2010-04-11 17:47:25 +00:00
|
|
|
#
|
|
|
|
# Copyright (C) 2010 OpenWrt.org
|
|
|
|
#
|
|
|
|
|
|
|
|
PART_NAME=firmware
|
2018-11-29 23:03:19 +00:00
|
|
|
REQUIRE_IMAGE_METADATA=1
|
2010-04-11 17:47:25 +00:00
|
|
|
|
|
|
|
platform_check_image() {
|
2018-11-29 23:04:06 +00:00
|
|
|
return 0
|
2010-04-11 17:47:25 +00:00
|
|
|
}
|
|
|
|
|
ramips: Add support for Mikrotik RouterBOARD RBM33g
This commit adds support for the Mikrotik RouterBOARD RBM33g.
=Hardware=
The RBM33g is a mt7621 based device featuring three gigabit ports, 2
miniPCIe slots with sim card sockets, 1 M.2 slot, 1 USB 3.0 port and a male
onboard RS-232 serial port. Additionally there are a lot of accessible
GPIO ports and additional buses like i2c, mdio, spi and uart.
==Switch==
The three Ethernet ports are all connected to the internal switch of the
mt7621 SoC:
port 0: Ethernet Port next to barrel jack with PoE printed on it
port 1: Innermost Ethernet Port on opposite side of RS-232 port
port 2: Outermost Ethernet Port on opposite side of RS-232 port
port 6: CPU
==Flash==
The device has two spi flash chips. The first flash chips is rather small
(512 kB), connected to CS0 by default and contains only the RouterBOOT
bootloader and some factory information (e.g. mac address).
The second chip has a size of 16 MB, is by default connected to CS1 and
contains the firmware image.
==PCIe==
The board features three PCIe-enabled slots. Two of them are miniPCIe
slots (PCIe0, PCIe1) and one is a M.2 (Key M) slot (PCIe2).
Each of the miniPCIe slots is connected to a dedicated mini SIM socket
on the back of the board.
Power to all three PCIe-enabled slots is controlled via GPIOs on the
mt7621 SoC:
PCIe0: GPIO9
PCIe1: GPIO10
PCIe2: GPIO11
==USB==
The board has one external USB 3.0 port at the rear. Additionally PCIe
port 0 has a permanently enabled USB interface. PCIe slot 1 shares its
USB interface with the rear USB port. Thus only either the rear USB port
or the USB interface of PCIe slot 1 can be active at the same time. The
jumper next to the rear USB port controls which one is active:
open: USB on PCIe 1 is active
closed: USB on rear USB port is active
==Power==
The board can accept both, passive PoE and external power via a 2.1 mm
barrel jack. The input voltage range is 11-32 V.
=Installation=
==Prerequisites==
A USB -> RS-232 Adapter and a null modem cable are required for
installation.
To install an OpenWRT image to the device two components must be built:
1. A openwrt initramfs image
2. A openwrt sysupgrade image
===initramfs & sysupgrade image===
Select target devices "Mikrotik RBM33G" in
openwrt menuconfig and build the images. This will create the images
"openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" and
"openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" in the output
directory.
==Installing==
**Make sure to back up your RouterOS license in case you do ever want to
go back to RouterOS using "/system license output" and back up the created
license file.**
Serial settings: 115200 8N1
The installation is a two-step process. First the
"openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" must be booted
via tftp:
1. Set up a dhcp server that points the bootfile to tftp server serving
the "openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin"
initramfs image
2. Connect to WAN port (left side, next to sys-LED and power indicator)
3. Connect to serial port of board
4. Power on board and enter RouterBOOT setup menu
5. Set boot device to "boot over ethernet"
6. Set boot protocol to "dhcp protocol" (can be omitted if DHCP server
allows dynamic bootp)
6. Save config
7. Wait for board to boot via Ethernet
On the serial port you should now be presented with the OpenWRT boot log.
The next steps will install OpenWRT persistently.
1. Copy "openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" to the device
using scp.
2. Write openwrt to flash using "sysupgrade
openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin"
Once the flashing completes reboot the router and let it boot from flash.
It should boot straight to OpenWRT.
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2018-05-04 01:47:23 +00:00
|
|
|
platform_pre_upgrade() {
|
|
|
|
local board=$(board_name)
|
|
|
|
|
|
|
|
case "$board" in
|
2018-06-25 20:51:43 +00:00
|
|
|
mikrotik,rbm11g|\
|
ramips: Add support for Mikrotik RouterBOARD RBM33g
This commit adds support for the Mikrotik RouterBOARD RBM33g.
=Hardware=
The RBM33g is a mt7621 based device featuring three gigabit ports, 2
miniPCIe slots with sim card sockets, 1 M.2 slot, 1 USB 3.0 port and a male
onboard RS-232 serial port. Additionally there are a lot of accessible
GPIO ports and additional buses like i2c, mdio, spi and uart.
==Switch==
The three Ethernet ports are all connected to the internal switch of the
mt7621 SoC:
port 0: Ethernet Port next to barrel jack with PoE printed on it
port 1: Innermost Ethernet Port on opposite side of RS-232 port
port 2: Outermost Ethernet Port on opposite side of RS-232 port
port 6: CPU
==Flash==
The device has two spi flash chips. The first flash chips is rather small
(512 kB), connected to CS0 by default and contains only the RouterBOOT
bootloader and some factory information (e.g. mac address).
The second chip has a size of 16 MB, is by default connected to CS1 and
contains the firmware image.
==PCIe==
The board features three PCIe-enabled slots. Two of them are miniPCIe
slots (PCIe0, PCIe1) and one is a M.2 (Key M) slot (PCIe2).
Each of the miniPCIe slots is connected to a dedicated mini SIM socket
on the back of the board.
Power to all three PCIe-enabled slots is controlled via GPIOs on the
mt7621 SoC:
PCIe0: GPIO9
PCIe1: GPIO10
PCIe2: GPIO11
==USB==
The board has one external USB 3.0 port at the rear. Additionally PCIe
port 0 has a permanently enabled USB interface. PCIe slot 1 shares its
USB interface with the rear USB port. Thus only either the rear USB port
or the USB interface of PCIe slot 1 can be active at the same time. The
jumper next to the rear USB port controls which one is active:
open: USB on PCIe 1 is active
closed: USB on rear USB port is active
==Power==
The board can accept both, passive PoE and external power via a 2.1 mm
barrel jack. The input voltage range is 11-32 V.
=Installation=
==Prerequisites==
A USB -> RS-232 Adapter and a null modem cable are required for
installation.
To install an OpenWRT image to the device two components must be built:
1. A openwrt initramfs image
2. A openwrt sysupgrade image
===initramfs & sysupgrade image===
Select target devices "Mikrotik RBM33G" in
openwrt menuconfig and build the images. This will create the images
"openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" and
"openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" in the output
directory.
==Installing==
**Make sure to back up your RouterOS license in case you do ever want to
go back to RouterOS using "/system license output" and back up the created
license file.**
Serial settings: 115200 8N1
The installation is a two-step process. First the
"openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" must be booted
via tftp:
1. Set up a dhcp server that points the bootfile to tftp server serving
the "openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin"
initramfs image
2. Connect to WAN port (left side, next to sys-LED and power indicator)
3. Connect to serial port of board
4. Power on board and enter RouterBOOT setup menu
5. Set boot device to "boot over ethernet"
6. Set boot protocol to "dhcp protocol" (can be omitted if DHCP server
allows dynamic bootp)
6. Save config
7. Wait for board to boot via Ethernet
On the serial port you should now be presented with the OpenWRT boot log.
The next steps will install OpenWRT persistently.
1. Copy "openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" to the device
using scp.
2. Write openwrt to flash using "sysupgrade
openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin"
Once the flashing completes reboot the router and let it boot from flash.
It should boot straight to OpenWRT.
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
2018-05-04 01:47:23 +00:00
|
|
|
mikrotik,rbm33g)
|
|
|
|
[ -z "$(rootfs_type)" ] && mtd erase firmware
|
|
|
|
;;
|
|
|
|
esac
|
|
|
|
}
|
|
|
|
|
ramips: add support for Ubiquiti EdgeRouter X (UBNT-ERX)
This router is based on MT7621 SoC, no wifi, no usb, nand.
Works:
* Boots.
* Ethernet.
* Switch.
* Button (reset).
* Flashing OpenWrt from stock firmware.
* Upgrading OpenWrt.
Doesn't work:
* No GPIO leds. All leds are controlled by switch,
but stock firmware was able to control them.
* SoC has crypto engine but no open driver.
* SoC has nat acceleration, but no open driver.
* This router has 2MB spi flash soldered in but MT
nand/spi drivers do not support pin sharing,
so it is not accessable and disabled. Stock
firmware could read it and it was empty.
* PoE out.
Router has serial pins populated. If looking at the top
of the router, then counting from Eth sockets pins go as:
'GND, RX, TX, GND'. 3.3v, 57600.
U-boot bootloader supports tftpboot, controlled from serial.
This router has two kernel partitions: 'live' and 'backup'.
They are swapped during flashing (on both stock and OpenWrt).
Active partition is controlled by a flag in a factory partition.
U-boot has custom command to switch active kernel partition.
Kernel partitions are 'bare flash' 3MB. Stock bootloader has
no UBI support. Stock rootfs is UBIFS.
Flashing procedure.
Stock firmware uses custom kernel patch to mount squashfs
from a file that is located on UBIFS volume. This makes wiping
out this volume from within stock firmware difficult.
Instead this patch builds image that is flashable by stock firmware
and contains initrams image (with minimal set of packages
to fit into kernel partition). Once this is flashed one can reboot
into initramfs OpenWrt and use sysupgrade to flash OpenWrt including
rootfs into nand.
Note: factory image is only built if initramfs image is enabled.
Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com>
SVN-Revision: 47881
2015-12-12 07:38:06 +00:00
|
|
|
platform_nand_pre_upgrade() {
|
2017-05-12 20:36:07 +00:00
|
|
|
local board=$(board_name)
|
ramips: add support for Ubiquiti EdgeRouter X (UBNT-ERX)
This router is based on MT7621 SoC, no wifi, no usb, nand.
Works:
* Boots.
* Ethernet.
* Switch.
* Button (reset).
* Flashing OpenWrt from stock firmware.
* Upgrading OpenWrt.
Doesn't work:
* No GPIO leds. All leds are controlled by switch,
but stock firmware was able to control them.
* SoC has crypto engine but no open driver.
* SoC has nat acceleration, but no open driver.
* This router has 2MB spi flash soldered in but MT
nand/spi drivers do not support pin sharing,
so it is not accessable and disabled. Stock
firmware could read it and it was empty.
* PoE out.
Router has serial pins populated. If looking at the top
of the router, then counting from Eth sockets pins go as:
'GND, RX, TX, GND'. 3.3v, 57600.
U-boot bootloader supports tftpboot, controlled from serial.
This router has two kernel partitions: 'live' and 'backup'.
They are swapped during flashing (on both stock and OpenWrt).
Active partition is controlled by a flag in a factory partition.
U-boot has custom command to switch active kernel partition.
Kernel partitions are 'bare flash' 3MB. Stock bootloader has
no UBI support. Stock rootfs is UBIFS.
Flashing procedure.
Stock firmware uses custom kernel patch to mount squashfs
from a file that is located on UBIFS volume. This makes wiping
out this volume from within stock firmware difficult.
Instead this patch builds image that is flashable by stock firmware
and contains initrams image (with minimal set of packages
to fit into kernel partition). Once this is flashed one can reboot
into initramfs OpenWrt and use sysupgrade to flash OpenWrt including
rootfs into nand.
Note: factory image is only built if initramfs image is enabled.
Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com>
SVN-Revision: 47881
2015-12-12 07:38:06 +00:00
|
|
|
|
|
|
|
case "$board" in
|
2017-05-29 09:24:49 +00:00
|
|
|
ubnt-erx|\
|
|
|
|
ubnt-erx-sfp)
|
ramips: add support for Ubiquiti EdgeRouter X (UBNT-ERX)
This router is based on MT7621 SoC, no wifi, no usb, nand.
Works:
* Boots.
* Ethernet.
* Switch.
* Button (reset).
* Flashing OpenWrt from stock firmware.
* Upgrading OpenWrt.
Doesn't work:
* No GPIO leds. All leds are controlled by switch,
but stock firmware was able to control them.
* SoC has crypto engine but no open driver.
* SoC has nat acceleration, but no open driver.
* This router has 2MB spi flash soldered in but MT
nand/spi drivers do not support pin sharing,
so it is not accessable and disabled. Stock
firmware could read it and it was empty.
* PoE out.
Router has serial pins populated. If looking at the top
of the router, then counting from Eth sockets pins go as:
'GND, RX, TX, GND'. 3.3v, 57600.
U-boot bootloader supports tftpboot, controlled from serial.
This router has two kernel partitions: 'live' and 'backup'.
They are swapped during flashing (on both stock and OpenWrt).
Active partition is controlled by a flag in a factory partition.
U-boot has custom command to switch active kernel partition.
Kernel partitions are 'bare flash' 3MB. Stock bootloader has
no UBI support. Stock rootfs is UBIFS.
Flashing procedure.
Stock firmware uses custom kernel patch to mount squashfs
from a file that is located on UBIFS volume. This makes wiping
out this volume from within stock firmware difficult.
Instead this patch builds image that is flashable by stock firmware
and contains initrams image (with minimal set of packages
to fit into kernel partition). Once this is flashed one can reboot
into initramfs OpenWrt and use sysupgrade to flash OpenWrt including
rootfs into nand.
Note: factory image is only built if initramfs image is enabled.
Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com>
SVN-Revision: 47881
2015-12-12 07:38:06 +00:00
|
|
|
platform_upgrade_ubnt_erx "$ARGV"
|
|
|
|
;;
|
|
|
|
esac
|
|
|
|
}
|
|
|
|
|
2017-04-22 19:27:04 +00:00
|
|
|
platform_do_upgrade() {
|
2017-05-12 20:36:07 +00:00
|
|
|
local board=$(board_name)
|
ramips: add support for Ubiquiti EdgeRouter X (UBNT-ERX)
This router is based on MT7621 SoC, no wifi, no usb, nand.
Works:
* Boots.
* Ethernet.
* Switch.
* Button (reset).
* Flashing OpenWrt from stock firmware.
* Upgrading OpenWrt.
Doesn't work:
* No GPIO leds. All leds are controlled by switch,
but stock firmware was able to control them.
* SoC has crypto engine but no open driver.
* SoC has nat acceleration, but no open driver.
* This router has 2MB spi flash soldered in but MT
nand/spi drivers do not support pin sharing,
so it is not accessable and disabled. Stock
firmware could read it and it was empty.
* PoE out.
Router has serial pins populated. If looking at the top
of the router, then counting from Eth sockets pins go as:
'GND, RX, TX, GND'. 3.3v, 57600.
U-boot bootloader supports tftpboot, controlled from serial.
This router has two kernel partitions: 'live' and 'backup'.
They are swapped during flashing (on both stock and OpenWrt).
Active partition is controlled by a flag in a factory partition.
U-boot has custom command to switch active kernel partition.
Kernel partitions are 'bare flash' 3MB. Stock bootloader has
no UBI support. Stock rootfs is UBIFS.
Flashing procedure.
Stock firmware uses custom kernel patch to mount squashfs
from a file that is located on UBIFS volume. This makes wiping
out this volume from within stock firmware difficult.
Instead this patch builds image that is flashable by stock firmware
and contains initrams image (with minimal set of packages
to fit into kernel partition). Once this is flashed one can reboot
into initramfs OpenWrt and use sysupgrade to flash OpenWrt including
rootfs into nand.
Note: factory image is only built if initramfs image is enabled.
Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com>
SVN-Revision: 47881
2015-12-12 07:38:06 +00:00
|
|
|
|
|
|
|
case "$board" in
|
2017-02-22 12:47:22 +00:00
|
|
|
hc5962|\
|
2017-08-12 14:56:11 +00:00
|
|
|
mir3g|\
|
2017-03-11 07:44:33 +00:00
|
|
|
r6220|\
|
2017-05-29 09:24:49 +00:00
|
|
|
ubnt-erx|\
|
|
|
|
ubnt-erx-sfp)
|
ramips: add support for Ubiquiti EdgeRouter X (UBNT-ERX)
This router is based on MT7621 SoC, no wifi, no usb, nand.
Works:
* Boots.
* Ethernet.
* Switch.
* Button (reset).
* Flashing OpenWrt from stock firmware.
* Upgrading OpenWrt.
Doesn't work:
* No GPIO leds. All leds are controlled by switch,
but stock firmware was able to control them.
* SoC has crypto engine but no open driver.
* SoC has nat acceleration, but no open driver.
* This router has 2MB spi flash soldered in but MT
nand/spi drivers do not support pin sharing,
so it is not accessable and disabled. Stock
firmware could read it and it was empty.
* PoE out.
Router has serial pins populated. If looking at the top
of the router, then counting from Eth sockets pins go as:
'GND, RX, TX, GND'. 3.3v, 57600.
U-boot bootloader supports tftpboot, controlled from serial.
This router has two kernel partitions: 'live' and 'backup'.
They are swapped during flashing (on both stock and OpenWrt).
Active partition is controlled by a flag in a factory partition.
U-boot has custom command to switch active kernel partition.
Kernel partitions are 'bare flash' 3MB. Stock bootloader has
no UBI support. Stock rootfs is UBIFS.
Flashing procedure.
Stock firmware uses custom kernel patch to mount squashfs
from a file that is located on UBIFS volume. This makes wiping
out this volume from within stock firmware difficult.
Instead this patch builds image that is flashable by stock firmware
and contains initrams image (with minimal set of packages
to fit into kernel partition). Once this is flashed one can reboot
into initramfs OpenWrt and use sysupgrade to flash OpenWrt including
rootfs into nand.
Note: factory image is only built if initramfs image is enabled.
Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com>
SVN-Revision: 47881
2015-12-12 07:38:06 +00:00
|
|
|
nand_do_upgrade "$ARGV"
|
|
|
|
;;
|
2010-04-11 17:47:25 +00:00
|
|
|
*)
|
|
|
|
default_do_upgrade "$ARGV"
|
|
|
|
;;
|
|
|
|
esac
|
|
|
|
}
|