openwrt/target/linux/ath79/dts/qca9557_buffalo_bhr-4grv2.dts

155 lines
2.6 KiB
Plaintext
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later OR MIT
#include "qca955x.dtsi"
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/input/input.h>
#include <dt-bindings/leds/common.h>
/ {
compatible = "buffalo,bhr-4grv2", "qca,qca9557";
model = "Buffalo BHR-4GRV2";
aliases {
led-boot = &led_power;
led-failsafe = &led_power;
led-running = &led_power;
led-upgrade = &led_power;
};
leds {
compatible = "gpio-leds";
led_power: power {
function = LED_FUNCTION_POWER;
color = <LED_COLOR_ID_GREEN>;
gpios = <&gpio 19 GPIO_ACTIVE_LOW>;
default-state = "on";
};
diag {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "orange:diag";
gpios = <&gpio 20 GPIO_ACTIVE_LOW>;
};
vpn_orange {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "orange:vpn";
gpios = <&gpio 3 GPIO_ACTIVE_LOW>;
};
vpn_green {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "green:vpn";
gpios = <&gpio 18 GPIO_ACTIVE_LOW>;
};
};
keys {
compatible = "gpio-keys";
reset {
label = "reset";
gpios = <&gpio 17 GPIO_ACTIVE_LOW>;
linux,code = <KEY_RESTART>;
debounce-interval = <60>;
};
eco {
label = "eco";
gpios = <&gpio 21 GPIO_ACTIVE_LOW>;
linux,code = <BTN_0>;
linux,input-type = <EV_SW>;
debounce-interval = <60>;
};
};
};
&spi {
status = "okay";
flash@0 {
compatible = "jedec,spi-nor";
reg = <0>;
spi-max-frequency = <25000000>;
partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;
partition@0 {
label = "u-boot";
reg = <0x000000 0x040000>;
read-only;
};
partition@40000 {
label = "u-boot-env";
reg = <0x040000 0x010000>;
};
partition@50000 {
ath79: modify mtd partitions for Buffalo BHR-4GRV2 This commit modifies mtd partitions define for Buffalo BHR-4GRV2 and move it to generic subtarget. In Buffalo BHR-4GRV2, "kernel" partition is located behined "rootfs" partition in the stock firmware. This causes the size of the kernel to be limited by the fixed value. 0x50000 0xe80000 0xff0000 +-------------------------------+--------------+ | rootfs | kernel | | (14528k) | (1472k) | +-------------------------------+--------------+ After ar71xx was updated to Kernel 4.14, the kernel size of BHR-4GRV2 exceeded the limit, and it breaks builds on official buildbot. Since this issue was also confirmed in ath79, I modified the mtd partitions to get rid of that limitation. 0x50000 0xff0000 +----------------------------------------------+ | firmware | | (16000k) | +----------------------------------------------+ However, this commit breaks compatibility with ar71xx firmware, so I dropped "SUPPORTED_DEVICES += bhr-4grv2". This commit requires new flash instruction instead of the old one. Flash instruction using initramfs image: 1. Connect the computer to the LAN port of BHR-4GRV2 2. Set the IP address of the computer to 192.168.12.10 3. Rename the OpenWrt initramfs image to "bhr4grv2-uImage-initramfs-gzip.bin" and place it into the TFTP directory 4. Start the tftp server on the computer 5. While holding down the "ECO" button, connect power cable to BHR-4GRV2 and turn on it 6. Flashing (orange) diag LED and release the finger from the button, BHR-4GRV2 downloads the intiramfs image from TFTP server and boot with it 7. On the initramfs image, create "/etc/fw_env.config" file with following contents /dev/mtd1 0x0 0x10000 0x10000 8. Execute following commands to add environment variables for u-boot fw_setenv ipaddr 192.168.12.1 fw_setenv serverip 192.168.12.10 fw_setenv ethaddr 00:aa:bb:cc:dd:ee fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000" 9. Perform sysupgrade with squashfs-sysupgrade image 10. Wait ~150 seconds to complete flashing And this commit includes small fix; BHR-4GRV2 has QCA9557 as a SoC, not QCA9558. Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2018-11-06 13:37:43 +00:00
compatible = "denx,uimage";
label = "firmware";
reg = <0x050000 0xfa0000>;
};
partition@ff0000 {
label = "art";
reg = <0xff0000 0x010000>;
read-only;
nvmem-layout {
compatible = "fixed-layout";
#address-cells = <1>;
#size-cells = <1>;
macaddr_art_0: macaddr@0 {
reg = <0x0 0x6>;
};
macaddr_art_6: macaddr@6 {
reg = <0x6 0x6>;
};
};
};
};
};
};
&mdio0 {
status = "okay";
phy0: ethernet-phy@0 {
reg = <0>;
qca,ar8327-initvals = <
0x04 0x80080080 /* PORT0 PAD MODE CTRL */
0x0c 0x07600000 /* PORT6 PAD MODE CTRL */
0x7c 0x0000007e /* PORT0_STATUS */
0x94 0x0000007e /* PORT6 STATUS */
>;
};
};
&eth0 {
status = "okay";
nvmem-cells = <&macaddr_art_0>;
nvmem-cell-names = "mac-address";
phy-handle = <&phy0>;
pll-data = <0x56000000 0x00000101 0x00001616>;
};
&eth1 {
status = "okay";
nvmem-cells = <&macaddr_art_6>;
nvmem-cell-names = "mac-address";
pll-data = <0x03000101 0x00000101 0x00001616>;
fixed-link {
speed = <1000>;
full-duplex;
};
};