openwrt/target/linux/bcm53xx/image/Makefile

457 lines
12 KiB
Makefile
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
#
# Copyright (C) 2013 OpenWrt.org
include $(TOPDIR)/rules.mk
include $(INCLUDE_DIR)/image.mk
define Image/Prepare
rm -f $(KDIR)/fs_mark
echo -ne '\xde\xad\xc0\xde' > $(KDIR)/fs_mark
$(call prepare_generic_squashfs,$(KDIR)/fs_mark)
# For UBI we want only one extra block
rm -f $(KDIR)/ubi_mark
echo -ne '\xde\xad\xc0\xde' > $(KDIR)/ubi_mark
endef
define Build/lzma-d16
$(STAGING_DIR_HOST)/bin/lzma e $@ -d16 $(1) $@.new
mv $@.new $@
endef
# Similar to Build/tplink-safeloader but uses TRX instead of clean kernel
define Build/bcm53xx-tplink-safeloader
$(STAGING_DIR_HOST)/bin/trx \
-o $@.trx \
-m 33554432 \
-f $(IMAGE_KERNEL) -a 1024
$(STAGING_DIR_HOST)/bin/tplink-safeloader \
-B $(TPLINK_BOARD) \
-k $@.trx \
-r $@ \
-j \
-o $@.new
mv $@.new $@
rm $@.trx
endef
define Build/buffalo-wzr-header
$(eval product=$(word 1,$(1)))
$(eval region=$(word 2,$(1)))
( \
echo $(product)_$(BUFFALO_TAG_VERSION)_$(BUFFALO_TAG_MINOR)_$(region)_$(BUFFALO_TAG_PLATFORM); \
echo filelen=$$(stat -c%s $@); \
cat $@ \
) > $@.new
mv $@.new $@
endef
# TRX with only one (kernel) partition
define Build/trx
$(STAGING_DIR_HOST)/bin/trx \
-o $@.new \
-m 33554432 \
-f $@
mv $@.new $@
endef
define Build/trx-serial
$(STAGING_DIR_HOST)/bin/otrx create $@.new \
-f $(IMAGE_KERNEL) -a 1024 \
-f $@ -a 0x10000 -A $(KDIR)/fs_mark
mv $@.new $@
endef
define Build/trx-nand
# kernel: always use 4 MiB (-28 B or TRX header) to allow upgrades even
# if it grows up between releases
# root: UBI with one extra block containing UBI mark to trigger erasing
# rest of partition
$(STAGING_DIR_HOST)/bin/otrx create $@.new \
-f $(IMAGE_KERNEL) -a 0x20000 -b 0x400000 \
-f $@ \
-A $(KDIR)/ubi_mark -a 0x20000
mv $@.new $@
endef
define Build/asus-trx
$(STAGING_DIR_HOST)/bin/asustrx \
-p $(ASUS_PRODUCTID) -i $@ -o $@.new
mv $@.new $@
endef
define Build/luxul-lxl
$(STAGING_DIR_HOST)/bin/lxlfw create $@.new \
-i $@ \
-b $(LUXUL_BOARD)
mv $@.new $@
endef
define Build/seama-nand
# Seama entity
$(STAGING_DIR_HOST)/bin/oseama \
entity $@.entity \
-m "dev=/dev/mtdblock/7" \
-m "type=firmware" \
-f $(IMAGE_KERNEL) \
-b 0x400000 \
-f $@ \
-f $(KDIR)/ubi_mark
# Seama container
$(STAGING_DIR_HOST)/bin/seama \
-s $@ \
-m "signature=$(SIGNATURE)" \
-i $@.entity
endef
DEVICE_VARS += ASUS_PRODUCTID
DEVICE_VARS += BUFFALO_TAG_PLATFORM BUFFALO_TAG_VERSION BUFFALO_TAG_MINOR
DEVICE_VARS += SIGNATURE
DEVICE_VARS += NETGEAR_BOARD_ID NETGEAR_REGION TPLINK_BOARD
DEVICE_VARS += LUXUL_BOARD
IEEE8021X := wpad-basic-wolfssl
B43 := $(IEEE8021X) kmod-b43
BRCMFMAC_43602A1 := $(IEEE8021X) kmod-brcmfmac brcmfmac-firmware-43602a1-pcie
BRCMFMAC_4366B1 := $(IEEE8021X) kmod-brcmfmac brcmfmac-firmware-4366b1-pcie
BRCMFMAC_4366C0 := $(IEEE8021X) kmod-brcmfmac brcmfmac-firmware-4366c0-pcie
USB2_PACKAGES := kmod-usb-ohci kmod-usb2 kmod-phy-bcm-ns-usb2
USB2_PACKAGES += kmod-usb-ledtrig-usbport
USB3_PACKAGES := $(USB2_PACKAGES) kmod-usb3 kmod-phy-bcm-ns-usb3
define Device/Default
# .dtb files are prefixed by SoC type, e.g. bcm4708- which is not included in device/image names
# extract the full dtb name based on the device info
DEVICE_DTS := $(patsubst %.dtb,%,$(notdir $(wildcard $(if $(IB),$(KDIR),$(DTS_DIR))/*-$(subst _,-,$(1)).dtb)))
KERNEL := kernel-bin | append-dtb | lzma-d16
KERNEL_DEPENDS = $$(wildcard $(DTS_DIR)/$$(DEVICE_DTS).dts)
KERNEL_INITRAMFS_SUFFIX := .trx
KERNEL_INITRAMFS := kernel-bin | append-dtb | lzma-d16 | trx
FILESYSTEMS := squashfs
KERNEL_NAME := zImage
DEVICE_IMG_NAME = $$(DEVICE_IMG_PREFIX)-$$(1).$$(2)
IMAGES := trx
BLOCKSIZE := 128k
PAGESIZE := 2048
IMAGE/trx := append-ubi | trx-nand
endef
define Device/asus
DEVICE_VENDOR := ASUS
IMAGES := trx
IMAGE/trx := append-ubi | trx-nand | asus-trx
endef
define Device/asus_rt-ac56u
$(call Device/asus)
DEVICE_MODEL := RT-AC56U
DEVICE_PACKAGES := $(B43) $(USB3_PACKAGES)
ASUS_PRODUCTID := RT-AC56U
endef
TARGET_DEVICES += asus_rt-ac56u
define Device/asus_rt-ac68u
$(call Device/asus)
DEVICE_MODEL := RT-AC68U
DEVICE_PACKAGES := $(USB3_PACKAGES)
ASUS_PRODUCTID := RT-AC68U
endef
TARGET_DEVICES += asus_rt-ac68u
define Device/asus_rt-ac87u
$(call Device/asus)
DEVICE_MODEL := RT-AC87U
DEVICE_PACKAGES := $(USB3_PACKAGES)
ASUS_PRODUCTID := RT-AC87U
endef
TARGET_DEVICES += asus_rt-ac87u
define Device/asus_rt-n18u
$(call Device/asus)
DEVICE_MODEL := RT-N18U
DEVICE_PACKAGES := $(USB3_PACKAGES)
ASUS_PRODUCTID := RT-N18U
endef
TARGET_DEVICES += asus_rt-n18u
# Buffalo devices have TFTP recovery mode which can work nicely with initramfs
# kernels.
# We should have two initramfs images for Buffalo: plain initramfs kernel and
# TRX with initramfs kernel. It's not possible right now so let's just build
# plain initramfs kernel as it may be more useful.
define Device/buffalo/Default
DEVICE_VENDOR := Buffalo
KERNEL_INITRAMFS_SUFFIX = $$(KERNEL_SUFFIX)
KERNEL_INITRAMFS = $$(KERNEL)
endef
define Device/buffalo_wxr-1900dhp
$(call Device/buffalo/Default)
DEVICE_MODEL := WXR-1900DHP
DEVICE_PACKAGES := $(USB3_PACKAGES)
endef
TARGET_DEVICES += buffalo_wxr-1900dhp
define Device/buffalo_wzr-600dhp2
$(call Device/buffalo/Default)
DEVICE_MODEL := WZR-600DHP2
DEVICE_PACKAGES := $(B43) $(USB2_PACKAGES)
endef
TARGET_DEVICES += buffalo_wzr-600dhp2
define Device/buffalo_wzr-900dhp
$(call Device/buffalo/Default)
DEVICE_MODEL := WZR-900DHP
DEVICE_PACKAGES := $(B43) $(USB3_PACKAGES)
BUFFALO_TAG_PLATFORM := bcm
BUFFALO_TAG_VERSION := 9.99
BUFFALO_TAG_MINOR := 9.99
IMAGES += factory-DHP-EU.bin factory-DHP2-JP.bin
IMAGE/factory-DHP-EU.bin := \
append-ubi | trx-nand | buffalo-wzr-header WZR-900DHP EU | \
buffalo-enc WZR-900DHP $$(BUFFALO_TAG_VERSION) | \
buffalo-tag-dhp WZR-900DHP EU mlang20 | buffalo-enc-tag | \
buffalo-dhp-image
IMAGE/factory-DHP2-JP.bin := \
append-ubi | trx-nand | buffalo-wzr-header WZR-900DHP2 JP | \
buffalo-enc WZR-900DHP2 $$(BUFFALO_TAG_VERSION) | \
buffalo-tag-dhp WZR-900DHP2 JP jp | buffalo-enc-tag | \
buffalo-dhp-image
endef
TARGET_DEVICES += buffalo_wzr-900dhp
define Device/buffalo_wzr-1750dhp
$(call Device/buffalo/Default)
DEVICE_MODEL := WZR-1750DHP
DEVICE_PACKAGES := $(B43) $(USB3_PACKAGES)
endef
TARGET_DEVICES += buffalo_wzr-1750dhp
define Device/dlink
DEVICE_VENDOR := D-Link
IMAGES := bin
IMAGE/bin := append-ubi | seama-nand
endef
define Device/dlink_dir-885l
DEVICE_MODEL := DIR-885L
DEVICE_PACKAGES := $(BRCMFMAC_4366B1) $(USB3_PACKAGES)
$(Device/dlink)
SIGNATURE := wrgac42_dlink.2015_dir885l
endef
TARGET_DEVICES += dlink_dir-885l
# Linksys devices are disabled due to problem with 2 TRX partitions
define Device/linksys_ea6300-v1
DEVICE_VENDOR := Linksys
DEVICE_MODEL := EA6300
DEVICE_VARIANT := v1
DEVICE_PACKAGES := $(B43) $(USB3_PACKAGES)
BROKEN := y
endef
TARGET_DEVICES += linksys_ea6300-v1
define Device/linksys_ea6500-v2
DEVICE_VENDOR := Linksys
DEVICE_MODEL := EA6500
DEVICE_VARIANT := v2
DEVICE_PACKAGES := $(B43) $(USB3_PACKAGES)
endef
TARGET_DEVICES += linksys_ea6500-v2
define Device/linksys_ea9200
DEVICE_VENDOR := Linksys
DEVICE_MODEL := EA9200
DEVICE_VARIANT := v1
DEVICE_PACKAGES := $(BRCMFMAC_43602A1) $(USB3_PACKAGES)
BROKEN := y
endef
TARGET_DEVICES += linksys_ea9200
define Device/linksys_ea9500
DEVICE_VENDOR := Linksys
DEVICE_MODEL := EA9500
DEVICE_PACKAGES := $(BRCMFMAC_4366C0) $(USB3_PACKAGES)
DEVICE_DTS := bcm47094-linksys-panamera
endef
TARGET_DEVICES += linksys_ea9500
define Device/luxul
DEVICE_VENDOR := Luxul
IMAGES := lxl
IMAGE/lxl := append-ubi | trx-nand | luxul-lxl
endef
define Device/luxul_abr-4500
$(Device/luxul)
DEVICE_MODEL := ABR-4500
DEVICE_PACKAGES := $(USB3_PACKAGES)
LUXUL_BOARD := ABR-4500
endef
TARGET_DEVICES += luxul_abr-4500
define Device/luxul_xap-1610
$(Device/luxul)
DEVICE_MODEL := XAP-1610
DEVICE_PACKAGES := $(BRCMFMAC_4366C0)
IMAGE/lxl := append-rootfs | trx-serial | luxul-lxl
LUXUL_BOARD := XAP-1610
endef
TARGET_DEVICES += luxul_xap-1610
define Device/luxul_xbr-4500
$(Device/luxul)
DEVICE_MODEL := XBR-4500
DEVICE_PACKAGES := $(USB3_PACKAGES)
LUXUL_BOARD := XBR-4500
endef
TARGET_DEVICES += luxul_xbr-4500
define Device/luxul_xwr-3150
$(Device/luxul)
DEVICE_MODEL := XWR-3150
DEVICE_PACKAGES := $(BRCMFMAC_4366C0) $(USB3_PACKAGES)
DEVICE_DTS := bcm47094-luxul-xwr-3150-v1
LUXUL_BOARD := XWR-3150
endef
TARGET_DEVICES += luxul_xwr-3150
bcm53xx: add Cisco Meraki MR32 This patch adds support for Cisco Meraki MR32. The unit was donated by Chris Blake. Thank you! WARNING: Only the 1x1:1 abgn Air Marshal WIPS wifi is currently supported by b43: b43-phy2: Found PHY: Analog 9, Type 4 (N), Revision 16 b43-phy2: Found Radio: Manuf 0x17F, ID 0x2057, Revision 9, Version 1 b43-phy2: Loading firmware version 784.2 (2012-08-15 21:35:19) and only as 802.11ABG! while WIFI1 and WIFI2 (both BCM4352) are not: b43-phy0: Broadcom 4352 WLAN found (core revision 42) b43-phy0 ERROR: FOUND UNSUPPORTED PHY (Analog 12, Type 11 (AC), Revision 1) Hardware Highlights: SoC: Broadcom BCM53016A1 (1 GHz, 2 cores) RAM: 128 MiB NAND: 128 MiB Spansion S34ML01G2 (~114 MiB useable) ETH: 1GBit Ethernet Port - PoE WIFI1: Broadcom BCM43520 an+ac (2x2:2 - id: 0x4352) WIFI2: Broadcom BCM43520 bgn (2x2:2 - id: 0x4352) WIFI3: Broadcom BCM43428 abgn (1x1:1 - id: 43428) BLE: Broadcom BCM20732 (ttyS1) LEDS: 1 x Programmable RGB Status LED (driven by a PWM) 1 x White LED (GPIO) 1 x Orange LED Fault Indicator (GPIO) 2 x LAN Activity / Speed LEDs (On the RJ45 Port) BUTTON: one Reset button MISC: AT24C64 8KiB EEPROM (i2c - stores Ethernet MAC + Serial#!) ina219 hardware monitor (i2c) Kensington Lock SERIAL: WARNING: The serial port needs a TTL/RS-232 3V3 level converter! The Serial setting is 115200-8-N-1. The board has a populated right angle 1x4 0.1" pinheader. The pinout is: VCC, RX, TX, GND. (Use a multimeter) Flashing needs a serial adaptor (due to the lack of a working dropbear on the original firmware). This flashing procedure for the MR32 was tested with firmware: "r23-149867:150252-aacharya". 0. Create a seperate Ethernet LAN which does not have access to the internet. Ideally use 192.168.1.2 for your PC. Make sure to reserve 192.168.1.1 it will be used later on by the OpenWrt firmware. The original Meraki firmware will likely try to setup the network via DHCP Discovery, so make sure your PC is running a DHCP-Server (i.e.: dnsmasq) '# dnsmasq -i eth# -F 192.168.1.5,192.168.1.50 Furthermore, the PC needs a supported ssh/http/ftp server in order to retrieve the initramfs + dtb file 1. Disassemble the MR32 device by removing all screws (4 screws are located under the 4 rubber feets!) and prying open the plastic covers without breaking the plastic retention clips. Once inside, remove all the screws on the outer metal shielding to get to the PCB. It's not necessary to remove the antennas! 2. Connect the serial cable to the serial header. 3. Partially reassemble the outer metal shielding to ensure that the SoC has a proper heat sink. 4. Connect the Ethernet patch cable to the device and the power cable. 5. Wait for the device to boot and enter the root shell. (rooting is not discussed in detail here please refer to Chris Blake - "pwning the meraki mr18" blog post: <https://servernetworktech.com/2016/02/pwning-the-meraki-mr18/> (The same method works with the MR32's r23-149867:150252-aacharya) Wait for the MR32 to enter the "<Meraki>" prompt and enter: <Meraki> odm serial_num read (Verify that it matches what's on the S/N Sticker on the back!) <Meraki> odm serial_num write Q2XX-XXXX-XXXV <Meraki> odm serial_num read (Verify that the S/N has changed - and the LED start to flash) now to flash the firmware: <Meraki> odm firmware part.safe "http://192.168.1.2/mr32-initramfs.bin" Once OpenWrt booted use sysupgrade to permanently install OpenWrt. To do this: Download the latest sysupgrade.bin file for the MR32 to the device and use sysupgrade *sysupgrade.bin to install it. WARNING: DO NOT DELETE the "storage" ubi volume! To flash later MR32 Firmwares like r25-201804051805-G885d6d78-dhow-rel requires in-circut-i2c tools to access the I2C EEPROM AT24C64 next to the SoC. The idea is pretty much the same as from Step 5 from above: Change the serial number to Q2XXXXXXXXXV (should be around 0x7c), then attach a serial cable, ethernet (but make sure the device can't reach the internet!) hit "s" (the small s!) during boot to enter the root-shell and add the following commands to the /storage/config there: serial_allow_odm true serial_access_enabled true serial_access_check false valid_config true and then hit exit to let it finish booting. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-08-29 21:48:00 +00:00
define Device/meraki_mr32
DEVICE_VENDOR := Meraki
bcm53xx: add Cisco Meraki MR32 This patch adds support for Cisco Meraki MR32. The unit was donated by Chris Blake. Thank you! WARNING: Only the 1x1:1 abgn Air Marshal WIPS wifi is currently supported by b43: b43-phy2: Found PHY: Analog 9, Type 4 (N), Revision 16 b43-phy2: Found Radio: Manuf 0x17F, ID 0x2057, Revision 9, Version 1 b43-phy2: Loading firmware version 784.2 (2012-08-15 21:35:19) and only as 802.11ABG! while WIFI1 and WIFI2 (both BCM4352) are not: b43-phy0: Broadcom 4352 WLAN found (core revision 42) b43-phy0 ERROR: FOUND UNSUPPORTED PHY (Analog 12, Type 11 (AC), Revision 1) Hardware Highlights: SoC: Broadcom BCM53016A1 (1 GHz, 2 cores) RAM: 128 MiB NAND: 128 MiB Spansion S34ML01G2 (~114 MiB useable) ETH: 1GBit Ethernet Port - PoE WIFI1: Broadcom BCM43520 an+ac (2x2:2 - id: 0x4352) WIFI2: Broadcom BCM43520 bgn (2x2:2 - id: 0x4352) WIFI3: Broadcom BCM43428 abgn (1x1:1 - id: 43428) BLE: Broadcom BCM20732 (ttyS1) LEDS: 1 x Programmable RGB Status LED (driven by a PWM) 1 x White LED (GPIO) 1 x Orange LED Fault Indicator (GPIO) 2 x LAN Activity / Speed LEDs (On the RJ45 Port) BUTTON: one Reset button MISC: AT24C64 8KiB EEPROM (i2c - stores Ethernet MAC + Serial#!) ina219 hardware monitor (i2c) Kensington Lock SERIAL: WARNING: The serial port needs a TTL/RS-232 3V3 level converter! The Serial setting is 115200-8-N-1. The board has a populated right angle 1x4 0.1" pinheader. The pinout is: VCC, RX, TX, GND. (Use a multimeter) Flashing needs a serial adaptor (due to the lack of a working dropbear on the original firmware). This flashing procedure for the MR32 was tested with firmware: "r23-149867:150252-aacharya". 0. Create a seperate Ethernet LAN which does not have access to the internet. Ideally use 192.168.1.2 for your PC. Make sure to reserve 192.168.1.1 it will be used later on by the OpenWrt firmware. The original Meraki firmware will likely try to setup the network via DHCP Discovery, so make sure your PC is running a DHCP-Server (i.e.: dnsmasq) '# dnsmasq -i eth# -F 192.168.1.5,192.168.1.50 Furthermore, the PC needs a supported ssh/http/ftp server in order to retrieve the initramfs + dtb file 1. Disassemble the MR32 device by removing all screws (4 screws are located under the 4 rubber feets!) and prying open the plastic covers without breaking the plastic retention clips. Once inside, remove all the screws on the outer metal shielding to get to the PCB. It's not necessary to remove the antennas! 2. Connect the serial cable to the serial header. 3. Partially reassemble the outer metal shielding to ensure that the SoC has a proper heat sink. 4. Connect the Ethernet patch cable to the device and the power cable. 5. Wait for the device to boot and enter the root shell. (rooting is not discussed in detail here please refer to Chris Blake - "pwning the meraki mr18" blog post: <https://servernetworktech.com/2016/02/pwning-the-meraki-mr18/> (The same method works with the MR32's r23-149867:150252-aacharya) Wait for the MR32 to enter the "<Meraki>" prompt and enter: <Meraki> odm serial_num read (Verify that it matches what's on the S/N Sticker on the back!) <Meraki> odm serial_num write Q2XX-XXXX-XXXV <Meraki> odm serial_num read (Verify that the S/N has changed - and the LED start to flash) now to flash the firmware: <Meraki> odm firmware part.safe "http://192.168.1.2/mr32-initramfs.bin" Once OpenWrt booted use sysupgrade to permanently install OpenWrt. To do this: Download the latest sysupgrade.bin file for the MR32 to the device and use sysupgrade *sysupgrade.bin to install it. WARNING: DO NOT DELETE the "storage" ubi volume! To flash later MR32 Firmwares like r25-201804051805-G885d6d78-dhow-rel requires in-circut-i2c tools to access the I2C EEPROM AT24C64 next to the SoC. The idea is pretty much the same as from Step 5 from above: Change the serial number to Q2XXXXXXXXXV (should be around 0x7c), then attach a serial cable, ethernet (but make sure the device can't reach the internet!) hit "s" (the small s!) during boot to enter the root-shell and add the following commands to the /storage/config there: serial_allow_odm true serial_access_enabled true serial_access_check false valid_config true and then hit exit to let it finish booting. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-08-29 21:48:00 +00:00
DEVICE_MODEL := MR32
DEVICE_PACKAGES := $(B43) kmod-i2c-bcm-iproc kmod-i2c-gpio kmod-eeprom-at24 \
kmod-leds-pwm kmod-hwmon-ina2xx kmod-bluetooth
DEVICE_DTS := bcm53016-meraki-mr32
# Meraki FW r23 tries to resize the part.safe partition before it will
# flash the image. This is a bit of a problem, since resizing will fail
# if the partition is smaller than the old one.
KERNEL_LOADADDR := 0x00008000
KERNEL_INITRAMFS_SUFFIX := .bin
DEVICE_DTS_DELIMITER := @
DEVICE_DTS_CONFIG := config@1
bcm53xx: add Cisco Meraki MR32 This patch adds support for Cisco Meraki MR32. The unit was donated by Chris Blake. Thank you! WARNING: Only the 1x1:1 abgn Air Marshal WIPS wifi is currently supported by b43: b43-phy2: Found PHY: Analog 9, Type 4 (N), Revision 16 b43-phy2: Found Radio: Manuf 0x17F, ID 0x2057, Revision 9, Version 1 b43-phy2: Loading firmware version 784.2 (2012-08-15 21:35:19) and only as 802.11ABG! while WIFI1 and WIFI2 (both BCM4352) are not: b43-phy0: Broadcom 4352 WLAN found (core revision 42) b43-phy0 ERROR: FOUND UNSUPPORTED PHY (Analog 12, Type 11 (AC), Revision 1) Hardware Highlights: SoC: Broadcom BCM53016A1 (1 GHz, 2 cores) RAM: 128 MiB NAND: 128 MiB Spansion S34ML01G2 (~114 MiB useable) ETH: 1GBit Ethernet Port - PoE WIFI1: Broadcom BCM43520 an+ac (2x2:2 - id: 0x4352) WIFI2: Broadcom BCM43520 bgn (2x2:2 - id: 0x4352) WIFI3: Broadcom BCM43428 abgn (1x1:1 - id: 43428) BLE: Broadcom BCM20732 (ttyS1) LEDS: 1 x Programmable RGB Status LED (driven by a PWM) 1 x White LED (GPIO) 1 x Orange LED Fault Indicator (GPIO) 2 x LAN Activity / Speed LEDs (On the RJ45 Port) BUTTON: one Reset button MISC: AT24C64 8KiB EEPROM (i2c - stores Ethernet MAC + Serial#!) ina219 hardware monitor (i2c) Kensington Lock SERIAL: WARNING: The serial port needs a TTL/RS-232 3V3 level converter! The Serial setting is 115200-8-N-1. The board has a populated right angle 1x4 0.1" pinheader. The pinout is: VCC, RX, TX, GND. (Use a multimeter) Flashing needs a serial adaptor (due to the lack of a working dropbear on the original firmware). This flashing procedure for the MR32 was tested with firmware: "r23-149867:150252-aacharya". 0. Create a seperate Ethernet LAN which does not have access to the internet. Ideally use 192.168.1.2 for your PC. Make sure to reserve 192.168.1.1 it will be used later on by the OpenWrt firmware. The original Meraki firmware will likely try to setup the network via DHCP Discovery, so make sure your PC is running a DHCP-Server (i.e.: dnsmasq) '# dnsmasq -i eth# -F 192.168.1.5,192.168.1.50 Furthermore, the PC needs a supported ssh/http/ftp server in order to retrieve the initramfs + dtb file 1. Disassemble the MR32 device by removing all screws (4 screws are located under the 4 rubber feets!) and prying open the plastic covers without breaking the plastic retention clips. Once inside, remove all the screws on the outer metal shielding to get to the PCB. It's not necessary to remove the antennas! 2. Connect the serial cable to the serial header. 3. Partially reassemble the outer metal shielding to ensure that the SoC has a proper heat sink. 4. Connect the Ethernet patch cable to the device and the power cable. 5. Wait for the device to boot and enter the root shell. (rooting is not discussed in detail here please refer to Chris Blake - "pwning the meraki mr18" blog post: <https://servernetworktech.com/2016/02/pwning-the-meraki-mr18/> (The same method works with the MR32's r23-149867:150252-aacharya) Wait for the MR32 to enter the "<Meraki>" prompt and enter: <Meraki> odm serial_num read (Verify that it matches what's on the S/N Sticker on the back!) <Meraki> odm serial_num write Q2XX-XXXX-XXXV <Meraki> odm serial_num read (Verify that the S/N has changed - and the LED start to flash) now to flash the firmware: <Meraki> odm firmware part.safe "http://192.168.1.2/mr32-initramfs.bin" Once OpenWrt booted use sysupgrade to permanently install OpenWrt. To do this: Download the latest sysupgrade.bin file for the MR32 to the device and use sysupgrade *sysupgrade.bin to install it. WARNING: DO NOT DELETE the "storage" ubi volume! To flash later MR32 Firmwares like r25-201804051805-G885d6d78-dhow-rel requires in-circut-i2c tools to access the I2C EEPROM AT24C64 next to the SoC. The idea is pretty much the same as from Step 5 from above: Change the serial number to Q2XXXXXXXXXV (should be around 0x7c), then attach a serial cable, ethernet (but make sure the device can't reach the internet!) hit "s" (the small s!) during boot to enter the root-shell and add the following commands to the /storage/config there: serial_allow_odm true serial_access_enabled true serial_access_check false valid_config true and then hit exit to let it finish booting. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-08-29 21:48:00 +00:00
KERNEL_INITRAMFS := kernel-bin | fit none $$(DTS_DIR)/$$(DEVICE_DTS).dtb | \
pad-to 10362880
KERNEL := kernel-bin | fit none $$(DTS_DIR)/$$(DEVICE_DTS).dtb
IMAGES += sysupgrade.bin
bcm53xx: add Cisco Meraki MR32 This patch adds support for Cisco Meraki MR32. The unit was donated by Chris Blake. Thank you! WARNING: Only the 1x1:1 abgn Air Marshal WIPS wifi is currently supported by b43: b43-phy2: Found PHY: Analog 9, Type 4 (N), Revision 16 b43-phy2: Found Radio: Manuf 0x17F, ID 0x2057, Revision 9, Version 1 b43-phy2: Loading firmware version 784.2 (2012-08-15 21:35:19) and only as 802.11ABG! while WIFI1 and WIFI2 (both BCM4352) are not: b43-phy0: Broadcom 4352 WLAN found (core revision 42) b43-phy0 ERROR: FOUND UNSUPPORTED PHY (Analog 12, Type 11 (AC), Revision 1) Hardware Highlights: SoC: Broadcom BCM53016A1 (1 GHz, 2 cores) RAM: 128 MiB NAND: 128 MiB Spansion S34ML01G2 (~114 MiB useable) ETH: 1GBit Ethernet Port - PoE WIFI1: Broadcom BCM43520 an+ac (2x2:2 - id: 0x4352) WIFI2: Broadcom BCM43520 bgn (2x2:2 - id: 0x4352) WIFI3: Broadcom BCM43428 abgn (1x1:1 - id: 43428) BLE: Broadcom BCM20732 (ttyS1) LEDS: 1 x Programmable RGB Status LED (driven by a PWM) 1 x White LED (GPIO) 1 x Orange LED Fault Indicator (GPIO) 2 x LAN Activity / Speed LEDs (On the RJ45 Port) BUTTON: one Reset button MISC: AT24C64 8KiB EEPROM (i2c - stores Ethernet MAC + Serial#!) ina219 hardware monitor (i2c) Kensington Lock SERIAL: WARNING: The serial port needs a TTL/RS-232 3V3 level converter! The Serial setting is 115200-8-N-1. The board has a populated right angle 1x4 0.1" pinheader. The pinout is: VCC, RX, TX, GND. (Use a multimeter) Flashing needs a serial adaptor (due to the lack of a working dropbear on the original firmware). This flashing procedure for the MR32 was tested with firmware: "r23-149867:150252-aacharya". 0. Create a seperate Ethernet LAN which does not have access to the internet. Ideally use 192.168.1.2 for your PC. Make sure to reserve 192.168.1.1 it will be used later on by the OpenWrt firmware. The original Meraki firmware will likely try to setup the network via DHCP Discovery, so make sure your PC is running a DHCP-Server (i.e.: dnsmasq) '# dnsmasq -i eth# -F 192.168.1.5,192.168.1.50 Furthermore, the PC needs a supported ssh/http/ftp server in order to retrieve the initramfs + dtb file 1. Disassemble the MR32 device by removing all screws (4 screws are located under the 4 rubber feets!) and prying open the plastic covers without breaking the plastic retention clips. Once inside, remove all the screws on the outer metal shielding to get to the PCB. It's not necessary to remove the antennas! 2. Connect the serial cable to the serial header. 3. Partially reassemble the outer metal shielding to ensure that the SoC has a proper heat sink. 4. Connect the Ethernet patch cable to the device and the power cable. 5. Wait for the device to boot and enter the root shell. (rooting is not discussed in detail here please refer to Chris Blake - "pwning the meraki mr18" blog post: <https://servernetworktech.com/2016/02/pwning-the-meraki-mr18/> (The same method works with the MR32's r23-149867:150252-aacharya) Wait for the MR32 to enter the "<Meraki>" prompt and enter: <Meraki> odm serial_num read (Verify that it matches what's on the S/N Sticker on the back!) <Meraki> odm serial_num write Q2XX-XXXX-XXXV <Meraki> odm serial_num read (Verify that the S/N has changed - and the LED start to flash) now to flash the firmware: <Meraki> odm firmware part.safe "http://192.168.1.2/mr32-initramfs.bin" Once OpenWrt booted use sysupgrade to permanently install OpenWrt. To do this: Download the latest sysupgrade.bin file for the MR32 to the device and use sysupgrade *sysupgrade.bin to install it. WARNING: DO NOT DELETE the "storage" ubi volume! To flash later MR32 Firmwares like r25-201804051805-G885d6d78-dhow-rel requires in-circut-i2c tools to access the I2C EEPROM AT24C64 next to the SoC. The idea is pretty much the same as from Step 5 from above: Change the serial number to Q2XXXXXXXXXV (should be around 0x7c), then attach a serial cable, ethernet (but make sure the device can't reach the internet!) hit "s" (the small s!) during boot to enter the root-shell and add the following commands to the /storage/config there: serial_allow_odm true serial_access_enabled true serial_access_check false valid_config true and then hit exit to let it finish booting. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-08-29 21:48:00 +00:00
# Currently the only device that uses the new image check
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
bcm53xx: add Cisco Meraki MR32 This patch adds support for Cisco Meraki MR32. The unit was donated by Chris Blake. Thank you! WARNING: Only the 1x1:1 abgn Air Marshal WIPS wifi is currently supported by b43: b43-phy2: Found PHY: Analog 9, Type 4 (N), Revision 16 b43-phy2: Found Radio: Manuf 0x17F, ID 0x2057, Revision 9, Version 1 b43-phy2: Loading firmware version 784.2 (2012-08-15 21:35:19) and only as 802.11ABG! while WIFI1 and WIFI2 (both BCM4352) are not: b43-phy0: Broadcom 4352 WLAN found (core revision 42) b43-phy0 ERROR: FOUND UNSUPPORTED PHY (Analog 12, Type 11 (AC), Revision 1) Hardware Highlights: SoC: Broadcom BCM53016A1 (1 GHz, 2 cores) RAM: 128 MiB NAND: 128 MiB Spansion S34ML01G2 (~114 MiB useable) ETH: 1GBit Ethernet Port - PoE WIFI1: Broadcom BCM43520 an+ac (2x2:2 - id: 0x4352) WIFI2: Broadcom BCM43520 bgn (2x2:2 - id: 0x4352) WIFI3: Broadcom BCM43428 abgn (1x1:1 - id: 43428) BLE: Broadcom BCM20732 (ttyS1) LEDS: 1 x Programmable RGB Status LED (driven by a PWM) 1 x White LED (GPIO) 1 x Orange LED Fault Indicator (GPIO) 2 x LAN Activity / Speed LEDs (On the RJ45 Port) BUTTON: one Reset button MISC: AT24C64 8KiB EEPROM (i2c - stores Ethernet MAC + Serial#!) ina219 hardware monitor (i2c) Kensington Lock SERIAL: WARNING: The serial port needs a TTL/RS-232 3V3 level converter! The Serial setting is 115200-8-N-1. The board has a populated right angle 1x4 0.1" pinheader. The pinout is: VCC, RX, TX, GND. (Use a multimeter) Flashing needs a serial adaptor (due to the lack of a working dropbear on the original firmware). This flashing procedure for the MR32 was tested with firmware: "r23-149867:150252-aacharya". 0. Create a seperate Ethernet LAN which does not have access to the internet. Ideally use 192.168.1.2 for your PC. Make sure to reserve 192.168.1.1 it will be used later on by the OpenWrt firmware. The original Meraki firmware will likely try to setup the network via DHCP Discovery, so make sure your PC is running a DHCP-Server (i.e.: dnsmasq) '# dnsmasq -i eth# -F 192.168.1.5,192.168.1.50 Furthermore, the PC needs a supported ssh/http/ftp server in order to retrieve the initramfs + dtb file 1. Disassemble the MR32 device by removing all screws (4 screws are located under the 4 rubber feets!) and prying open the plastic covers without breaking the plastic retention clips. Once inside, remove all the screws on the outer metal shielding to get to the PCB. It's not necessary to remove the antennas! 2. Connect the serial cable to the serial header. 3. Partially reassemble the outer metal shielding to ensure that the SoC has a proper heat sink. 4. Connect the Ethernet patch cable to the device and the power cable. 5. Wait for the device to boot and enter the root shell. (rooting is not discussed in detail here please refer to Chris Blake - "pwning the meraki mr18" blog post: <https://servernetworktech.com/2016/02/pwning-the-meraki-mr18/> (The same method works with the MR32's r23-149867:150252-aacharya) Wait for the MR32 to enter the "<Meraki>" prompt and enter: <Meraki> odm serial_num read (Verify that it matches what's on the S/N Sticker on the back!) <Meraki> odm serial_num write Q2XX-XXXX-XXXV <Meraki> odm serial_num read (Verify that the S/N has changed - and the LED start to flash) now to flash the firmware: <Meraki> odm firmware part.safe "http://192.168.1.2/mr32-initramfs.bin" Once OpenWrt booted use sysupgrade to permanently install OpenWrt. To do this: Download the latest sysupgrade.bin file for the MR32 to the device and use sysupgrade *sysupgrade.bin to install it. WARNING: DO NOT DELETE the "storage" ubi volume! To flash later MR32 Firmwares like r25-201804051805-G885d6d78-dhow-rel requires in-circut-i2c tools to access the I2C EEPROM AT24C64 next to the SoC. The idea is pretty much the same as from Step 5 from above: Change the serial number to Q2XXXXXXXXXV (should be around 0x7c), then attach a serial cable, ethernet (but make sure the device can't reach the internet!) hit "s" (the small s!) during boot to enter the root-shell and add the following commands to the /storage/config there: serial_allow_odm true serial_access_enabled true serial_access_check false valid_config true and then hit exit to let it finish booting. Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-08-29 21:48:00 +00:00
# The loader is specifically looking for fdt@2:
# [ 3.190000] find_itb_subimage: error finding fdt@2: FDT_ERR_NOTFOUND
# The image won't boot, if it isn't found. :(
DEVICE_FDT_NUM := 2
endef
TARGET_DEVICES += meraki_mr32
define Device/netgear
DEVICE_VENDOR := NETGEAR
IMAGES := chk
IMAGE/chk := append-ubi | trx-nand | netgear-chk
NETGEAR_REGION := 1
endef
define Device/netgear_r6250
DEVICE_MODEL := R6250
DEVICE_PACKAGES := $(B43) $(USB3_PACKAGES)
$(Device/netgear)
NETGEAR_BOARD_ID := U12H245T00_NETGEAR
endef
TARGET_DEVICES += netgear_r6250
define Device/netgear_r6300-v2
DEVICE_MODEL := R6300
DEVICE_VARIANT := v2
DEVICE_PACKAGES := $(B43) $(USB3_PACKAGES)
$(Device/netgear)
NETGEAR_BOARD_ID := U12H240T00_NETGEAR
endef
TARGET_DEVICES += netgear_r6300-v2
define Device/netgear_r7000
DEVICE_MODEL := R7000
DEVICE_PACKAGES := $(USB3_PACKAGES)
$(Device/netgear)
NETGEAR_BOARD_ID := U12H270T00_NETGEAR
endef
TARGET_DEVICES += netgear_r7000
define Device/netgear_r7900
DEVICE_MODEL := R7900
DEVICE_PACKAGES := $(BRCMFMAC_43602A1) $(USB3_PACKAGES)
$(Device/netgear)
NETGEAR_BOARD_ID := U12H315T30_NETGEAR
endef
TARGET_DEVICES += netgear_r7900
define Device/netgear_r8000
DEVICE_MODEL := R8000
DEVICE_PACKAGES := $(BRCMFMAC_43602A1) $(USB3_PACKAGES)
$(Device/netgear)
NETGEAR_BOARD_ID := U12H315T00_NETGEAR
endef
TARGET_DEVICES += netgear_r8000
define Device/netgear_r8500
DEVICE_MODEL := R8500
DEVICE_PACKAGES := $(BRCMFMAC_4366B1) $(USB3_PACKAGES)
$(Device/netgear)
NETGEAR_BOARD_ID := U12H334T00_NETGEAR
DEFAULT := n
endef
TARGET_DEVICES += netgear_r8500
define Device/smartrg_sr400ac
DEVICE_VENDOR := SmartRG
DEVICE_MODEL := SR400ac
DEVICE_PACKAGES := $(BRCMFMAC_43602A1) $(USB3_PACKAGES)
IMAGES := trx
IMAGE/trx := append-rootfs | trx-serial
KERNEL_INITRAMFS_SUFFIX := .bin
KERNEL_INITRAMFS := kernel-bin | append-dtb | lzma-d16
endef
TARGET_DEVICES += smartrg_sr400ac
define Device/phicomm_k3
DEVICE_VENDOR := PHICOMM
DEVICE_MODEL := K3
DEVICE_PACKAGES := $(BRCMFMAC_4366C0) $(USB3_PACKAGES)
IMAGES := trx
endef
TARGET_DEVICES += phicomm_k3
define Device/tenda_ac9
DEVICE_VENDOR := Tenda
DEVICE_MODEL := AC9
DEVICE_PACKAGES := $(B43) $(USB2_PACKAGES)
IMAGES := trx
IMAGE/trx := append-rootfs | trx-serial
endef
TARGET_DEVICES += tenda_ac9
define Device/tplink_archer-c5-v2
DEVICE_VENDOR := TP-Link
DEVICE_MODEL := Archer C5
DEVICE_VARIANT := v2
DEVICE_PACKAGES := $(B43) $(USB2_PACKAGES)
IMAGES := bin
IMAGE/bin := append-rootfs | bcm53xx-tplink-safeloader
TPLINK_BOARD := ARCHER-C5-V2
BROKEN := y
endef
#TARGET_DEVICES += tplink_archer-c5-v2
define Device/tplink_archer-c9-v1
DEVICE_VENDOR := TP-Link
DEVICE_MODEL := Archer C9
DEVICE_VARIANT := v1
DEVICE_PACKAGES := $(USB3_PACKAGES)
IMAGES := bin
IMAGE/bin := append-rootfs | bcm53xx-tplink-safeloader
TPLINK_BOARD := ARCHERC9
BROKEN := y
endef
#TARGET_DEVICES += tplink_archer-c9-v1
$(eval $(call BuildImage))