769 lines
19 KiB
C
Raw Normal View History

2009-05-18 17:55:41 +00:00
/*
* hif2.c - HIF layer re-implementation for the Linux SDIO stack
*
* Copyright (C) 2008, 2009 by OpenMoko, Inc.
* Written by Werner Almesberger <werner@openmoko.org>
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* Based on:
*
* @abstract: HIF layer reference implementation for Atheros SDIO stack
* @notice: Copyright (c) 2004-2006 Atheros Communications Inc.
*/
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sdio_ids.h>
#include "athdefs.h"
#include "a_types.h"
#include "hif.h"
/* @@@ Hack - this wants cleaning up */
#ifdef CONFIG_MACH_NEO1973_GTA02
#include <mach/gta02-pm-wlan.h>
#else /* CONFIG_MACH_NEO1973_GTA02 */
#define gta02_wlan_query_rfkill_lock() 1
#define gta02_wlan_set_rfkill_cb(cb, hif) ((void) cb)
#define gta02_wlan_query_rfkill_unlock()
#define gta02_wlan_clear_rfkill_cb()
#endif /* !CONFIG_MACH_NEO1973_GTA02 */
/*
* KNOWN BUGS:
*
* - HIF_DEVICE_IRQ_ASYNC_SYNC doesn't work yet (gets MMC errors)
* - latency can reach hundreds of ms, probably because of scheduling delays
* - packets go through about three queues before finally hitting the network
*/
/*
* Differences from Atheros' HIFs:
*
* - synchronous and asynchronous requests may get reordered with respect to
* each other, e.g., if HIFReadWrite returns for an asynchronous request and
* then HIFReadWrite is called for a synchronous request, the synchronous
* request may be executed before the asynchronous request.
*
* - request queue locking seems unnecessarily complex in the Atheros HIFs.
*
* - Atheros mask interrupts by calling sdio_claim_irq/sdio_release_irq, which
* can cause quite a bit of overhead. This HIF has its own light-weight
* interrupt masking.
*
* - Atheros call deviceInsertedHandler from a thread spawned off the probe or
* device insertion function. The original explanation for the Atheros SDIO
* stack said that this is done because a delay is needed to let the chip
* complete initialization. There is indeed a one second delay in the thread.
*
* The Atheros Linux SDIO HIF removes the delay and only retains the thread.
* Experimentally removing the thread didn't show any conflicts, so let's get
* rid of it for good.
*
* - The Atheros SDIO stack with Samuel's driver sets SDIO_CCCR_POWER in
* SDIO_POWER_EMPC. Atheros' Linux SDIO code apparently doesn't. We don't
* either, and this seems to work fine.
* @@@ Need to check this with Atheros.
*/
#define MBOXES 4
#define HIF_MBOX_BLOCK_SIZE 128
#define HIF_MBOX_BASE_ADDR 0x800
#define HIF_MBOX_WIDTH 0x800
#define HIF_MBOX_START_ADDR(mbox) \
(HIF_MBOX_BASE_ADDR+(mbox)*HIF_MBOX_WIDTH)
struct hif_device {
void *htc_handle;
struct sdio_func *func;
/*
* @@@ our sweet little bit of bogosity - the mechanism that lets us
* use the SDIO stack from softirqs. This really wants to use skbs.
*/
struct list_head queue;
spinlock_t queue_lock;
struct task_struct *io_task;
wait_queue_head_t wait;
/*
* activate_lock protects "active" and the activation/deactivation
* process itself.
*
* Relation to other locks: The SDIO function can be claimed while
* activate_lock is being held, but trying to acquire activate_lock
* while having ownership of the SDIO function could cause a deadlock.
*/
int active;
struct mutex activate_lock;
};
struct hif_request {
struct list_head list;
struct sdio_func *func;
int (*read)(struct sdio_func *func,
void *dst, unsigned int addr, int count);
int (*write)(struct sdio_func *func,
unsigned int addr, void *src, int count);
void *buf;
unsigned long addr;
int len;
A_STATUS (*completion)(void *context, A_STATUS status);
void *context;
};
static HTC_CALLBACKS htcCallbacks;
/*
* shutdown_lock prevents recursion through HIFShutDownDevice
*/
static DEFINE_MUTEX(shutdown_lock);
/* ----- Request processing ------------------------------------------------ */
static A_STATUS process_request(struct hif_request *req)
{
int ret;
A_STATUS status;
dev_dbg(&req->func->dev, "process_request(req %p)\n", req);
sdio_claim_host(req->func);
if (req->read) {
ret = req->read(req->func, req->buf, req->addr, req->len);
} else {
ret = req->write(req->func, req->addr, req->buf, req->len);
}
sdio_release_host(req->func);
status = ret ? A_ERROR : A_OK;
if (req->completion)
req->completion(req->context, status);
kfree(req);
return status;
}
static void enqueue_request(struct hif_device *hif, struct hif_request *req)
{
unsigned long flags;
dev_dbg(&req->func->dev, "enqueue_request(req %p)\n", req);
spin_lock_irqsave(&hif->queue_lock, flags);
list_add_tail(&req->list, &hif->queue);
spin_unlock_irqrestore(&hif->queue_lock, flags);
wake_up(&hif->wait);
}
static struct hif_request *dequeue_request(struct hif_device *hif)
{
struct hif_request *req;
unsigned long flags;
spin_lock_irqsave(&hif->queue_lock, flags);
if (list_empty(&hif->queue))
req = NULL;
else {
req = list_first_entry(&hif->queue,
struct hif_request, list);
list_del(&req->list);
}
spin_unlock_irqrestore(&hif->queue_lock, flags);
return req;
}
static void wait_queue_empty(struct hif_device *hif)
{
unsigned long flags;
int empty;
while (1) {
spin_lock_irqsave(&hif->queue_lock, flags);
empty = list_empty(&hif->queue);
spin_unlock_irqrestore(&hif->queue_lock, flags);
if (empty)
break;
else
yield();
}
}
static int io(void *data)
{
struct hif_device *hif = data;
struct sched_param param = { .sched_priority = 2 };
/* one priority level slower than ksdioirqd (which is at 1) */
DEFINE_WAIT(wait);
struct hif_request *req;
sched_setscheduler(current, SCHED_FIFO, &param);
while (1) {
while (1) {
/*
* Since we never use signals here, one might think
* that this ought to be TASK_UNINTERRUPTIBLE. However,
* such a task would increase the load average and,
* worse, it would trigger the softlockup check.
*/
prepare_to_wait(&hif->wait, &wait, TASK_INTERRUPTIBLE);
if (kthread_should_stop()) {
finish_wait(&hif->wait, &wait);
return 0;
}
req = dequeue_request(hif);
if (req)
break;
schedule();
}
finish_wait(&hif->wait, &wait);
(void) process_request(req);
}
return 0;
}
A_STATUS HIFReadWrite(HIF_DEVICE *hif, A_UINT32 address, A_UCHAR *buffer,
A_UINT32 length, A_UINT32 request, void *context)
{
struct device *dev = HIFGetOSDevice(hif);
struct hif_request *req;
dev_dbg(dev, "HIFReadWrite(device %p, address 0x%x, buffer %p, "
"length %d, request 0x%x, context %p)\n",
hif, address, buffer, length, request, context);
BUG_ON(!(request & (HIF_SYNCHRONOUS | HIF_ASYNCHRONOUS)));
BUG_ON(!(request & (HIF_BYTE_BASIS | HIF_BLOCK_BASIS)));
BUG_ON(!(request & (HIF_READ | HIF_WRITE)));
BUG_ON(!(request & HIF_EXTENDED_IO));
if (address >= HIF_MBOX_START_ADDR(0) &&
address < HIF_MBOX_START_ADDR(MBOXES+1)) {
BUG_ON(length > HIF_MBOX_WIDTH);
/* Adjust the address so that the last byte falls on the EOM
address. */
address += HIF_MBOX_WIDTH-length;
}
req = kzalloc(sizeof(*req), GFP_ATOMIC);
if (!req) {
if (request & HIF_ASYNCHRONOUS)
htcCallbacks.rwCompletionHandler(context, A_ERROR);
return A_ERROR;
}
req->func = hif->func;
req->addr = address;
req->buf = buffer;
req->len = length;
if (request & HIF_READ) {
if (request & HIF_FIXED_ADDRESS)
req->read = sdio_readsb;
else
req->read = sdio_memcpy_fromio;
} else {
if (request & HIF_FIXED_ADDRESS)
req->write = sdio_writesb;
else
req->write = sdio_memcpy_toio;
}
if (!(request & HIF_ASYNCHRONOUS))
return process_request(req);
req->completion = htcCallbacks.rwCompletionHandler;
req->context = context;
enqueue_request(hif, req);
return A_OK;
}
/* ----- Interrupt handling ------------------------------------------------ */
/*
* Volatile ought to be good enough to make gcc do the right thing on S3C24xx.
* No need to use atomic or put barriers, keeping the code more readable.
*
* Warning: this story changes if going SMP/SMT.
*/
static volatile int masked = 1;
static volatile int pending;
static volatile int in_interrupt;
static void ar6000_do_irq(struct sdio_func *func)
{
HIF_DEVICE *hif = sdio_get_drvdata(func);
struct device *dev = HIFGetOSDevice(hif);
A_STATUS status;
dev_dbg(dev, "ar6000_do_irq -> %p\n", htcCallbacks.dsrHandler);
status = htcCallbacks.dsrHandler(hif->htc_handle);
BUG_ON(status != A_OK);
}
static void sdio_ar6000_irq(struct sdio_func *func)
{
HIF_DEVICE *hif = sdio_get_drvdata(func);
struct device *dev = HIFGetOSDevice(hif);
dev_dbg(dev, "sdio_ar6000_irq\n");
in_interrupt = 1;
if (masked) {
in_interrupt = 0;
pending++;
return;
}
/*
* @@@ This is ugly. If we don't drop the lock, we'll deadlock when
* the handler tries to do SDIO. So there are four choices:
*
* 1) Break the call chain by calling the callback from a workqueue.
* Ugh.
* 2) Make process_request aware that we already have the lock.
* 3) Drop the lock. Which is ugly but should be safe as long as we're
* making sure the device doesn't go away.
* 4) Change the AR6k driver such that it only issues asynchronous
* quests when called from an interrupt.
*
* Solution 2) is probably the best for now. Will try it later.
*/
sdio_release_host(func);
ar6000_do_irq(func);
sdio_claim_host(func);
in_interrupt = 0;
}
void HIFAckInterrupt(HIF_DEVICE *hif)
{
struct device *dev = HIFGetOSDevice(hif);
dev_dbg(dev, "HIFAckInterrupt\n");
/* do nothing */
}
void HIFUnMaskInterrupt(HIF_DEVICE *hif)
{
struct device *dev = HIFGetOSDevice(hif);
dev_dbg(dev, "HIFUnMaskInterrupt\n");
do {
masked = 1;
if (pending) {
pending = 0;
ar6000_do_irq(hif->func);
/* We may take an interrupt before unmasking and thus
get it pending. In this case, we just loop back. */
}
masked = 0;
}
while (pending);
}
void HIFMaskInterrupt(HIF_DEVICE *hif)
{
struct device *dev = HIFGetOSDevice(hif);
dev_dbg(dev, "HIFMaskInterrupt\n");
/*
* Since sdio_ar6000_irq can also be called from a process context, we
* may conceivably end up racing with it. Thus, we need to wait until
* we can be sure that no concurrent interrupt processing is going on
* before we return.
*
* Note: this may be a bit on the paranoid side - the callers may
* actually be nice enough to disable scheduling. Check later.
*/
masked = 1;
while (in_interrupt)
yield();
}
/* ----- HIF API glue functions -------------------------------------------- */
struct device *HIFGetOSDevice(HIF_DEVICE *hif)
{
return &hif->func->dev;
}
void HIFSetHandle(void *hif_handle, void *handle)
{
HIF_DEVICE *hif = (HIF_DEVICE *) hif_handle;
hif->htc_handle = handle;
}
/* ----- Device configuration (HIF side) ----------------------------------- */
A_STATUS HIFConfigureDevice(HIF_DEVICE *hif,
HIF_DEVICE_CONFIG_OPCODE opcode, void *config, A_UINT32 configLen)
{
struct device *dev = HIFGetOSDevice(hif);
HIF_DEVICE_IRQ_PROCESSING_MODE *ipm_cfg = config;
A_UINT32 *mbs_cfg = config;
int i;
dev_dbg(dev, "HIFConfigureDevice\n");
switch (opcode) {
case HIF_DEVICE_GET_MBOX_BLOCK_SIZE:
for (i = 0; i != MBOXES; i++)
mbs_cfg[i] = HIF_MBOX_BLOCK_SIZE;
break;
case HIF_DEVICE_GET_MBOX_ADDR:
for (i = 0; i != MBOXES; i++)
mbs_cfg[i] = HIF_MBOX_START_ADDR(i);
break;
case HIF_DEVICE_GET_IRQ_PROC_MODE:
*ipm_cfg = HIF_DEVICE_IRQ_SYNC_ONLY;
// *ipm_cfg = HIF_DEVICE_IRQ_ASYNC_SYNC;
break;
default:
return A_ERROR;
}
return A_OK;
}
/* ----- Device probe and removal (Linux side) ----------------------------- */
static int ar6000_do_activate(struct hif_device *hif)
{
struct sdio_func *func = hif->func;
struct device *dev = &func->dev;
int ret;
dev_dbg(dev, "ar6000_do_activate\n");
sdio_claim_host(func);
sdio_enable_func(func);
INIT_LIST_HEAD(&hif->queue);
init_waitqueue_head(&hif->wait);
spin_lock_init(&hif->queue_lock);
ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
if (ret < 0) {
dev_err(dev, "sdio_set_block_size returns %d\n", ret);
goto out_enabled;
}
ret = sdio_claim_irq(func, sdio_ar6000_irq);
if (ret) {
dev_err(dev, "sdio_claim_irq returns %d\n", ret);
goto out_enabled;
}
/* Set SDIO_BUS_CD_DISABLE in SDIO_CCCR_IF ? */
#if 0
sdio_f0_writeb(func, SDIO_CCCR_CAP_E4MI, SDIO_CCCR_CAPS, &ret);
if (ret) {
dev_err(dev, "sdio_f0_writeb(SDIO_CCCR_CAPS) returns %d\n",
ret);
goto out_got_irq;
}
#else
if (0) /* avoid warning */
goto out_got_irq;
#endif
sdio_release_host(func);
hif->io_task = kthread_run(io, hif, "ar6000_io");
ret = IS_ERR(hif->io_task);
if (ret) {
dev_err(dev, "kthread_run(ar6000_io): %d\n", ret);
goto out_func_ready;
}
ret = htcCallbacks.deviceInsertedHandler(hif);
if (ret == A_OK)
return 0;
dev_err(dev, "deviceInsertedHandler: %d\n", ret);
ret = kthread_stop(hif->io_task);
if (ret)
dev_err(dev, "kthread_stop (ar6000_io): %d\n", ret);
out_func_ready:
sdio_claim_host(func);
out_got_irq:
sdio_release_irq(func);
out_enabled:
sdio_disable_func(func);
sdio_release_host(func);
return ret;
}
static void ar6000_do_deactivate(struct hif_device *hif)
{
struct sdio_func *func = hif->func;
struct device *dev = &func->dev;
int ret;
dev_dbg(dev, "ar6000_do_deactivate\n");
if (!hif->active)
return;
if (mutex_trylock(&shutdown_lock)) {
/*
* Funny, Atheros' HIF does this call, but this just puts us in
* a recursion through HTCShutDown/HIFShutDown if unloading the
* module.
*
* However, we need it for suspend/resume. See the comment at
* HIFShutDown, below.
*/
ret = htcCallbacks.deviceRemovedHandler(hif->htc_handle, A_OK);
if (ret != A_OK)
dev_err(dev, "deviceRemovedHandler: %d\n", ret);
mutex_unlock(&shutdown_lock);
}
wait_queue_empty(hif);
ret = kthread_stop(hif->io_task);
if (ret)
dev_err(dev, "kthread_stop (ar6000_io): %d\n", ret);
sdio_claim_host(func);
sdio_release_irq(func);
sdio_disable_func(func);
sdio_release_host(func);
}
static int ar6000_activate(struct hif_device *hif)
{
int ret = 0;
dev_dbg(&hif->func->dev, "ar6000_activate\n");
mutex_lock(&hif->activate_lock);
if (!hif->active) {
ret = ar6000_do_activate(hif);
if (ret) {
printk(KERN_ERR "%s: Failed to activate %d\n",
__func__, ret);
goto out;
}
hif->active = 1;
}
out:
mutex_unlock(&hif->activate_lock);
return ret;
}
static void ar6000_deactivate(struct hif_device *hif)
{
dev_dbg(&hif->func->dev, "ar6000_deactivate\n");
mutex_lock(&hif->activate_lock);
if (hif->active) {
ar6000_do_deactivate(hif);
hif->active = 0;
}
mutex_unlock(&hif->activate_lock);
}
static int ar6000_rfkill_cb(void *data, int on)
{
struct hif_device *hif = data;
struct sdio_func *func = hif->func;
struct device *dev = &func->dev;
dev_dbg(dev, "ar6000_rfkill_cb: on %d\n", on);
if (on)
return ar6000_activate(hif);
ar6000_deactivate(hif);
return 0;
}
static int sdio_ar6000_probe(struct sdio_func *func,
const struct sdio_device_id *id)
{
struct device *dev = &func->dev;
struct hif_device *hif;
int ret = 0;
dev_dbg(dev, "sdio_ar6000_probe\n");
BUG_ON(!htcCallbacks.deviceInsertedHandler);
hif = kzalloc(sizeof(*hif), GFP_KERNEL);
if (!hif)
return -ENOMEM;
sdio_set_drvdata(func, hif);
hif->func = func;
mutex_init(&hif->activate_lock);
hif->active = 0;
if (gta02_wlan_query_rfkill_lock())
ret = ar6000_activate(hif);
if (!ret) {
gta02_wlan_set_rfkill_cb(ar6000_rfkill_cb, hif);
return 0;
}
gta02_wlan_query_rfkill_unlock();
sdio_set_drvdata(func, NULL);
kfree(hif);
return ret;
}
static void sdio_ar6000_remove(struct sdio_func *func)
{
struct device *dev = &func->dev;
HIF_DEVICE *hif = sdio_get_drvdata(func);
dev_dbg(dev, "sdio_ar6000_remove\n");
gta02_wlan_clear_rfkill_cb();
ar6000_deactivate(hif);
sdio_set_drvdata(func, NULL);
kfree(hif);
}
/* ----- Device registration/unregistration (called by HIF) ---------------- */
#define ATHEROS_SDIO_DEVICE(id, offset) \
SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_##id | (offset))
static const struct sdio_device_id sdio_ar6000_ids[] = {
{ ATHEROS_SDIO_DEVICE(AR6002, 0) },
{ ATHEROS_SDIO_DEVICE(AR6002, 0x1) },
{ ATHEROS_SDIO_DEVICE(AR6001, 0x8) },
{ ATHEROS_SDIO_DEVICE(AR6001, 0x9) },
{ ATHEROS_SDIO_DEVICE(AR6001, 0xa) },
{ ATHEROS_SDIO_DEVICE(AR6001, 0xb) },
{ /* end: all zeroes */ },
};
MODULE_DEVICE_TABLE(sdio, sdio_ar6000_ids);
static struct sdio_driver sdio_ar6000_driver = {
.probe = sdio_ar6000_probe,
.remove = sdio_ar6000_remove,
.name = "sdio_ar6000",
.id_table = sdio_ar6000_ids,
};
int HIFInit(HTC_CALLBACKS *callbacks)
{
int ret;
BUG_ON(!callbacks);
printk(KERN_DEBUG "HIFInit\n");
htcCallbacks = *callbacks;
ret = sdio_register_driver(&sdio_ar6000_driver);
if (ret) {
printk(KERN_ERR
"sdio_register_driver(sdio_ar6000_driver): %d\n", ret);
return A_ERROR;
}
return 0;
}
/*
* We have four possible call chains here:
*
* System shutdown/reboot:
*
* kernel_restart_prepare ...> device_shutdown ... > s3cmci_shutdown ->
* mmc_remove_host ..> sdio_bus_remove -> sdio_ar6000_remove ->
* ar6000_deactivate -> ar6000_do_deactivate ->
* deviceRemovedHandler (HTCTargetRemovedHandler) -> HIFShutDownDevice
*
* This is roughly the same sequence as suspend, described below.
*
* Module removal:
*
* sys_delete_module -> ar6000_cleanup_module -> HTCShutDown ->
* HIFShutDownDevice -> sdio_unregister_driver ...> sdio_bus_remove ->
* sdio_ar6000_remove -> ar6000_deactivate -> ar6000_do_deactivate
*
* In this case, HIFShutDownDevice must call sdio_unregister_driver to
* notify the driver about its removal. ar6000_do_deactivate must not call
* deviceRemovedHandler, because that would loop back into HIFShutDownDevice.
*
* Suspend:
*
* device_suspend ...> s3cmci_suspend ...> sdio_bus_remove ->
* sdio_ar6000_remove -> ar6000_deactivate -> ar6000_do_deactivate ->
* deviceRemovedHandler (HTCTargetRemovedHandler) -> HIFShutDownDevice
*
* We must call deviceRemovedHandler to inform the ar6k stack that the device
* has been removed. Since HTCTargetRemovedHandler calls back into
* HIFShutDownDevice, we must also prevent the call to
* sdio_unregister_driver, or we'd end up recursing into the SDIO stack,
* eventually deadlocking somewhere.
*
* rfkill:
*
* rfkill_state_store -> rfkill_toggle_radio -> gta02_wlan_toggle_radio ->
* ar6000_rfkill_cb -> ar6000_deactivate -> ar6000_do_deactivate ->
* deviceRemovedHandler (HTCTargetRemovedHandler) -> HIFShutDownDevice
*
* This is similar to suspend - only the entry point changes.
*/
void HIFShutDownDevice(HIF_DEVICE *hif)
{
/* Beware, HTCShutDown calls us with hif == NULL ! */
if (mutex_trylock(&shutdown_lock)) {
sdio_unregister_driver(&sdio_ar6000_driver);
mutex_unlock(&shutdown_lock);
}
}