openwrt/target/linux/realtek/files-5.10/drivers/clocksource/timer-rtl9300.c

197 lines
5.3 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/clockchips.h>
#include <linux/init.h>
#include <asm/time.h>
#include <linux/interrupt.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include "timer-of.h"
#include <mach-rtl83xx.h>
/*
* Timer registers
* the RTL9300/9310 SoCs have 6 timers, each register block 0x10 apart
*/
#define RTL9300_TC_DATA 0x0
#define RTL9300_TC_CNT 0x4
#define RTL9300_TC_CTRL 0x8
#define RTL9300_TC_CTRL_MODE BIT(24)
#define RTL9300_TC_CTRL_EN BIT(28)
#define RTL9300_TC_INT 0xc
#define RTL9300_TC_INT_IP BIT(16)
#define RTL9300_TC_INT_IE BIT(20)
// Clocksource is using timer 0, clock event uses timer 1
#define TIMER_CLK_SRC 0
#define TIMER_CLK_EVT 1
#define TIMER_BLK_EVT (TIMER_CLK_EVT << 4)
// Timer modes
#define TIMER_MODE_REPEAT 1
#define TIMER_MODE_ONCE 0
// Minimum divider is 2
#define DIVISOR_RTL9300 2
#define N_BITS 28
static void __iomem *rtl9300_sched_reg __read_mostly;
static u64 notrace rtl9300_sched_clock_read(void)
{
/* pr_info("In %s: %x\n", __func__, readl_relaxed(rtl9300_sched_reg));
dump_stack();*/
return readl_relaxed(rtl9300_sched_reg);
}
static irqreturn_t rtl9300_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *clk = dev_id;
struct timer_of *to = to_timer_of(clk);
u32 v = readl(timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_INT);
// Acknowledge the IRQ
v |= RTL9300_TC_INT_IP;
writel(v, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_INT);
clk->event_handler(clk);
return IRQ_HANDLED;
}
static void rtl9300_timer_stop(struct timer_of *to)
{
u32 v;
writel(0, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_CTRL);
// Acknowledge possibly pending IRQ
v = readl(timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_INT);
if (v & RTL9300_TC_INT_IP)
writel(v, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_INT);
}
static void rtl9300_timer_start(struct timer_of *to, int timer, bool periodic)
{
u32 v = (periodic ? RTL9300_TC_CTRL_MODE : 0) | RTL9300_TC_CTRL_EN | DIVISOR_RTL9300;
writel(v, timer_of_base(to) + timer * 0x10 + RTL9300_TC_CTRL);
}
static int rtl9300_set_next_event(unsigned long delta, struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
rtl9300_timer_stop(to);
writel(delta, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_DATA);
rtl9300_timer_start(to, TIMER_CLK_EVT, TIMER_MODE_ONCE);
return 0;
}
static int rtl9300_set_state_periodic(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
rtl9300_timer_stop(to);
writel(to->of_clk.period, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_DATA);
rtl9300_timer_start(to, TIMER_CLK_EVT, TIMER_MODE_REPEAT);
return 0;
}
static int rtl9300_set_state_oneshot(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
rtl9300_timer_stop(to);
writel(to->of_clk.period, timer_of_base(to) + TIMER_BLK_EVT + RTL9300_TC_DATA);
rtl9300_timer_start(to, TIMER_CLK_EVT, TIMER_MODE_ONCE);
return 0;
}
static int rtl9300_set_state_shutdown(struct clock_event_device *clk)
{
struct timer_of *to = to_timer_of(clk);
rtl9300_timer_stop(to);
return 0;
}
static struct timer_of t_of = {
.flags = TIMER_OF_BASE | TIMER_OF_IRQ | TIMER_OF_CLOCK,
.clkevt = {
.name = "rtl9300_timer",
.rating = 350,
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_next_event = rtl9300_set_next_event,
.set_state_oneshot = rtl9300_set_state_oneshot,
.set_state_periodic = rtl9300_set_state_periodic,
.set_state_shutdown = rtl9300_set_state_shutdown,
},
.of_irq = {
.name = "ostimer",
.handler = rtl9300_timer_interrupt,
.flags = IRQF_TIMER,
},
};
static void __init rtl9300_timer_setup(u8 timer)
{
u32 v;
// Disable timer
writel(0, timer_of_base(&t_of) + 0x10 * timer + RTL9300_TC_CTRL);
// Acknowledge possibly pending IRQ
v = readl(timer_of_base(&t_of) + 0x10 * timer + RTL9300_TC_INT);
if (v & RTL9300_TC_INT_IP)
writel(v, timer_of_base(&t_of) + 0x10 * timer + RTL9300_TC_INT);
// Setup maximum period (for use as clock-source)
writel(0x0fffffff, timer_of_base(&t_of) + 0x10 * timer + RTL9300_TC_DATA);
}
static int __init rtl9300_timer_init(struct device_node *node)
{
int err = 0;
unsigned long rate;
pr_info("%s: setting up timer\n", __func__);
err = timer_of_init(node, &t_of);
if (err)
return err;
rate = timer_of_rate(&t_of) / DIVISOR_RTL9300;
pr_info("Frequency in dts: %ld, my rate is %ld, period %ld\n",
timer_of_rate(&t_of), rate, timer_of_period(&t_of));
pr_info("With base %08x IRQ: %d\n", (u32)timer_of_base(&t_of), timer_of_irq(&t_of));
// Configure clock source and register it for scheduling
rtl9300_timer_setup(TIMER_CLK_SRC);
rtl9300_timer_start(&t_of, TIMER_CLK_SRC, TIMER_MODE_REPEAT);
rtl9300_sched_reg = timer_of_base(&t_of) + TIMER_CLK_SRC * 0x10 + RTL9300_TC_CNT;
err = clocksource_mmio_init(rtl9300_sched_reg, node->name, rate , 100, N_BITS,
clocksource_mmio_readl_up);
if (err)
return err;
sched_clock_register(rtl9300_sched_clock_read, N_BITS, rate);
// Configure clock event source
rtl9300_timer_setup(TIMER_CLK_EVT);
clockevents_config_and_register(&t_of.clkevt, rate, 100, 0x0fffffff);
// Enable interrupt
writel(RTL9300_TC_INT_IE, timer_of_base(&t_of) + TIMER_BLK_EVT + RTL9300_TC_INT);
return err;
}
TIMER_OF_DECLARE(rtl9300_timer, "realtek,rtl9300-timer", rtl9300_timer_init);