
||
|
#define WORD_POS(x) (x & 0x1)
|
||
|
|
||
|
#define BYTE_SHIFT(x) (8 * BYTE_POS(x))
|
||
|
#define WORD_SHIFT(x) (16 * WORD_POS(x))
|
||
|
|
||
|
#define BYTE_VAL(a, x) ((a >> BYTE_SHIFT(x)) & 0xFF)
|
||
|
#define WORD_VAL(a, x) ((a >> WORD_SHIFT(x)) & 0xFFFF)
|
||
|
|
||
|
#define read_pci_cfg_byte(a) \
|
||
|
(BYTE_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xff)
|
||
|
|
||
|
#define read_pci_cfg_word(a) \
|
||
|
(WORD_VAL(OSL_PCI_READ_CONFIG(si->osh, DWORD_ALIGN(a), 4), a) & 0xffff)
|
||
|
|
||
|
|
||
|
/* return TRUE if requested capability exists in the PCI config space */
|
||
|
static bool
|
||
|
sb_find_pci_capability(sb_info_t *si, uint8 req_cap_id, uchar *buf, uint32 *buflen)
|
||
|
{
|
||
|
uint8 cap_id;
|
||
|
uint8 cap_ptr;
|
||
|
uint32 bufsize;
|
||
|
uint8 byte_val;
|
||
|
|
||
|
if (BUSTYPE(si->sb.bustype) != PCI_BUS)
|
||
|
return FALSE;
|
||
|
|
||
|
/* check for Header type 0 */
|
||
|
byte_val = read_pci_cfg_byte(PCI_CFG_HDR);
|
||
|
if ((byte_val & 0x7f) != PCI_HEADER_NORMAL)
|
||
|
return FALSE;
|
||
|
|
||
|
/* check if the capability pointer field exists */
|
||
|
byte_val = read_pci_cfg_byte(PCI_CFG_STAT);
|
||
|
if (!(byte_val & PCI_CAPPTR_PRESENT))
|
||
|
return FALSE;
|
||
|
|
||
|
cap_ptr = read_pci_cfg_byte(PCI_CFG_CAPPTR);
|
||
|
/* check if the capability pointer is 0x00 */
|
||
|
if (cap_ptr == 0x00)
|
||
|
return FALSE;
|
||
|
|
||
|
|
||
|
/* loop thr'u the capability list and see if the pcie capabilty exists */
|
||
|
|
||
|
cap_id = read_pci_cfg_byte(cap_ptr);
|
||
|
|
||
|
while (cap_id != req_cap_id) {
|
||
|
cap_ptr = read_pci_cfg_byte((cap_ptr+1));
|
||
|
if (cap_ptr == 0x00) break;
|
||
|
cap_id = read_pci_cfg_byte(cap_ptr);
|
||
|
}
|
||
|
if (cap_id != req_cap_id) {
|
||
|
return FALSE;
|
||
|
}
|
||
|
/* found the caller requested capability */
|
||
|
if ((buf != NULL) && (buflen != NULL)) {
|
||
|
bufsize = *buflen;
|
||
|
if (!bufsize) goto end;
|
||
|
*buflen = 0;
|
||
|
/* copy the cpability data excluding cap ID and next ptr */
|
||
|
cap_ptr += 2;
|
||
|
if ((bufsize + cap_ptr) > SZPCR)
|
||
|
bufsize = SZPCR - cap_ptr;
|
||
|
*buflen = bufsize;
|
||
|
while (bufsize--) {
|
||
|
*buf = read_pci_cfg_byte(cap_ptr);
|
||
|
cap_ptr++;
|
||
|
buf++;
|
||
|
}
|
||
|
}
|
||
|
end:
|
||
|
return TRUE;
|
||
|
}
|
||
|
|
||
|
/* return TRUE if PCIE capability exists the pci config space */
|
||
|
static inline bool
|
||
|
sb_ispcie(sb_info_t *si)
|
||
|
{
|
||
|
return (sb_find_pci_capability(si, PCI_CAP_PCIECAP_ID, NULL, NULL));
|
||
|
}
|
||
|
|
||
|
/* scan the sb enumerated space to identify all cores */
|
||
|
static void
|
||
|
BCMINITFN(sb_scan)(sb_info_t *si)
|
||
|
{
|
||
|
uint origidx;
|
||
|
uint i;
|
||
|
bool pci;
|
||
|
bool pcie;
|
||
|
uint pciidx;
|
||
|
uint pcieidx;
|
||
|
uint pcirev;
|
||
|
uint pcierev;
|
||
|
|
||
|
|
||
|
/* numcores should already be set */
|
||
|
ASSERT((si->numcores > 0) && (si->numcores <= SB_MAXCORES));
|
||
|
|
||
|
/* save current core index */
|
||
|
origidx = sb_coreidx(&si->sb);
|
||
|
|
||
|
si->sb.buscorerev = NOREV;
|
||
|
si->sb.buscoreidx = BADIDX;
|
||
|
|
||
|
si->gpioidx = BADIDX;
|
||
|
|
||
|
pci = pcie = FALSE;
|
||
|
pcirev = pcierev = NOREV;
|
||
|
pciidx = pcieidx = BADIDX;
|
||
|
|
||
|
for (i = 0; i < si->numcores; i++) {
|
||
|
sb_setcoreidx(&si->sb, i);
|
||
|
si->coreid[i] = sb_coreid(&si->sb);
|
||
|
|
||
|
if (si->coreid[i] == SB_PCI) {
|
||
|
pciidx = i;
|
||
|
pcirev = sb_corerev(&si->sb);
|
||
|
pci = TRUE;
|
||
|
} else if (si->coreid[i] == SB_PCIE) {
|
||
|
pcieidx = i;
|
||
|
pcierev = sb_corerev(&si->sb);
|
||
|
pcie = TRUE;
|
||
|
} else if (si->coreid[i] == SB_PCMCIA) {
|
||
|
si->sb.buscorerev = sb_corerev(&si->sb);
|
||
|
si->sb.buscoretype = si->coreid[i];
|
||
|
si->sb.buscoreidx = i;
|
||
|
}
|
||
|
}
|
||
|
if (pci && pcie) {
|
||
|
if (sb_ispcie(si))
|
||
|
pci = FALSE;
|
||
|
else
|
||
|
pcie = FALSE;
|
||
|
}
|
||
|
if (pci) {
|
||
|
si->sb.buscoretype = SB_PCI;
|
||
|
si->sb.buscorerev = pcirev;
|
||
|
si->sb.buscoreidx = pciidx;
|
||
|
} else if (pcie) {
|
||
|
si->sb.buscoretype = SB_PCIE;
|
||
|
si->sb.buscorerev = pcierev;
|
||
|
si->sb.buscoreidx = pcieidx;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find the gpio "controlling core" type and index.
|
||
|
* Precedence:
|
||
|
* - if there's a chip common core - use that
|
||
|
* - else if there's a pci core (rev >= 2) - use that
|
||
|
* - else there had better be an extif core (4710 only)
|
||
|
*/
|
||
|
if (GOODIDX(sb_findcoreidx(si, SB_CC, 0))) {
|
||
|
si->gpioidx = sb_findcoreidx(si, SB_CC, 0);
|
||
|
si->gpioid = SB_CC;
|
||
|
} else if (PCI(si) && (si->sb.buscorerev >= 2)) {
|
||
|
si->gpioidx = si->sb.buscoreidx;
|
||
|
si->gpioid = SB_PCI;
|
||
|
} else if (sb_findcoreidx(si, SB_EXTIF, 0)) {
|
||
|
si->gpioidx = sb_findcoreidx(si, SB_EXTIF, 0);
|
||
|
si->gpioid = SB_EXTIF;
|
||
|
} else
|
||
|
ASSERT(si->gpioidx != BADIDX);
|
||
|
|
||
|
/* return to original core index */
|
||
|
sb_setcoreidx(&si->sb, origidx);
|
||
|
}
|
||
|
|
||
|
/* may be called with core in reset */
|
||
|
void
|
||
|
sb_detach(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint idx;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
if (si == NULL)
|
||
|
return;
|
||
|
|
||
|
if (BUSTYPE(si->sb.bustype) == SB_BUS)
|
||
|
for (idx = 0; idx < SB_MAXCORES; idx++)
|
||
|
if (si->regs[idx]) {
|
||
|
REG_UNMAP(si->regs[idx]);
|
||
|
si->regs[idx] = NULL;
|
||
|
}
|
||
|
#if !defined(BCMBUSTYPE) || (BCMBUSTYPE == SB_BUS)
|
||
|
if (si != &ksi)
|
||
|
#endif /* !BCMBUSTYPE || (BCMBUSTYPE == SB_BUS) */
|
||
|
MFREE(si->osh, si, sizeof(sb_info_t));
|
||
|
|
||
|
}
|
||
|
|
||
|
/* use pci dev id to determine chip id for chips not having a chipcommon core */
|
||
|
static uint
|
||
|
BCMINITFN(sb_pcidev2chip)(uint pcidev)
|
||
|
{
|
||
|
if ((pcidev >= BCM4710_DEVICE_ID) && (pcidev <= BCM47XX_USB_ID))
|
||
|
return (BCM4710_CHIP_ID);
|
||
|
if ((pcidev >= BCM4402_ENET_ID) && (pcidev <= BCM4402_V90_ID))
|
||
|
return (BCM4402_CHIP_ID);
|
||
|
if (pcidev == BCM4401_ENET_ID)
|
||
|
return (BCM4402_CHIP_ID);
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/* convert chip number to number of i/o cores */
|
||
|
static uint
|
||
|
BCMINITFN(sb_chip2numcores)(uint chip)
|
||
|
{
|
||
|
if (chip == BCM4710_CHIP_ID)
|
||
|
return (9);
|
||
|
if (chip == BCM4402_CHIP_ID)
|
||
|
return (3);
|
||
|
if (chip == BCM4306_CHIP_ID) /* < 4306c0 */
|
||
|
return (6);
|
||
|
if (chip == BCM4704_CHIP_ID)
|
||
|
return (9);
|
||
|
if (chip == BCM5365_CHIP_ID)
|
||
|
return (7);
|
||
|
|
||
|
SB_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n", chip));
|
||
|
ASSERT(0);
|
||
|
return (1);
|
||
|
}
|
||
|
|
||
|
/* return index of coreid or BADIDX if not found */
|
||
|
static uint
|
||
|
sb_findcoreidx(sb_info_t *si, uint coreid, uint coreunit)
|
||
|
{
|
||
|
uint found;
|
||
|
uint i;
|
||
|
|
||
|
found = 0;
|
||
|
|
||
|
for (i = 0; i < si->numcores; i++)
|
||
|
if (si->coreid[i] == coreid) {
|
||
|
if (found == coreunit)
|
||
|
return (i);
|
||
|
found++;
|
||
|
}
|
||
|
|
||
|
return (BADIDX);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* this function changes logical "focus" to the indiciated core,
|
||
|
* must be called with interrupt off.
|
||
|
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
|
||
|
*/
|
||
|
void*
|
||
|
sb_setcoreidx(sb_t *sbh, uint coreidx)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint32 sbaddr;
|
||
|
uint8 tmp;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
if (coreidx >= si->numcores)
|
||
|
return (NULL);
|
||
|
|
||
|
/*
|
||
|
* If the user has provided an interrupt mask enabled function,
|
||
|
* then assert interrupts are disabled before switching the core.
|
||
|
*/
|
||
|
ASSERT((si->intrsenabled_fn == NULL) || !(*(si)->intrsenabled_fn)((si)->intr_arg));
|
||
|
|
||
|
sbaddr = SB_ENUM_BASE + (coreidx * SB_CORE_SIZE);
|
||
|
|
||
|
switch (BUSTYPE(si->sb.bustype)) {
|
||
|
case SB_BUS:
|
||
|
/* map new one */
|
||
|
if (!si->regs[coreidx]) {
|
||
|
si->regs[coreidx] = (void*)REG_MAP(sbaddr, SB_CORE_SIZE);
|
||
|
ASSERT(GOODREGS(si->regs[coreidx]));
|
||
|
}
|
||
|
si->curmap = si->regs[coreidx];
|
||
|
break;
|
||
|
|
||
|
case PCI_BUS:
|
||
|
/* point bar0 window */
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, 4, sbaddr);
|
||
|
break;
|
||
|
|
||
|
case PCMCIA_BUS:
|
||
|
tmp = (sbaddr >> 12) & 0x0f;
|
||
|
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR0, &tmp, 1);
|
||
|
tmp = (sbaddr >> 16) & 0xff;
|
||
|
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR1, &tmp, 1);
|
||
|
tmp = (sbaddr >> 24) & 0xff;
|
||
|
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_ADDR2, &tmp, 1);
|
||
|
break;
|
||
|
#ifdef BCMJTAG
|
||
|
case JTAG_BUS:
|
||
|
/* map new one */
|
||
|
if (!si->regs[coreidx]) {
|
||
|
si->regs[coreidx] = (void *)sbaddr;
|
||
|
ASSERT(GOODREGS(si->regs[coreidx]));
|
||
|
}
|
||
|
si->curmap = si->regs[coreidx];
|
||
|
break;
|
||
|
#endif /* BCMJTAG */
|
||
|
}
|
||
|
|
||
|
si->curidx = coreidx;
|
||
|
|
||
|
return (si->curmap);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* this function changes logical "focus" to the indiciated core,
|
||
|
* must be called with interrupt off.
|
||
|
* Moreover, callers should keep interrupts off during switching out of and back to d11 core
|
||
|
*/
|
||
|
void*
|
||
|
sb_setcore(sb_t *sbh, uint coreid, uint coreunit)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint idx;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
idx = sb_findcoreidx(si, coreid, coreunit);
|
||
|
if (!GOODIDX(idx))
|
||
|
return (NULL);
|
||
|
|
||
|
return (sb_setcoreidx(sbh, idx));
|
||
|
}
|
||
|
|
||
|
/* return chip number */
|
||
|
uint
|
||
|
sb_chip(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->sb.chip);
|
||
|
}
|
||
|
|
||
|
/* return chip revision number */
|
||
|
uint
|
||
|
sb_chiprev(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->sb.chiprev);
|
||
|
}
|
||
|
|
||
|
/* return chip common revision number */
|
||
|
uint
|
||
|
sb_chipcrev(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->sb.ccrev);
|
||
|
}
|
||
|
|
||
|
/* return chip package option */
|
||
|
uint
|
||
|
sb_chippkg(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->sb.chippkg);
|
||
|
}
|
||
|
|
||
|
/* return PCI core rev. */
|
||
|
uint
|
||
|
sb_pcirev(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->sb.buscorerev);
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
BCMINITFN(sb_war16165)(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
return (PCI(si) && (si->sb.buscorerev <= 10));
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
BCMINITFN(sb_war30841)(sb_info_t *si)
|
||
|
{
|
||
|
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_TIMER1, 0x8128);
|
||
|
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDR, 0x0100);
|
||
|
sb_pcie_mdiowrite(si, MDIODATA_DEV_RX, SERDES_RX_CDRBW, 0x1466);
|
||
|
}
|
||
|
|
||
|
/* return PCMCIA core rev. */
|
||
|
uint
|
||
|
BCMINITFN(sb_pcmciarev)(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->sb.buscorerev);
|
||
|
}
|
||
|
|
||
|
/* return board vendor id */
|
||
|
uint
|
||
|
sb_boardvendor(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->sb.boardvendor);
|
||
|
}
|
||
|
|
||
|
/* return boardtype */
|
||
|
uint
|
||
|
sb_boardtype(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
char *var;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
if (BUSTYPE(si->sb.bustype) == SB_BUS && si->sb.boardtype == 0xffff) {
|
||
|
/* boardtype format is a hex string */
|
||
|
si->sb.boardtype = getintvar(NULL, "boardtype");
|
||
|
|
||
|
/* backward compatibility for older boardtype string format */
|
||
|
if ((si->sb.boardtype == 0) && (var = getvar(NULL, "boardtype"))) {
|
||
|
if (!strcmp(var, "bcm94710dev"))
|
||
|
si->sb.boardtype = BCM94710D_BOARD;
|
||
|
else if (!strcmp(var, "bcm94710ap"))
|
||
|
si->sb.boardtype = BCM94710AP_BOARD;
|
||
|
else if (!strcmp(var, "bu4710"))
|
||
|
si->sb.boardtype = BU4710_BOARD;
|
||
|
else if (!strcmp(var, "bcm94702mn"))
|
||
|
si->sb.boardtype = BCM94702MN_BOARD;
|
||
|
else if (!strcmp(var, "bcm94710r1"))
|
||
|
si->sb.boardtype = BCM94710R1_BOARD;
|
||
|
else if (!strcmp(var, "bcm94710r4"))
|
||
|
si->sb.boardtype = BCM94710R4_BOARD;
|
||
|
else if (!strcmp(var, "bcm94702cpci"))
|
||
|
si->sb.boardtype = BCM94702CPCI_BOARD;
|
||
|
else if (!strcmp(var, "bcm95380_rr"))
|
||
|
si->sb.boardtype = BCM95380RR_BOARD;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (si->sb.boardtype);
|
||
|
}
|
||
|
|
||
|
/* return bus type of sbh device */
|
||
|
uint
|
||
|
sb_bus(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
return (si->sb.bustype);
|
||
|
}
|
||
|
|
||
|
/* return bus core type */
|
||
|
uint
|
||
|
sb_buscoretype(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
return (si->sb.buscoretype);
|
||
|
}
|
||
|
|
||
|
/* return bus core revision */
|
||
|
uint
|
||
|
sb_buscorerev(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
return (si->sb.buscorerev);
|
||
|
}
|
||
|
|
||
|
/* return list of found cores */
|
||
|
uint
|
||
|
sb_corelist(sb_t *sbh, uint coreid[])
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
bcopy((uchar*)si->coreid, (uchar*)coreid, (si->numcores * sizeof(uint)));
|
||
|
return (si->numcores);
|
||
|
}
|
||
|
|
||
|
/* return current register mapping */
|
||
|
void *
|
||
|
sb_coreregs(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
ASSERT(GOODREGS(si->curmap));
|
||
|
|
||
|
return (si->curmap);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* do buffered registers update */
|
||
|
void
|
||
|
sb_commit(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint origidx;
|
||
|
uint intr_val = 0;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
origidx = si->curidx;
|
||
|
ASSERT(GOODIDX(origidx));
|
||
|
|
||
|
INTR_OFF(si, intr_val);
|
||
|
|
||
|
/* switch over to chipcommon core if there is one, else use pci */
|
||
|
if (si->sb.ccrev != NOREV) {
|
||
|
chipcregs_t *ccregs = (chipcregs_t *)sb_setcore(sbh, SB_CC, 0);
|
||
|
|
||
|
/* do the buffer registers update */
|
||
|
W_REG(si->osh, &ccregs->broadcastaddress, SB_COMMIT);
|
||
|
W_REG(si->osh, &ccregs->broadcastdata, 0x0);
|
||
|
} else if (PCI(si)) {
|
||
|
sbpciregs_t *pciregs = (sbpciregs_t *)sb_setcore(sbh, SB_PCI, 0);
|
||
|
|
||
|
/* do the buffer registers update */
|
||
|
W_REG(si->osh, &pciregs->bcastaddr, SB_COMMIT);
|
||
|
W_REG(si->osh, &pciregs->bcastdata, 0x0);
|
||
|
} else
|
||
|
ASSERT(0);
|
||
|
|
||
|
/* restore core index */
|
||
|
sb_setcoreidx(sbh, origidx);
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
}
|
||
|
|
||
|
/* reset and re-enable a core
|
||
|
* inputs:
|
||
|
* bits - core specific bits that are set during and after reset sequence
|
||
|
* resetbits - core specific bits that are set only during reset sequence
|
||
|
*/
|
||
|
void
|
||
|
sb_core_reset(sb_t *sbh, uint32 bits, uint32 resetbits)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
volatile uint32 dummy;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
ASSERT(GOODREGS(si->curmap));
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
/*
|
||
|
* Must do the disable sequence first to work for arbitrary current core state.
|
||
|
*/
|
||
|
sb_core_disable(sbh, (bits | resetbits));
|
||
|
|
||
|
/*
|
||
|
* Now do the initialization sequence.
|
||
|
*/
|
||
|
|
||
|
/* set reset while enabling the clock and forcing them on throughout the core */
|
||
|
W_SBREG(si, &sb->sbtmstatelow, (SBTML_FGC | SBTML_CLK | SBTML_RESET | bits | resetbits));
|
||
|
dummy = R_SBREG(si, &sb->sbtmstatelow);
|
||
|
OSL_DELAY(1);
|
||
|
|
||
|
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_SERR) {
|
||
|
W_SBREG(si, &sb->sbtmstatehigh, 0);
|
||
|
}
|
||
|
if ((dummy = R_SBREG(si, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) {
|
||
|
AND_SBREG(si, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO));
|
||
|
}
|
||
|
|
||
|
/* clear reset and allow it to propagate throughout the core */
|
||
|
W_SBREG(si, &sb->sbtmstatelow, (SBTML_FGC | SBTML_CLK | bits));
|
||
|
dummy = R_SBREG(si, &sb->sbtmstatelow);
|
||
|
OSL_DELAY(1);
|
||
|
|
||
|
/* leave clock enabled */
|
||
|
W_SBREG(si, &sb->sbtmstatelow, (SBTML_CLK | bits));
|
||
|
dummy = R_SBREG(si, &sb->sbtmstatelow);
|
||
|
OSL_DELAY(1);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sb_core_tofixup(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
if ((BUSTYPE(si->sb.bustype) != PCI_BUS) || PCIE(si) ||
|
||
|
(PCI(si) && (si->sb.buscorerev >= 5)))
|
||
|
return;
|
||
|
|
||
|
ASSERT(GOODREGS(si->curmap));
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
if (BUSTYPE(si->sb.bustype) == SB_BUS) {
|
||
|
SET_SBREG(si, &sb->sbimconfiglow,
|
||
|
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
|
||
|
(0x5 << SBIMCL_RTO_SHIFT) | 0x3);
|
||
|
} else {
|
||
|
if (sb_coreid(sbh) == SB_PCI) {
|
||
|
SET_SBREG(si, &sb->sbimconfiglow,
|
||
|
SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
|
||
|
(0x3 << SBIMCL_RTO_SHIFT) | 0x2);
|
||
|
} else {
|
||
|
SET_SBREG(si, &sb->sbimconfiglow, (SBIMCL_RTO_MASK | SBIMCL_STO_MASK), 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sb_commit(sbh);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Set the initiator timeout for the "master core".
|
||
|
* The master core is defined to be the core in control
|
||
|
* of the chip and so it issues accesses to non-memory
|
||
|
* locations (Because of dma *any* core can access memeory).
|
||
|
*
|
||
|
* The routine uses the bus to decide who is the master:
|
||
|
* SB_BUS => mips
|
||
|
* JTAG_BUS => chipc
|
||
|
* PCI_BUS => pci or pcie
|
||
|
* PCMCIA_BUS => pcmcia
|
||
|
* SDIO_BUS => pcmcia
|
||
|
*
|
||
|
* This routine exists so callers can disable initiator
|
||
|
* timeouts so accesses to very slow devices like otp
|
||
|
* won't cause an abort. The routine allows arbitrary
|
||
|
* settings of the service and request timeouts, though.
|
||
|
*
|
||
|
* Returns the timeout state before changing it or -1
|
||
|
* on error.
|
||
|
*/
|
||
|
|
||
|
#define TO_MASK (SBIMCL_RTO_MASK | SBIMCL_STO_MASK)
|
||
|
|
||
|
uint32
|
||
|
sb_set_initiator_to(sb_t *sbh, uint32 to)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint origidx, idx;
|
||
|
uint intr_val = 0;
|
||
|
uint32 tmp, ret = 0xffffffff;
|
||
|
sbconfig_t *sb;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
if ((to & ~TO_MASK) != 0)
|
||
|
return ret;
|
||
|
|
||
|
/* Figure out the master core */
|
||
|
idx = BADIDX;
|
||
|
switch (BUSTYPE(si->sb.bustype)) {
|
||
|
case PCI_BUS:
|
||
|
idx = si->sb.buscoreidx;
|
||
|
break;
|
||
|
case JTAG_BUS:
|
||
|
idx = SB_CC_IDX;
|
||
|
break;
|
||
|
case PCMCIA_BUS:
|
||
|
case SDIO_BUS:
|
||
|
idx = sb_findcoreidx(si, SB_PCMCIA, 0);
|
||
|
break;
|
||
|
case SB_BUS:
|
||
|
if ((idx = sb_findcoreidx(si, SB_MIPS33, 0)) == BADIDX)
|
||
|
idx = sb_findcoreidx(si, SB_MIPS, 0);
|
||
|
break;
|
||
|
default:
|
||
|
ASSERT(0);
|
||
|
}
|
||
|
if (idx == BADIDX)
|
||
|
return ret;
|
||
|
|
||
|
INTR_OFF(si, intr_val);
|
||
|
origidx = sb_coreidx(sbh);
|
||
|
|
||
|
sb = REGS2SB(sb_setcoreidx(sbh, idx));
|
||
|
|
||
|
tmp = R_SBREG(si, &sb->sbimconfiglow);
|
||
|
ret = tmp & TO_MASK;
|
||
|
W_SBREG(si, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to);
|
||
|
|
||
|
sb_commit(sbh);
|
||
|
sb_setcoreidx(sbh, origidx);
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sb_core_disable(sb_t *sbh, uint32 bits)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
volatile uint32 dummy;
|
||
|
uint32 rej;
|
||
|
sbconfig_t *sb;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
ASSERT(GOODREGS(si->curmap));
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
|
||
|
/* if core is already in reset, just return */
|
||
|
if (R_SBREG(si, &sb->sbtmstatelow) & SBTML_RESET)
|
||
|
return;
|
||
|
|
||
|
/* reject value changed between sonics 2.2 and 2.3 */
|
||
|
if (si->sb.sonicsrev == SONICS_2_2)
|
||
|
rej = (1 << SBTML_REJ_SHIFT);
|
||
|
else
|
||
|
rej = (2 << SBTML_REJ_SHIFT);
|
||
|
|
||
|
/* if clocks are not enabled, put into reset and return */
|
||
|
if ((R_SBREG(si, &sb->sbtmstatelow) & SBTML_CLK) == 0)
|
||
|
goto disable;
|
||
|
|
||
|
/* set target reject and spin until busy is clear (preserve core-specific bits) */
|
||
|
OR_SBREG(si, &sb->sbtmstatelow, rej);
|
||
|
dummy = R_SBREG(si, &sb->sbtmstatelow);
|
||
|
OSL_DELAY(1);
|
||
|
SPINWAIT((R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000);
|
||
|
if (R_SBREG(si, &sb->sbtmstatehigh) & SBTMH_BUSY)
|
||
|
SB_ERROR(("%s: target state still busy\n", __FUNCTION__));
|
||
|
|
||
|
if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT) {
|
||
|
OR_SBREG(si, &sb->sbimstate, SBIM_RJ);
|
||
|
dummy = R_SBREG(si, &sb->sbimstate);
|
||
|
OSL_DELAY(1);
|
||
|
SPINWAIT((R_SBREG(si, &sb->sbimstate) & SBIM_BY), 100000);
|
||
|
}
|
||
|
|
||
|
/* set reset and reject while enabling the clocks */
|
||
|
W_SBREG(si, &sb->sbtmstatelow, (bits | SBTML_FGC | SBTML_CLK | rej | SBTML_RESET));
|
||
|
dummy = R_SBREG(si, &sb->sbtmstatelow);
|
||
|
OSL_DELAY(10);
|
||
|
|
||
|
/* don't forget to clear the initiator reject bit */
|
||
|
if (R_SBREG(si, &sb->sbidlow) & SBIDL_INIT)
|
||
|
AND_SBREG(si, &sb->sbimstate, ~SBIM_RJ);
|
||
|
|
||
|
disable:
|
||
|
/* leave reset and reject asserted */
|
||
|
W_SBREG(si, &sb->sbtmstatelow, (bits | rej | SBTML_RESET));
|
||
|
OSL_DELAY(1);
|
||
|
}
|
||
|
|
||
|
/* set chip watchdog reset timer to fire in 'ticks' backplane cycles */
|
||
|
void
|
||
|
sb_watchdog(sb_t *sbh, uint ticks)
|
||
|
{
|
||
|
sb_info_t *si = SB_INFO(sbh);
|
||
|
|
||
|
/* make sure we come up in fast clock mode */
|
||
|
sb_clkctl_clk(sbh, CLK_FAST);
|
||
|
|
||
|
/* instant NMI */
|
||
|
switch (si->gpioid) {
|
||
|
case SB_CC:
|
||
|
#ifdef __mips__
|
||
|
if (sb_chip(sbh) == BCM4785_CHIP_ID && ticks <= 1)
|
||
|
MTC0(C0_BROADCOM, 4, (1 << 22));
|
||
|
#endif /* __mips__ */
|
||
|
sb_corereg(si, 0, OFFSETOF(chipcregs_t, watchdog), ~0, ticks);
|
||
|
#ifdef __mips__
|
||
|
if (sb_chip(sbh) == BCM4785_CHIP_ID && ticks <= 1) {
|
||
|
__asm__ __volatile__ (
|
||
|
".set\tmips3\n\t"
|
||
|
"sync\n\t"
|
||
|
"wait\n\t"
|
||
|
".set\tmips0"
|
||
|
);
|
||
|
while (1);
|
||
|
}
|
||
|
#endif /* __mips__ */
|
||
|
break;
|
||
|
case SB_EXTIF:
|
||
|
sb_corereg(si, si->gpioidx, OFFSETOF(extifregs_t, watchdog), ~0, ticks);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* initialize the pcmcia core */
|
||
|
void
|
||
|
sb_pcmcia_init(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint8 cor = 0;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
/* enable d11 mac interrupts */
|
||
|
OSL_PCMCIA_READ_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1);
|
||
|
cor |= COR_IRQEN | COR_FUNEN;
|
||
|
OSL_PCMCIA_WRITE_ATTR(si->osh, PCMCIA_FCR0 + PCMCIA_COR, &cor, 1);
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Configure the pci core for pci client (NIC) action
|
||
|
* coremask is the bitvec of cores by index to be enabled.
|
||
|
*/
|
||
|
void
|
||
|
BCMINITFN(sb_pci_setup)(sb_t *sbh, uint coremask)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbconfig_t *sb;
|
||
|
sbpciregs_t *pciregs;
|
||
|
uint32 sbflag;
|
||
|
uint32 w;
|
||
|
uint idx;
|
||
|
int reg_val;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
/* if not pci bus, we're done */
|
||
|
if (BUSTYPE(si->sb.bustype) != PCI_BUS)
|
||
|
return;
|
||
|
|
||
|
ASSERT(PCI(si) || PCIE(si));
|
||
|
ASSERT(si->sb.buscoreidx != BADIDX);
|
||
|
|
||
|
/* get current core index */
|
||
|
idx = si->curidx;
|
||
|
|
||
|
/* we interrupt on this backplane flag number */
|
||
|
ASSERT(GOODREGS(si->curmap));
|
||
|
sb = REGS2SB(si->curmap);
|
||
|
sbflag = R_SBREG(si, &sb->sbtpsflag) & SBTPS_NUM0_MASK;
|
||
|
|
||
|
/* switch over to pci core */
|
||
|
pciregs = (sbpciregs_t*) sb_setcoreidx(sbh, si->sb.buscoreidx);
|
||
|
sb = REGS2SB(pciregs);
|
||
|
|
||
|
/*
|
||
|
* Enable sb->pci interrupts. Assume
|
||
|
* PCI rev 2.3 support was added in pci core rev 6 and things changed..
|
||
|
*/
|
||
|
if (PCIE(si) || (PCI(si) && ((si->sb.buscorerev) >= 6))) {
|
||
|
/* pci config write to set this core bit in PCIIntMask */
|
||
|
w = OSL_PCI_READ_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32));
|
||
|
w |= (coremask << PCI_SBIM_SHIFT);
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_INT_MASK, sizeof(uint32), w);
|
||
|
} else {
|
||
|
/* set sbintvec bit for our flag number */
|
||
|
OR_SBREG(si, &sb->sbintvec, (1 << sbflag));
|
||
|
}
|
||
|
|
||
|
if (PCI(si)) {
|
||
|
OR_REG(si->osh, &pciregs->sbtopci2, (SBTOPCI_PREF|SBTOPCI_BURST));
|
||
|
if (si->sb.buscorerev >= 11)
|
||
|
OR_REG(si->osh, &pciregs->sbtopci2, SBTOPCI_RC_READMULTI);
|
||
|
if (si->sb.buscorerev < 5) {
|
||
|
SET_SBREG(si, &sb->sbimconfiglow, SBIMCL_RTO_MASK | SBIMCL_STO_MASK,
|
||
|
(0x3 << SBIMCL_RTO_SHIFT) | 0x2);
|
||
|
sb_commit(sbh);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef PCIE_SUPPOER
|
||
|
/* PCIE workarounds */
|
||
|
if (PCIE(si)) {
|
||
|
if ((si->sb.buscorerev == 0) || (si->sb.buscorerev == 1)) {
|
||
|
reg_val = sb_pcie_readreg((void *)sbh, (void *)PCIE_PCIEREGS,
|
||
|
PCIE_TLP_WORKAROUNDSREG);
|
||
|
reg_val |= 0x8;
|
||
|
sb_pcie_writereg((void *)sbh, (void *)PCIE_PCIEREGS,
|
||
|
PCIE_TLP_WORKAROUNDSREG, reg_val);
|
||
|
}
|
||
|
|
||
|
if (si->sb.buscorerev == 1) {
|
||
|
reg_val = sb_pcie_readreg((void *)sbh, (void *)PCIE_PCIEREGS,
|
||
|
PCIE_DLLP_LCREG);
|
||
|
reg_val |= (0x40);
|
||
|
sb_pcie_writereg(sbh, (void *)PCIE_PCIEREGS, PCIE_DLLP_LCREG, reg_val);
|
||
|
}
|
||
|
|
||
|
if (si->sb.buscorerev == 0)
|
||
|
sb_war30841(si);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* switch back to previous core */
|
||
|
sb_setcoreidx(sbh, idx);
|
||
|
}
|
||
|
|
||
|
uint32
|
||
|
sb_base(uint32 admatch)
|
||
|
{
|
||
|
uint32 base;
|
||
|
uint type;
|
||
|
|
||
|
type = admatch & SBAM_TYPE_MASK;
|
||
|
ASSERT(type < 3);
|
||
|
|
||
|
base = 0;
|
||
|
|
||
|
if (type == 0) {
|
||
|
base = admatch & SBAM_BASE0_MASK;
|
||
|
} else if (type == 1) {
|
||
|
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
|
||
|
base = admatch & SBAM_BASE1_MASK;
|
||
|
} else if (type == 2) {
|
||
|
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
|
||
|
base = admatch & SBAM_BASE2_MASK;
|
||
|
}
|
||
|
|
||
|
return (base);
|
||
|
}
|
||
|
|
||
|
uint32
|
||
|
sb_size(uint32 admatch)
|
||
|
{
|
||
|
uint32 size;
|
||
|
uint type;
|
||
|
|
||
|
type = admatch & SBAM_TYPE_MASK;
|
||
|
ASSERT(type < 3);
|
||
|
|
||
|
size = 0;
|
||
|
|
||
|
if (type == 0) {
|
||
|
size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1);
|
||
|
} else if (type == 1) {
|
||
|
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
|
||
|
size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1);
|
||
|
} else if (type == 2) {
|
||
|
ASSERT(!(admatch & SBAM_ADNEG)); /* neg not supported */
|
||
|
size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1);
|
||
|
}
|
||
|
|
||
|
return (size);
|
||
|
}
|
||
|
|
||
|
/* return the core-type instantiation # of the current core */
|
||
|
uint
|
||
|
sb_coreunit(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint idx;
|
||
|
uint coreid;
|
||
|
uint coreunit;
|
||
|
uint i;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
coreunit = 0;
|
||
|
|
||
|
idx = si->curidx;
|
||
|
|
||
|
ASSERT(GOODREGS(si->curmap));
|
||
|
coreid = sb_coreid(sbh);
|
||
|
|
||
|
/* count the cores of our type */
|
||
|
for (i = 0; i < idx; i++)
|
||
|
if (si->coreid[i] == coreid)
|
||
|
coreunit++;
|
||
|
|
||
|
return (coreunit);
|
||
|
}
|
||
|
|
||
|
static INLINE uint32
|
||
|
factor6(uint32 x)
|
||
|
{
|
||
|
switch (x) {
|
||
|
case CC_F6_2: return 2;
|
||
|
case CC_F6_3: return 3;
|
||
|
case CC_F6_4: return 4;
|
||
|
case CC_F6_5: return 5;
|
||
|
case CC_F6_6: return 6;
|
||
|
case CC_F6_7: return 7;
|
||
|
default: return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* calculate the speed the SB would run at given a set of clockcontrol values */
|
||
|
uint32
|
||
|
sb_clock_rate(uint32 pll_type, uint32 n, uint32 m)
|
||
|
{
|
||
|
uint32 n1, n2, clock, m1, m2, m3, mc;
|
||
|
|
||
|
n1 = n & CN_N1_MASK;
|
||
|
n2 = (n & CN_N2_MASK) >> CN_N2_SHIFT;
|
||
|
|
||
|
if (pll_type == PLL_TYPE6) {
|
||
|
if (m & CC_T6_MMASK)
|
||
|
return CC_T6_M1;
|
||
|
else
|
||
|
return CC_T6_M0;
|
||
|
} else if ((pll_type == PLL_TYPE1) ||
|
||
|
(pll_type == PLL_TYPE3) ||
|
||
|
(pll_type == PLL_TYPE4) ||
|
||
|
(pll_type == PLL_TYPE7)) {
|
||
|
n1 = factor6(n1);
|
||
|
n2 += CC_F5_BIAS;
|
||
|
} else if (pll_type == PLL_TYPE2) {
|
||
|
n1 += CC_T2_BIAS;
|
||
|
n2 += CC_T2_BIAS;
|
||
|
ASSERT((n1 >= 2) && (n1 <= 7));
|
||
|
ASSERT((n2 >= 5) && (n2 <= 23));
|
||
|
} else if (pll_type == PLL_TYPE5) {
|
||
|
return (100000000);
|
||
|
} else
|
||
|
ASSERT(0);
|
||
|
/* PLL types 3 and 7 use BASE2 (25Mhz) */
|
||
|
if ((pll_type == PLL_TYPE3) ||
|
||
|
(pll_type == PLL_TYPE7)) {
|
||
|
clock = CC_CLOCK_BASE2 * n1 * n2;
|
||
|
} else
|
||
|
clock = CC_CLOCK_BASE1 * n1 * n2;
|
||
|
|
||
|
if (clock == 0)
|
||
|
return 0;
|
||
|
|
||
|
m1 = m & CC_M1_MASK;
|
||
|
m2 = (m & CC_M2_MASK) >> CC_M2_SHIFT;
|
||
|
m3 = (m & CC_M3_MASK) >> CC_M3_SHIFT;
|
||
|
mc = (m & CC_MC_MASK) >> CC_MC_SHIFT;
|
||
|
|
||
|
if ((pll_type == PLL_TYPE1) ||
|
||
|
(pll_type == PLL_TYPE3) ||
|
||
|
(pll_type == PLL_TYPE4) ||
|
||
|
(pll_type == PLL_TYPE7)) {
|
||
|
m1 = factor6(m1);
|
||
|
if ((pll_type == PLL_TYPE1) || (pll_type == PLL_TYPE3))
|
||
|
m2 += CC_F5_BIAS;
|
||
|
else
|
||
|
m2 = factor6(m2);
|
||
|
m3 = factor6(m3);
|
||
|
|
||
|
switch (mc) {
|
||
|
case CC_MC_BYPASS: return (clock);
|
||
|
case CC_MC_M1: return (clock / m1);
|
||
|
case CC_MC_M1M2: return (clock / (m1 * m2));
|
||
|
case CC_MC_M1M2M3: return (clock / (m1 * m2 * m3));
|
||
|
case CC_MC_M1M3: return (clock / (m1 * m3));
|
||
|
default: return (0);
|
||
|
}
|
||
|
} else {
|
||
|
ASSERT(pll_type == PLL_TYPE2);
|
||
|
|
||
|
m1 += CC_T2_BIAS;
|
||
|
m2 += CC_T2M2_BIAS;
|
||
|
m3 += CC_T2_BIAS;
|
||
|
ASSERT((m1 >= 2) && (m1 <= 7));
|
||
|
ASSERT((m2 >= 3) && (m2 <= 10));
|
||
|
ASSERT((m3 >= 2) && (m3 <= 7));
|
||
|
|
||
|
if ((mc & CC_T2MC_M1BYP) == 0)
|
||
|
clock /= m1;
|
||
|
if ((mc & CC_T2MC_M2BYP) == 0)
|
||
|
clock /= m2;
|
||
|
if ((mc & CC_T2MC_M3BYP) == 0)
|
||
|
clock /= m3;
|
||
|
|
||
|
return (clock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* returns the current speed the SB is running at */
|
||
|
uint32
|
||
|
sb_clock(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
extifregs_t *eir;
|
||
|
chipcregs_t *cc;
|
||
|
uint32 n, m;
|
||
|
uint idx;
|
||
|
uint32 pll_type, rate;
|
||
|
uint intr_val = 0;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
idx = si->curidx;
|
||
|
pll_type = PLL_TYPE1;
|
||
|
|
||
|
INTR_OFF(si, intr_val);
|
||
|
|
||
|
/* switch to extif or chipc core */
|
||
|
if ((eir = (extifregs_t *) sb_setcore(sbh, SB_EXTIF, 0))) {
|
||
|
n = R_REG(si->osh, &eir->clockcontrol_n);
|
||
|
m = R_REG(si->osh, &eir->clockcontrol_sb);
|
||
|
} else if ((cc = (chipcregs_t *) sb_setcore(sbh, SB_CC, 0))) {
|
||
|
pll_type = R_REG(si->osh, &cc->capabilities) & CAP_PLL_MASK;
|
||
|
if (pll_type == PLL_NONE) {
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
return 80000000;
|
||
|
}
|
||
|
n = R_REG(si->osh, &cc->clockcontrol_n);
|
||
|
if (pll_type == PLL_TYPE6)
|
||
|
m = R_REG(si->osh, &cc->clockcontrol_m3);
|
||
|
else if ((pll_type == PLL_TYPE3) && !(BCMINIT(sb_chip)(sbh) == 0x5365))
|
||
|
m = R_REG(si->osh, &cc->clockcontrol_m2);
|
||
|
else
|
||
|
m = R_REG(si->osh, &cc->clockcontrol_sb);
|
||
|
} else {
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* calculate rate */
|
||
|
if (BCMINIT(sb_chip)(sbh) == 0x5365)
|
||
|
rate = 100000000;
|
||
|
else {
|
||
|
rate = sb_clock_rate(pll_type, n, m);
|
||
|
|
||
|
if (pll_type == PLL_TYPE3)
|
||
|
rate = rate / 2;
|
||
|
}
|
||
|
|
||
|
/* switch back to previous core */
|
||
|
sb_setcoreidx(sbh, idx);
|
||
|
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
|
||
|
return rate;
|
||
|
}
|
||
|
|
||
|
/* change logical "focus" to the gpio core for optimized access */
|
||
|
void*
|
||
|
sb_gpiosetcore(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
return (sb_setcoreidx(sbh, si->gpioidx));
|
||
|
}
|
||
|
|
||
|
/* mask&set gpiocontrol bits */
|
||
|
uint32
|
||
|
sb_gpiocontrol(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint regoff;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
regoff = 0;
|
||
|
|
||
|
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
|
||
|
|
||
|
/* gpios could be shared on router platforms */
|
||
|
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
|
||
|
mask = priority ? (sb_gpioreservation & mask) :
|
||
|
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
|
||
|
val &= mask;
|
||
|
}
|
||
|
|
||
|
switch (si->gpioid) {
|
||
|
case SB_CC:
|
||
|
regoff = OFFSETOF(chipcregs_t, gpiocontrol);
|
||
|
break;
|
||
|
|
||
|
case SB_PCI:
|
||
|
regoff = OFFSETOF(sbpciregs_t, gpiocontrol);
|
||
|
break;
|
||
|
|
||
|
case SB_EXTIF:
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
|
||
|
}
|
||
|
|
||
|
/* mask&set gpio output enable bits */
|
||
|
uint32
|
||
|
sb_gpioouten(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint regoff;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
regoff = 0;
|
||
|
|
||
|
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
|
||
|
|
||
|
/* gpios could be shared on router platforms */
|
||
|
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
|
||
|
mask = priority ? (sb_gpioreservation & mask) :
|
||
|
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
|
||
|
val &= mask;
|
||
|
}
|
||
|
|
||
|
switch (si->gpioid) {
|
||
|
case SB_CC:
|
||
|
regoff = OFFSETOF(chipcregs_t, gpioouten);
|
||
|
break;
|
||
|
|
||
|
case SB_PCI:
|
||
|
regoff = OFFSETOF(sbpciregs_t, gpioouten);
|
||
|
break;
|
||
|
|
||
|
case SB_EXTIF:
|
||
|
regoff = OFFSETOF(extifregs_t, gpio[0].outen);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
|
||
|
}
|
||
|
|
||
|
/* mask&set gpio output bits */
|
||
|
uint32
|
||
|
sb_gpioout(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint regoff;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
regoff = 0;
|
||
|
|
||
|
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
|
||
|
|
||
|
/* gpios could be shared on router platforms */
|
||
|
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
|
||
|
mask = priority ? (sb_gpioreservation & mask) :
|
||
|
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
|
||
|
val &= mask;
|
||
|
}
|
||
|
|
||
|
switch (si->gpioid) {
|
||
|
case SB_CC:
|
||
|
regoff = OFFSETOF(chipcregs_t, gpioout);
|
||
|
break;
|
||
|
|
||
|
case SB_PCI:
|
||
|
regoff = OFFSETOF(sbpciregs_t, gpioout);
|
||
|
break;
|
||
|
|
||
|
case SB_EXTIF:
|
||
|
regoff = OFFSETOF(extifregs_t, gpio[0].out);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
|
||
|
}
|
||
|
|
||
|
/* reserve one gpio */
|
||
|
uint32
|
||
|
sb_gpioreserve(sb_t *sbh, uint32 gpio_bitmask, uint8 priority)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
|
||
|
|
||
|
/* only cores on SB_BUS share GPIO's and only applcation users need to
|
||
|
* reserve/release GPIO
|
||
|
*/
|
||
|
if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) {
|
||
|
ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority));
|
||
|
return -1;
|
||
|
}
|
||
|
/* make sure only one bit is set */
|
||
|
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
|
||
|
ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* already reserved */
|
||
|
if (sb_gpioreservation & gpio_bitmask)
|
||
|
return -1;
|
||
|
/* set reservation */
|
||
|
sb_gpioreservation |= gpio_bitmask;
|
||
|
|
||
|
return sb_gpioreservation;
|
||
|
}
|
||
|
|
||
|
/* release one gpio */
|
||
|
/*
|
||
|
* releasing the gpio doesn't change the current value on the GPIO last write value
|
||
|
* persists till some one overwrites it
|
||
|
*/
|
||
|
|
||
|
uint32
|
||
|
sb_gpiorelease(sb_t *sbh, uint32 gpio_bitmask, uint8 priority)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
|
||
|
|
||
|
/* only cores on SB_BUS share GPIO's and only applcation users need to
|
||
|
* reserve/release GPIO
|
||
|
*/
|
||
|
if ((BUSTYPE(si->sb.bustype) != SB_BUS) || (!priority)) {
|
||
|
ASSERT((BUSTYPE(si->sb.bustype) == SB_BUS) && (priority));
|
||
|
return -1;
|
||
|
}
|
||
|
/* make sure only one bit is set */
|
||
|
if ((!gpio_bitmask) || ((gpio_bitmask) & (gpio_bitmask - 1))) {
|
||
|
ASSERT((gpio_bitmask) && !((gpio_bitmask) & (gpio_bitmask - 1)));
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* already released */
|
||
|
if (!(sb_gpioreservation & gpio_bitmask))
|
||
|
return -1;
|
||
|
|
||
|
/* clear reservation */
|
||
|
sb_gpioreservation &= ~gpio_bitmask;
|
||
|
|
||
|
return sb_gpioreservation;
|
||
|
}
|
||
|
|
||
|
/* return the current gpioin register value */
|
||
|
uint32
|
||
|
sb_gpioin(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint regoff;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
regoff = 0;
|
||
|
|
||
|
switch (si->gpioid) {
|
||
|
case SB_CC:
|
||
|
regoff = OFFSETOF(chipcregs_t, gpioin);
|
||
|
break;
|
||
|
|
||
|
case SB_PCI:
|
||
|
regoff = OFFSETOF(sbpciregs_t, gpioin);
|
||
|
break;
|
||
|
|
||
|
case SB_EXTIF:
|
||
|
regoff = OFFSETOF(extifregs_t, gpioin);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return (sb_corereg(si, si->gpioidx, regoff, 0, 0));
|
||
|
}
|
||
|
|
||
|
/* mask&set gpio interrupt polarity bits */
|
||
|
uint32
|
||
|
sb_gpiointpolarity(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint regoff;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
regoff = 0;
|
||
|
|
||
|
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
|
||
|
|
||
|
/* gpios could be shared on router platforms */
|
||
|
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
|
||
|
mask = priority ? (sb_gpioreservation & mask) :
|
||
|
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
|
||
|
val &= mask;
|
||
|
}
|
||
|
|
||
|
switch (si->gpioid) {
|
||
|
case SB_CC:
|
||
|
regoff = OFFSETOF(chipcregs_t, gpiointpolarity);
|
||
|
break;
|
||
|
|
||
|
case SB_PCI:
|
||
|
/* pci gpio implementation does not support interrupt polarity */
|
||
|
ASSERT(0);
|
||
|
break;
|
||
|
|
||
|
case SB_EXTIF:
|
||
|
regoff = OFFSETOF(extifregs_t, gpiointpolarity);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
|
||
|
}
|
||
|
|
||
|
/* mask&set gpio interrupt mask bits */
|
||
|
uint32
|
||
|
sb_gpiointmask(sb_t *sbh, uint32 mask, uint32 val, uint8 priority)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint regoff;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
regoff = 0;
|
||
|
|
||
|
priority = GPIO_DRV_PRIORITY; /* compatibility hack */
|
||
|
|
||
|
/* gpios could be shared on router platforms */
|
||
|
if ((BUSTYPE(si->sb.bustype) == SB_BUS) && (val || mask)) {
|
||
|
mask = priority ? (sb_gpioreservation & mask) :
|
||
|
((sb_gpioreservation | mask) & ~(sb_gpioreservation));
|
||
|
val &= mask;
|
||
|
}
|
||
|
|
||
|
switch (si->gpioid) {
|
||
|
case SB_CC:
|
||
|
regoff = OFFSETOF(chipcregs_t, gpiointmask);
|
||
|
break;
|
||
|
|
||
|
case SB_PCI:
|
||
|
/* pci gpio implementation does not support interrupt mask */
|
||
|
ASSERT(0);
|
||
|
break;
|
||
|
|
||
|
case SB_EXTIF:
|
||
|
regoff = OFFSETOF(extifregs_t, gpiointmask);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return (sb_corereg(si, si->gpioidx, regoff, mask, val));
|
||
|
}
|
||
|
|
||
|
/* assign the gpio to an led */
|
||
|
uint32
|
||
|
sb_gpioled(sb_t *sbh, uint32 mask, uint32 val)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
if (si->sb.ccrev < 16)
|
||
|
return -1;
|
||
|
|
||
|
/* gpio led powersave reg */
|
||
|
return (sb_corereg(si, 0, OFFSETOF(chipcregs_t, gpiotimeroutmask), mask, val));
|
||
|
}
|
||
|
|
||
|
/* mask & set gpio timer val */
|
||
|
uint32
|
||
|
sb_gpiotimerval(sb_t *sbh, uint32 mask, uint32 gpiotimerval)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
if (si->sb.ccrev < 16)
|
||
|
return -1;
|
||
|
|
||
|
return (sb_corereg(si, 0, OFFSETOF(chipcregs_t, gpiotimerval), mask, gpiotimerval));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* return the slow clock source - LPO, XTAL, or PCI */
|
||
|
static uint
|
||
|
sb_slowclk_src(sb_info_t *si)
|
||
|
{
|
||
|
chipcregs_t *cc;
|
||
|
|
||
|
|
||
|
ASSERT(sb_coreid(&si->sb) == SB_CC);
|
||
|
|
||
|
if (si->sb.ccrev < 6) {
|
||
|
if ((BUSTYPE(si->sb.bustype) == PCI_BUS) &&
|
||
|
(OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32)) &
|
||
|
PCI_CFG_GPIO_SCS))
|
||
|
return (SCC_SS_PCI);
|
||
|
else
|
||
|
return (SCC_SS_XTAL);
|
||
|
} else if (si->sb.ccrev < 10) {
|
||
|
cc = (chipcregs_t*) sb_setcoreidx(&si->sb, si->curidx);
|
||
|
return (R_REG(si->osh, &cc->slow_clk_ctl) & SCC_SS_MASK);
|
||
|
} else /* Insta-clock */
|
||
|
return (SCC_SS_XTAL);
|
||
|
}
|
||
|
|
||
|
/* return the ILP (slowclock) min or max frequency */
|
||
|
static uint
|
||
|
sb_slowclk_freq(sb_info_t *si, bool max)
|
||
|
{
|
||
|
chipcregs_t *cc;
|
||
|
uint32 slowclk;
|
||
|
uint div;
|
||
|
|
||
|
|
||
|
ASSERT(sb_coreid(&si->sb) == SB_CC);
|
||
|
|
||
|
cc = (chipcregs_t*) sb_setcoreidx(&si->sb, si->curidx);
|
||
|
|
||
|
/* shouldn't be here unless we've established the chip has dynamic clk control */
|
||
|
ASSERT(R_REG(si->osh, &cc->capabilities) & CAP_PWR_CTL);
|
||
|
|
||
|
slowclk = sb_slowclk_src(si);
|
||
|
if (si->sb.ccrev < 6) {
|
||
|
if (slowclk == SCC_SS_PCI)
|
||
|
return (max? (PCIMAXFREQ/64) : (PCIMINFREQ/64));
|
||
|
else
|
||
|
return (max? (XTALMAXFREQ/32) : (XTALMINFREQ/32));
|
||
|
} else if (si->sb.ccrev < 10) {
|
||
|
div = 4 * (((R_REG(si->osh, &cc->slow_clk_ctl) & SCC_CD_MASK) >> SCC_CD_SHIFT) + 1);
|
||
|
if (slowclk == SCC_SS_LPO)
|
||
|
return (max? LPOMAXFREQ : LPOMINFREQ);
|
||
|
else if (slowclk == SCC_SS_XTAL)
|
||
|
return (max? (XTALMAXFREQ/div) : (XTALMINFREQ/div));
|
||
|
else if (slowclk == SCC_SS_PCI)
|
||
|
return (max? (PCIMAXFREQ/div) : (PCIMINFREQ/div));
|
||
|
else
|
||
|
ASSERT(0);
|
||
|
} else {
|
||
|
/* Chipc rev 10 is InstaClock */
|
||
|
div = R_REG(si->osh, &cc->system_clk_ctl) >> SYCC_CD_SHIFT;
|
||
|
div = 4 * (div + 1);
|
||
|
return (max ? XTALMAXFREQ : (XTALMINFREQ/div));
|
||
|
}
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
BCMINITFN(sb_clkctl_setdelay)(sb_info_t *si, void *chipcregs)
|
||
|
{
|
||
|
chipcregs_t * cc;
|
||
|
uint slowmaxfreq, pll_delay, slowclk;
|
||
|
uint pll_on_delay, fref_sel_delay;
|
||
|
|
||
|
pll_delay = PLL_DELAY;
|
||
|
|
||
|
/* If the slow clock is not sourced by the xtal then add the xtal_on_delay
|
||
|
* since the xtal will also be powered down by dynamic clk control logic.
|
||
|
*/
|
||
|
|
||
|
slowclk = sb_slowclk_src(si);
|
||
|
if (slowclk != SCC_SS_XTAL)
|
||
|
pll_delay += XTAL_ON_DELAY;
|
||
|
|
||
|
/* Starting with 4318 it is ILP that is used for the delays */
|
||
|
slowmaxfreq = sb_slowclk_freq(si, (si->sb.ccrev >= 10) ? FALSE : TRUE);
|
||
|
|
||
|
pll_on_delay = ((slowmaxfreq * pll_delay) + 999999) / 1000000;
|
||
|
fref_sel_delay = ((slowmaxfreq * FREF_DELAY) + 999999) / 1000000;
|
||
|
|
||
|
cc = (chipcregs_t *)chipcregs;
|
||
|
W_REG(si->osh, &cc->pll_on_delay, pll_on_delay);
|
||
|
W_REG(si->osh, &cc->fref_sel_delay, fref_sel_delay);
|
||
|
}
|
||
|
|
||
|
/* initialize power control delay registers */
|
||
|
void
|
||
|
BCMINITFN(sb_clkctl_init)(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint origidx;
|
||
|
chipcregs_t *cc;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
origidx = si->curidx;
|
||
|
|
||
|
if ((cc = (chipcregs_t*) sb_setcore(sbh, SB_CC, 0)) == NULL)
|
||
|
return;
|
||
|
|
||
|
if ((si->sb.chip == BCM4321_CHIP_ID) && (si->sb.chiprev < 2))
|
||
|
W_REG(si->osh, &cc->chipcontrol,
|
||
|
(si->sb.chiprev == 0) ? CHIPCTRL_4321A0_DEFAULT : CHIPCTRL_4321A1_DEFAULT);
|
||
|
|
||
|
if (!(R_REG(si->osh, &cc->capabilities) & CAP_PWR_CTL))
|
||
|
goto done;
|
||
|
|
||
|
/* set all Instaclk chip ILP to 1 MHz */
|
||
|
else if (si->sb.ccrev >= 10)
|
||
|
SET_REG(si->osh, &cc->system_clk_ctl, SYCC_CD_MASK,
|
||
|
(ILP_DIV_1MHZ << SYCC_CD_SHIFT));
|
||
|
|
||
|
sb_clkctl_setdelay(si, (void *)cc);
|
||
|
|
||
|
done:
|
||
|
sb_setcoreidx(sbh, origidx);
|
||
|
}
|
||
|
|
||
|
/* return the value suitable for writing to the dot11 core FAST_PWRUP_DELAY register */
|
||
|
uint16
|
||
|
sb_clkctl_fast_pwrup_delay(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint origidx;
|
||
|
chipcregs_t *cc;
|
||
|
uint slowminfreq;
|
||
|
uint16 fpdelay;
|
||
|
uint intr_val = 0;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
fpdelay = 0;
|
||
|
origidx = si->curidx;
|
||
|
|
||
|
INTR_OFF(si, intr_val);
|
||
|
|
||
|
if ((cc = (chipcregs_t*) sb_setcore(sbh, SB_CC, 0)) == NULL)
|
||
|
goto done;
|
||
|
|
||
|
if (!(R_REG(si->osh, &cc->capabilities) & CAP_PWR_CTL))
|
||
|
goto done;
|
||
|
|
||
|
slowminfreq = sb_slowclk_freq(si, FALSE);
|
||
|
fpdelay = (((R_REG(si->osh, &cc->pll_on_delay) + 2) * 1000000) +
|
||
|
(slowminfreq - 1)) / slowminfreq;
|
||
|
|
||
|
done:
|
||
|
sb_setcoreidx(sbh, origidx);
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
return (fpdelay);
|
||
|
}
|
||
|
|
||
|
/* turn primary xtal and/or pll off/on */
|
||
|
int
|
||
|
sb_clkctl_xtal(sb_t *sbh, uint what, bool on)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint32 in, out, outen;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
switch (BUSTYPE(si->sb.bustype)) {
|
||
|
|
||
|
|
||
|
case PCMCIA_BUS:
|
||
|
return (0);
|
||
|
|
||
|
|
||
|
case PCI_BUS:
|
||
|
|
||
|
/* pcie core doesn't have any mapping to control the xtal pu */
|
||
|
if (PCIE(si))
|
||
|
return -1;
|
||
|
|
||
|
in = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_IN, sizeof(uint32));
|
||
|
out = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32));
|
||
|
outen = OSL_PCI_READ_CONFIG(si->osh, PCI_GPIO_OUTEN, sizeof(uint32));
|
||
|
|
||
|
/*
|
||
|
* Avoid glitching the clock if GPRS is already using it.
|
||
|
* We can't actually read the state of the PLLPD so we infer it
|
||
|
* by the value of XTAL_PU which *is* readable via gpioin.
|
||
|
*/
|
||
|
if (on && (in & PCI_CFG_GPIO_XTAL))
|
||
|
return (0);
|
||
|
|
||
|
if (what & XTAL)
|
||
|
outen |= PCI_CFG_GPIO_XTAL;
|
||
|
if (what & PLL)
|
||
|
outen |= PCI_CFG_GPIO_PLL;
|
||
|
|
||
|
if (on) {
|
||
|
/* turn primary xtal on */
|
||
|
if (what & XTAL) {
|
||
|
out |= PCI_CFG_GPIO_XTAL;
|
||
|
if (what & PLL)
|
||
|
out |= PCI_CFG_GPIO_PLL;
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
|
||
|
sizeof(uint32), out);
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN,
|
||
|
sizeof(uint32), outen);
|
||
|
OSL_DELAY(XTAL_ON_DELAY);
|
||
|
}
|
||
|
|
||
|
/* turn pll on */
|
||
|
if (what & PLL) {
|
||
|
out &= ~PCI_CFG_GPIO_PLL;
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT,
|
||
|
sizeof(uint32), out);
|
||
|
OSL_DELAY(2000);
|
||
|
}
|
||
|
} else {
|
||
|
if (what & XTAL)
|
||
|
out &= ~PCI_CFG_GPIO_XTAL;
|
||
|
if (what & PLL)
|
||
|
out |= PCI_CFG_GPIO_PLL;
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUT, sizeof(uint32), out);
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_GPIO_OUTEN, sizeof(uint32),
|
||
|
outen);
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
return (-1);
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/* set dynamic clk control mode (forceslow, forcefast, dynamic) */
|
||
|
/* returns true if we are forcing fast clock */
|
||
|
bool
|
||
|
sb_clkctl_clk(sb_t *sbh, uint mode)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint origidx;
|
||
|
chipcregs_t *cc;
|
||
|
uint32 scc;
|
||
|
uint intr_val = 0;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
/* chipcommon cores prior to rev6 don't support dynamic clock control */
|
||
|
if (si->sb.ccrev < 6)
|
||
|
return (FALSE);
|
||
|
|
||
|
|
||
|
/* Chips with ccrev 10 are EOL and they don't have SYCC_HR which we use below */
|
||
|
ASSERT(si->sb.ccrev != 10);
|
||
|
|
||
|
INTR_OFF(si, intr_val);
|
||
|
|
||
|
origidx = si->curidx;
|
||
|
|
||
|
if (sb_setcore(sbh, SB_MIPS33, 0) && (sb_corerev(&si->sb) <= 7) &&
|
||
|
(BUSTYPE(si->sb.bustype) == SB_BUS) && (si->sb.ccrev >= 10))
|
||
|
goto done;
|
||
|
|
||
|
/* PR32414WAR "Force HT clock on" all the time, no dynamic clk ctl */
|
||
|
if ((si->sb.chip == BCM4311_CHIP_ID) && (si->sb.chiprev <= 1))
|
||
|
goto done;
|
||
|
|
||
|
cc = (chipcregs_t*) sb_setcore(sbh, SB_CC, 0);
|
||
|
ASSERT(cc != NULL);
|
||
|
|
||
|
if (!(R_REG(si->osh, &cc->capabilities) & CAP_PWR_CTL))
|
||
|
goto done;
|
||
|
|
||
|
switch (mode) {
|
||
|
case CLK_FAST: /* force fast (pll) clock */
|
||
|
if (si->sb.ccrev < 10) {
|
||
|
/* don't forget to force xtal back on before we clear SCC_DYN_XTAL.. */
|
||
|
sb_clkctl_xtal(&si->sb, XTAL, ON);
|
||
|
|
||
|
SET_REG(si->osh, &cc->slow_clk_ctl, (SCC_XC | SCC_FS | SCC_IP), SCC_IP);
|
||
|
} else
|
||
|
OR_REG(si->osh, &cc->system_clk_ctl, SYCC_HR);
|
||
|
/* wait for the PLL */
|
||
|
OSL_DELAY(PLL_DELAY);
|
||
|
break;
|
||
|
|
||
|
case CLK_DYNAMIC: /* enable dynamic clock control */
|
||
|
|
||
|
if (si->sb.ccrev < 10) {
|
||
|
scc = R_REG(si->osh, &cc->slow_clk_ctl);
|
||
|
scc &= ~(SCC_FS | SCC_IP | SCC_XC);
|
||
|
if ((scc & SCC_SS_MASK) != SCC_SS_XTAL)
|
||
|
scc |= SCC_XC;
|
||
|
W_REG(si->osh, &cc->slow_clk_ctl, scc);
|
||
|
|
||
|
/* for dynamic control, we have to release our xtal_pu "force on" */
|
||
|
if (scc & SCC_XC)
|
||
|
sb_clkctl_xtal(&si->sb, XTAL, OFF);
|
||
|
} else {
|
||
|
/* Instaclock */
|
||
|
AND_REG(si->osh, &cc->system_clk_ctl, ~SYCC_HR);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
ASSERT(0);
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
sb_setcoreidx(sbh, origidx);
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
return (mode == CLK_FAST);
|
||
|
}
|
||
|
|
||
|
/* register driver interrupt disabling and restoring callback functions */
|
||
|
void
|
||
|
sb_register_intr_callback(sb_t *sbh, void *intrsoff_fn, void *intrsrestore_fn,
|
||
|
void *intrsenabled_fn, void *intr_arg)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
si->intr_arg = intr_arg;
|
||
|
si->intrsoff_fn = (sb_intrsoff_t)intrsoff_fn;
|
||
|
si->intrsrestore_fn = (sb_intrsrestore_t)intrsrestore_fn;
|
||
|
si->intrsenabled_fn = (sb_intrsenabled_t)intrsenabled_fn;
|
||
|
/* save current core id. when this function called, the current core
|
||
|
* must be the core which provides driver functions(il, et, wl, etc.)
|
||
|
*/
|
||
|
si->dev_coreid = si->coreid[si->curidx];
|
||
|
}
|
||
|
|
||
|
|
||
|
int
|
||
|
sb_corepciid(sb_t *sbh, uint func, uint16 *pcivendor, uint16 *pcidevice,
|
||
|
uint8 *pciclass, uint8 *pcisubclass, uint8 *pciprogif,
|
||
|
uint8 *pciheader)
|
||
|
{
|
||
|
uint16 vendor = 0xffff, device = 0xffff;
|
||
|
uint core, unit;
|
||
|
uint chip, chippkg;
|
||
|
uint nfunc;
|
||
|
char varname[SB_DEVPATH_BUFSZ + 8];
|
||
|
uint8 class, subclass, progif;
|
||
|
char devpath[SB_DEVPATH_BUFSZ];
|
||
|
uint8 header;
|
||
|
|
||
|
core = sb_coreid(sbh);
|
||
|
unit = sb_coreunit(sbh);
|
||
|
|
||
|
chip = sb_chip(sbh);
|
||
|
chippkg = sb_chippkg(sbh);
|
||
|
|
||
|
progif = 0;
|
||
|
header = PCI_HEADER_NORMAL;
|
||
|
|
||
|
/* Verify whether the function exists for the core */
|
||
|
nfunc = (core == SB_USB20H) ? 2 : 1;
|
||
|
if (func >= nfunc)
|
||
|
return BCME_ERROR;
|
||
|
|
||
|
/* Known vendor translations */
|
||
|
switch (sb_corevendor(sbh)) {
|
||
|
case SB_VEND_BCM:
|
||
|
vendor = VENDOR_BROADCOM;
|
||
|
break;
|
||
|
default:
|
||
|
return BCME_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Determine class based on known core codes */
|
||
|
switch (core) {
|
||
|
case SB_ILINE20:
|
||
|
class = PCI_CLASS_NET;
|
||
|
subclass = PCI_NET_ETHER;
|
||
|
device = BCM47XX_ILINE_ID;
|
||
|
break;
|
||
|
case SB_ENET:
|
||
|
class = PCI_CLASS_NET;
|
||
|
subclass = PCI_NET_ETHER;
|
||
|
device = BCM47XX_ENET_ID;
|
||
|
break;
|
||
|
case SB_GIGETH:
|
||
|
class = PCI_CLASS_NET;
|
||
|
subclass = PCI_NET_ETHER;
|
||
|
device = BCM47XX_GIGETH_ID;
|
||
|
break;
|
||
|
case SB_SDRAM:
|
||
|
case SB_MEMC:
|
||
|
class = PCI_CLASS_MEMORY;
|
||
|
subclass = PCI_MEMORY_RAM;
|
||
|
device = (uint16)core;
|
||
|
break;
|
||
|
case SB_PCI:
|
||
|
case SB_PCIE:
|
||
|
class = PCI_CLASS_BRIDGE;
|
||
|
subclass = PCI_BRIDGE_PCI;
|
||
|
device = (uint16)core;
|
||
|
header = PCI_HEADER_BRIDGE;
|
||
|
break;
|
||
|
case SB_MIPS:
|
||
|
case SB_MIPS33:
|
||
|
class = PCI_CLASS_CPU;
|
||
|
subclass = PCI_CPU_MIPS;
|
||
|
device = (uint16)core;
|
||
|
break;
|
||
|
case SB_CODEC:
|
||
|
class = PCI_CLASS_COMM;
|
||
|
subclass = PCI_COMM_MODEM;
|
||
|
device = BCM47XX_V90_ID;
|
||
|
break;
|
||
|
case SB_USB:
|
||
|
class = PCI_CLASS_SERIAL;
|
||
|
subclass = PCI_SERIAL_USB;
|
||
|
progif = 0x10; /* OHCI */
|
||
|
device = BCM47XX_USB_ID;
|
||
|
break;
|
||
|
case SB_USB11H:
|
||
|
class = PCI_CLASS_SERIAL;
|
||
|
subclass = PCI_SERIAL_USB;
|
||
|
progif = 0x10; /* OHCI */
|
||
|
device = BCM47XX_USBH_ID;
|
||
|
break;
|
||
|
case SB_USB20H:
|
||
|
class = PCI_CLASS_SERIAL;
|
||
|
subclass = PCI_SERIAL_USB;
|
||
|
progif = func == 0 ? 0x10 : 0x20; /* OHCI/EHCI */
|
||
|
device = BCM47XX_USB20H_ID;
|
||
|
header = 0x80; /* multifunction */
|
||
|
break;
|
||
|
case SB_USB11D:
|
||
|
class = PCI_CLASS_SERIAL;
|
||
|
subclass = PCI_SERIAL_USB;
|
||
|
device = BCM47XX_USBD_ID;
|
||
|
break;
|
||
|
case SB_USB20D:
|
||
|
class = PCI_CLASS_SERIAL;
|
||
|
subclass = PCI_SERIAL_USB;
|
||
|
device = BCM47XX_USB20D_ID;
|
||
|
break;
|
||
|
case SB_IPSEC:
|
||
|
class = PCI_CLASS_CRYPT;
|
||
|
subclass = PCI_CRYPT_NETWORK;
|
||
|
device = BCM47XX_IPSEC_ID;
|
||
|
break;
|
||
|
case SB_ROBO:
|
||
|
class = PCI_CLASS_NET;
|
||
|
subclass = PCI_NET_OTHER;
|
||
|
device = BCM47XX_ROBO_ID;
|
||
|
break;
|
||
|
case SB_EXTIF:
|
||
|
case SB_CC:
|
||
|
class = PCI_CLASS_MEMORY;
|
||
|
subclass = PCI_MEMORY_FLASH;
|
||
|
device = (uint16)core;
|
||
|
break;
|
||
|
case SB_D11:
|
||
|
class = PCI_CLASS_NET;
|
||
|
subclass = PCI_NET_OTHER;
|
||
|
/* Let nvram variable override core ID */
|
||
|
sb_devpath(sbh, devpath, sizeof(devpath));
|
||
|
sprintf(varname, "%sdevid", devpath);
|
||
|
if ((device = (uint16)getintvar(NULL, varname)))
|
||
|
break;
|
||
|
/*
|
||
|
* no longer support wl%did, but keep the code
|
||
|
* here for backward compatibility.
|
||
|
*/
|
||
|
sprintf(varname, "wl%did", unit);
|
||
|
if ((device = (uint16)getintvar(NULL, varname)))
|
||
|
break;
|
||
|
/* Chip specific conversion */
|
||
|
if (chip == BCM4712_CHIP_ID) {
|
||
|
if (chippkg == BCM4712SMALL_PKG_ID)
|
||
|
device = BCM4306_D11G_ID;
|
||
|
else
|
||
|
device = BCM4306_D11DUAL_ID;
|
||
|
break;
|
||
|
}
|
||
|
/* ignore it */
|
||
|
device = 0xffff;
|
||
|
break;
|
||
|
case SB_SATAXOR:
|
||
|
class = PCI_CLASS_XOR;
|
||
|
subclass = PCI_XOR_QDMA;
|
||
|
device = BCM47XX_SATAXOR_ID;
|
||
|
break;
|
||
|
case SB_ATA100:
|
||
|
class = PCI_CLASS_DASDI;
|
||
|
subclass = PCI_DASDI_IDE;
|
||
|
device = BCM47XX_ATA100_ID;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
class = subclass = progif = 0xff;
|
||
|
device = (uint16)core;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
*pcivendor = vendor;
|
||
|
*pcidevice = device;
|
||
|
*pciclass = class;
|
||
|
*pcisubclass = subclass;
|
||
|
*pciprogif = progif;
|
||
|
*pciheader = header;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* use the mdio interface to write to mdio slaves */
|
||
|
static int
|
||
|
sb_pcie_mdiowrite(sb_info_t *si, uint physmedia, uint regaddr, uint val)
|
||
|
{
|
||
|
uint mdiodata;
|
||
|
uint i = 0;
|
||
|
sbpcieregs_t *pcieregs;
|
||
|
|
||
|
pcieregs = (sbpcieregs_t*) sb_setcoreidx(&si->sb, si->sb.buscoreidx);
|
||
|
ASSERT(pcieregs);
|
||
|
|
||
|
/* enable mdio access to SERDES */
|
||
|
W_REG(si->osh, (&pcieregs->mdiocontrol), MDIOCTL_PREAM_EN | MDIOCTL_DIVISOR_VAL);
|
||
|
|
||
|
mdiodata = MDIODATA_START | MDIODATA_WRITE |
|
||
|
(physmedia << MDIODATA_DEVADDR_SHF) |
|
||
|
(regaddr << MDIODATA_REGADDR_SHF) | MDIODATA_TA | val;
|
||
|
|
||
|
W_REG(si->osh, (&pcieregs->mdiodata), mdiodata);
|
||
|
|
||
|
PR28829_DELAY();
|
||
|
|
||
|
/* retry till the transaction is complete */
|
||
|
while (i < 10) {
|
||
|
if (R_REG(si->osh, &(pcieregs->mdiocontrol)) & MDIOCTL_ACCESS_DONE) {
|
||
|
/* Disable mdio access to SERDES */
|
||
|
W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
|
||
|
return 0;
|
||
|
}
|
||
|
OSL_DELAY(1000);
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
SB_ERROR(("sb_pcie_mdiowrite: timed out\n"));
|
||
|
/* Disable mdio access to SERDES */
|
||
|
W_REG(si->osh, (&pcieregs->mdiocontrol), 0);
|
||
|
ASSERT(0);
|
||
|
return 1;
|
||
|
|
||
|
}
|
||
|
|
||
|
/* indirect way to read pcie config regs */
|
||
|
uint
|
||
|
sb_pcie_readreg(void *sb, void* arg1, uint offset)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sb_t *sbh;
|
||
|
uint retval = 0xFFFFFFFF;
|
||
|
sbpcieregs_t *pcieregs;
|
||
|
uint addrtype;
|
||
|
|
||
|
sbh = (sb_t *)sb;
|
||
|
si = SB_INFO(sbh);
|
||
|
ASSERT(PCIE(si));
|
||
|
|
||
|
pcieregs = (sbpcieregs_t *)sb_setcore(sbh, SB_PCIE, 0);
|
||
|
ASSERT(pcieregs);
|
||
|
|
||
|
addrtype = (uint)((uintptr)arg1);
|
||
|
switch (addrtype) {
|
||
|
case PCIE_CONFIGREGS:
|
||
|
W_REG(si->osh, (&pcieregs->configaddr), offset);
|
||
|
retval = R_REG(si->osh, &(pcieregs->configdata));
|
||
|
break;
|
||
|
case PCIE_PCIEREGS:
|
||
|
W_REG(si->osh, &(pcieregs->pcieaddr), offset);
|
||
|
retval = R_REG(si->osh, &(pcieregs->pciedata));
|
||
|
break;
|
||
|
default:
|
||
|
ASSERT(0);
|
||
|
break;
|
||
|
}
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* indirect way to write pcie config/mdio/pciecore regs */
|
||
|
uint
|
||
|
sb_pcie_writereg(sb_t *sbh, void *arg1, uint offset, uint val)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
sbpcieregs_t *pcieregs;
|
||
|
uint addrtype;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
ASSERT(PCIE(si));
|
||
|
|
||
|
pcieregs = (sbpcieregs_t *)sb_setcore(sbh, SB_PCIE, 0);
|
||
|
ASSERT(pcieregs);
|
||
|
|
||
|
addrtype = (uint)((uintptr)arg1);
|
||
|
|
||
|
switch (addrtype) {
|
||
|
case PCIE_CONFIGREGS:
|
||
|
W_REG(si->osh, (&pcieregs->configaddr), offset);
|
||
|
W_REG(si->osh, (&pcieregs->configdata), val);
|
||
|
break;
|
||
|
case PCIE_PCIEREGS:
|
||
|
W_REG(si->osh, (&pcieregs->pcieaddr), offset);
|
||
|
W_REG(si->osh, (&pcieregs->pciedata), val);
|
||
|
break;
|
||
|
default:
|
||
|
ASSERT(0);
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Build device path. Support SB, PCI, and JTAG for now. */
|
||
|
int
|
||
|
sb_devpath(sb_t *sbh, char *path, int size)
|
||
|
{
|
||
|
ASSERT(path);
|
||
|
ASSERT(size >= SB_DEVPATH_BUFSZ);
|
||
|
|
||
|
switch (BUSTYPE((SB_INFO(sbh))->sb.bustype)) {
|
||
|
case SB_BUS:
|
||
|
case JTAG_BUS:
|
||
|
sprintf(path, "sb/%u/", sb_coreidx(sbh));
|
||
|
break;
|
||
|
case PCI_BUS:
|
||
|
ASSERT((SB_INFO(sbh))->osh);
|
||
|
sprintf(path, "pci/%u/%u/", OSL_PCI_BUS((SB_INFO(sbh))->osh),
|
||
|
OSL_PCI_SLOT((SB_INFO(sbh))->osh));
|
||
|
break;
|
||
|
case PCMCIA_BUS:
|
||
|
SB_ERROR(("sb_devpath: OSL_PCMCIA_BUS() not implemented, bus 1 assumed\n"));
|
||
|
SB_ERROR(("sb_devpath: OSL_PCMCIA_SLOT() not implemented, slot 1 assumed\n"));
|
||
|
sprintf(path, "pc/%u/%u/", 1, 1);
|
||
|
break;
|
||
|
case SDIO_BUS:
|
||
|
SB_ERROR(("sb_devpath: device 0 assumed\n"));
|
||
|
sprintf(path, "sd/%u/", sb_coreidx(sbh));
|
||
|
break;
|
||
|
default:
|
||
|
ASSERT(0);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fixup SROMless PCI device's configuration.
|
||
|
* The current core may be changed upon return.
|
||
|
*/
|
||
|
static int
|
||
|
sb_pci_fixcfg(sb_info_t *si)
|
||
|
{
|
||
|
uint origidx, pciidx;
|
||
|
sbpciregs_t *pciregs;
|
||
|
sbpcieregs_t *pcieregs;
|
||
|
uint16 val16, *reg16;
|
||
|
char name[SB_DEVPATH_BUFSZ+16], *value;
|
||
|
char devpath[SB_DEVPATH_BUFSZ];
|
||
|
|
||
|
ASSERT(BUSTYPE(si->sb.bustype) == PCI_BUS);
|
||
|
|
||
|
/* Fixup PI in SROM shadow area to enable the correct PCI core access */
|
||
|
/* save the current index */
|
||
|
origidx = sb_coreidx(&si->sb);
|
||
|
|
||
|
/* check 'pi' is correct and fix it if not */
|
||
|
if (si->sb.buscoretype == SB_PCIE) {
|
||
|
pcieregs = (sbpcieregs_t *)sb_setcore(&si->sb, SB_PCIE, 0);
|
||
|
ASSERT(pcieregs);
|
||
|
reg16 = &pcieregs->sprom[SRSH_PI_OFFSET];
|
||
|
} else if (si->sb.buscoretype == SB_PCI) {
|
||
|
pciregs = (sbpciregs_t *)sb_setcore(&si->sb, SB_PCI, 0);
|
||
|
ASSERT(pciregs);
|
||
|
reg16 = &pciregs->sprom[SRSH_PI_OFFSET];
|
||
|
} else {
|
||
|
ASSERT(0);
|
||
|
return -1;
|
||
|
}
|
||
|
pciidx = sb_coreidx(&si->sb);
|
||
|
val16 = R_REG(si->osh, reg16);
|
||
|
if (((val16 & SRSH_PI_MASK) >> SRSH_PI_SHIFT) != (uint16)pciidx) {
|
||
|
val16 = (uint16)(pciidx << SRSH_PI_SHIFT) | (val16 & ~SRSH_PI_MASK);
|
||
|
W_REG(si->osh, reg16, val16);
|
||
|
}
|
||
|
|
||
|
/* restore the original index */
|
||
|
sb_setcoreidx(&si->sb, origidx);
|
||
|
|
||
|
/*
|
||
|
* Fixup bar0window in PCI config space to make the core indicated
|
||
|
* by the nvram variable the current core.
|
||
|
* !Do it last, it may change the current core!
|
||
|
*/
|
||
|
if (sb_devpath(&si->sb, devpath, sizeof(devpath)))
|
||
|
return -1;
|
||
|
sprintf(name, "%sb0w", devpath);
|
||
|
if ((value = getvar(NULL, name))) {
|
||
|
OSL_PCI_WRITE_CONFIG(si->osh, PCI_BAR0_WIN, sizeof(uint32),
|
||
|
bcm_strtoul(value, NULL, 16));
|
||
|
/* update curidx since the current core is changed */
|
||
|
si->curidx = _sb_coreidx(si);
|
||
|
if (si->curidx == BADIDX) {
|
||
|
SB_ERROR(("sb_pci_fixcfg: bad core index\n"));
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static uint
|
||
|
sb_chipc_capability(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
/* Make sure that there is ChipCommon core present */
|
||
|
if (si->coreid[SB_CC_IDX] == SB_CC)
|
||
|
return (sb_corereg(si, SB_CC_IDX, OFFSETOF(chipcregs_t, capabilities),
|
||
|
0, 0));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Return ADDR64 capability of the backplane */
|
||
|
bool
|
||
|
sb_backplane64(sb_t *sbh)
|
||
|
{
|
||
|
return ((sb_chipc_capability(sbh) & CAP_BKPLN64) != 0);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
sb_btcgpiowar(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint origidx;
|
||
|
uint intr_val = 0;
|
||
|
chipcregs_t *cc;
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
/* Make sure that there is ChipCommon core present &&
|
||
|
* UART_TX is strapped to 1
|
||
|
*/
|
||
|
if (!(sb_chipc_capability(sbh) & CAP_UARTGPIO))
|
||
|
return;
|
||
|
|
||
|
/* sb_corereg cannot be used as we have to guarantee 8-bit read/writes */
|
||
|
INTR_OFF(si, intr_val);
|
||
|
|
||
|
origidx = sb_coreidx(sbh);
|
||
|
|
||
|
cc = (chipcregs_t *)sb_setcore(sbh, SB_CC, 0);
|
||
|
if (cc == NULL)
|
||
|
goto end;
|
||
|
|
||
|
W_REG(si->osh, &cc->uart0mcr, R_REG(si->osh, &cc->uart0mcr) | 0x04);
|
||
|
|
||
|
end:
|
||
|
/* restore the original index */
|
||
|
sb_setcoreidx(sbh, origidx);
|
||
|
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
}
|
||
|
|
||
|
/* check if the device is removed */
|
||
|
bool
|
||
|
sb_deviceremoved(sb_t *sbh)
|
||
|
{
|
||
|
uint32 w;
|
||
|
sb_info_t *si;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
|
||
|
switch (BUSTYPE(si->sb.bustype)) {
|
||
|
case PCI_BUS:
|
||
|
ASSERT(si->osh);
|
||
|
w = OSL_PCI_READ_CONFIG(si->osh, PCI_CFG_VID, sizeof(uint32));
|
||
|
if ((w & 0xFFFF) != VENDOR_BROADCOM)
|
||
|
return TRUE;
|
||
|
else
|
||
|
return FALSE;
|
||
|
default:
|
||
|
return FALSE;
|
||
|
}
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/* Return the RAM size of the SOCRAM core */
|
||
|
uint32
|
||
|
sb_socram_size(sb_t *sbh)
|
||
|
{
|
||
|
sb_info_t *si;
|
||
|
uint origidx;
|
||
|
uint intr_val = 0;
|
||
|
|
||
|
sbsocramregs_t *regs;
|
||
|
bool wasup;
|
||
|
uint corerev;
|
||
|
uint32 coreinfo;
|
||
|
uint memsize = 0;
|
||
|
|
||
|
si = SB_INFO(sbh);
|
||
|
ASSERT(si);
|
||
|
|
||
|
/* Block ints and save current core */
|
||
|
INTR_OFF(si, intr_val);
|
||
|
origidx = sb_coreidx(sbh);
|
||
|
|
||
|
/* Switch to SOCRAM core */
|
||
|
if (!(regs = sb_setcore(sbh, SB_SOCRAM, 0)))
|
||
|
goto done;
|
||
|
|
||
|
/* Get info for determining size */
|
||
|
if (!(wasup = sb_iscoreup(sbh)))
|
||
|
sb_core_reset(sbh, 0, 0);
|
||
|
corerev = sb_corerev(sbh);
|
||
|
coreinfo = R_REG(si->osh, ®s->coreinfo);
|
||
|
|
||
|
/* Calculate size from coreinfo based on rev */
|
||
|
switch (corerev) {
|
||
|
case 0:
|
||
|
memsize = 1 << (16 + (coreinfo & SRCI_MS0_MASK));
|
||
|
break;
|
||
|
default: /* rev >= 1 */
|
||
|
memsize = 1 << (SR_BSZ_BASE + (coreinfo & SRCI_SRBSZ_MASK));
|
||
|
memsize *= (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Return to previous state and core */
|
||
|
if (!wasup)
|
||
|
sb_core_disable(sbh, 0);
|
||
|
sb_setcoreidx(sbh, origidx);
|
||
|
|
||
|
done:
|
||
|
INTR_RESTORE(si, intr_val);
|
||
|
return memsize;
|
||
|
}
|
||
|
|
||
|
|