openwrt/target/linux/mpc85xx/image/p1020.mk

99 lines
3.8 KiB
Makefile
Raw Normal View History

mpc85xx: Patch HiveAP 330 u-boot to fix boot When Kernel 5.10 was enabled for mpc85xx, the kernel once again became too large upon decompression (>7MB or so) to decompress itself on boot (see FS#4110[1]). There have been many attempts to fix booting from a compressed kernel on the HiveAP-330: - b683f1c36d8a ("mpc85xx: Use gzip compressed kernel on HiveAP-330") - 98089bb8ba82 ("mpc85xx: Use uncompressed kernel on the HiveAP-330") - 26cb167a5ca7 ("mpc85xx: Fix Aerohive HiveAP-330 initramfs image") We can no longer compress the kernel due to size, and the stock bootloader does not support any other types of compression. Since an uncompressed kernel no longer fits in the 8MiB kernel partition at 0x2840000, we need to patch u-boot to autoboot by running variable which isn't set by the bootloader on each autoboot. This commit repartitions the HiveAP, requiring a new COMPAT_VERSION, and uses the DEVICE_COMPAT_MESSAGE to guide the user to patch u-boot, which changes the variable run on boot to be `owrt_boot`; the user can then set the value of that variable appropriately. The following has been documented in the device's OpenWrt wiki page: <https://openwrt.org/toh/aerohive/hiveap-330>. Please look there first/too for more information. The from-stock and upgrade from a previous installation now becomes: 0) setup a network with a dhcp server and a tftp server at serverip (192.168.1.101) with the initramfs image in the servers root directory. 1) Hook into UART (9600 baud) and enter U-Boot. You may need to enter a password of administrator or AhNf?d@ta06 if prompted. If the password doesn't work. Try reseting the device by pressing and holding the reset button with the stock OS. 2) Once in U-Boot, set the new owrt_boot and tftp+boot the initramfs image: Use copy and paste! # fw_setenv owrt_boot 'setenv bootargs \"console=ttyS0,$baudrate\";bootm 0xEC040000 - 0xEC000000' # save # dhcp # setenv bootargs console=ttyS0,$baudrate # tftpboot 0x1000000 192.168.1.101:openwrt-mpc85xx-p1020-aerohive_hiveap-330-initramfs-kernel.bin # bootm 3) Once openwrt booted: carefully copy and paste this into the root shell. One step at a time # 3.0 install kmod-mtd-rw from the internet and load it opkg update; opkg install kmod-mtd-rw insmod mtd-rw i_want_a_brick=y # 3.1 create scripts that modifies uboot cat <<- "EOF" > /tmp/uboot-update.sh . /lib/functions/system.sh cp "/dev/mtd$(find_mtd_index 'u-boot')" /tmp/uboot cp /tmp/uboot /tmp/uboot_patched ofs=$(strings -n80 -td < /tmp/uboot | grep '^ [0-9]* setenv bootargs.*cp\.l' | cut -f2 -d' ') for off in $ofs; do printf "run owrt_boot; " | dd of=/tmp/uboot_patched bs=1 seek=${off} conv=notrunc done md5sum /tmp/uboot* EOF # 3.2 run the script to do the modification sh /tmp/uboot-update.sh # verify that /tmp/uboot and /tmp/uboot_patched are good # # my uboot was: (is printed during boot) # U-Boot 2009.11 (Jan 12 2017 - 00:27:25), Build: jenkins-HiveOS-Honolulu_AP350_Rel-245 # # d84b45a2e8aca60d630fbd422efc6b39 /tmp/uboot # 6dc420f24c2028b9cf7f0c62c0c7f692 /tmp/uboot_patched # 98ebc7e7480ce9148cd2799357a844b0 /tmp/uboot-update.sh <-- just for reference # 3.3 this produces the /tmp/u-boot_patched file. mtd write /tmp/uboot_patched u-boot 3) scp over the sysupgrade file to /tmp/ and run sysupgrade to flash OpenWrt: sysupgrade -n /tmp/openwrt-mpc85xx-p1020-aerohive_hiveap-330-squashfs-sysupgrade.bin 4) after the reboot, you are good to go. Other notes: - Note that after this sysupgrade, the AP will be unavailable for 7 minutes to reformat flash. The tri-color LED does not blink in any way to indicate this, though there is no risk in interrupting this process, other than the jffs2 reformat being reset. - Add a uci-default to fix the compat version. This will prevent updates from previous versions without going through the installation process. - Enable CONFIG_MTD_SPLIT_UIMAGE_FW and adjust partitioning to combine the kernel and rootfs into a single dts partition to maximize storage space, though in practice the kernel can grow no larger than 16MiB due to constraints of the older mpc85xx u-boot platform. - Because of that limit, KERNEL_SIZE has been raised to 16m. - A .tar.gz of the u-boot source for the AP330 (a.k.a. Goldengate) can be found here[2]. - The stock-jffs2 partition is also removed to make more space -- this is possible only now that it is no longer split away from the rootfs. - the console-override is gone. The device will now get the console through the bootargs. This has the advantage that you can set a different baudrate in uboot and the linux kernel will stick with it! - due to the repartitioning, the partition layout and names got a makeover. - the initramfs+fdt method is now combined into a MultiImage initramfs. The separate fdt download is no longer needed. - added uboot-envtools to the mpc85xx target. All targets have uboot and this way its available in the initramfs. [1]: https://bugs.openwrt.org/index.php?do=details&task_id=4110 [2]: magnet:?xt=urn:btih:e53b27006979afb632af5935fa0f2affaa822a59 Tested-by: Martin Kennedy <hurricos@gmail.com> Signed-off-by: Martin Kennedy <hurricos@gmail.com> (rewrote parts of the commit message, Initramfs-MultiImage, dropped bootargs-override, added wiki entry + link, uboot-envtools) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-12-22 18:08:33 +00:00
define Build/MultiImage
rm -rf $@.fakerd $@.new
dd if=/dev/zero of=$@.fakerd bs=32 count=1 conv=sync
-$(STAGING_DIR_HOST)/bin/mkimage -A $(LINUX_KARCH) -O linux -T multi -C $(1) \
-a $(KERNEL_LOADADDR) -e $(KERNEL_ENTRY) -n '$(BOARD_NAME) initramfs' \
-d $@:$@.fakerd:$(KDIR)/image-$(firstword $(DEVICE_DTS)).dtb $@.new
mv $@.new $@
rm -rf $@.fakerd
endef
define Device/aerohive_hiveap-330
DEVICE_VENDOR := Aerohive
DEVICE_MODEL := HiveAP-330
DEVICE_ALT0_VENDOR := Aerohive
DEVICE_ALT0_MODEL := HiveAP-350
DEVICE_PACKAGES := kmod-tpm-i2c-atmel kmod-hwmon-lm70
BLOCKSIZE := 128k
mpc85xx: Patch HiveAP 330 u-boot to fix boot When Kernel 5.10 was enabled for mpc85xx, the kernel once again became too large upon decompression (>7MB or so) to decompress itself on boot (see FS#4110[1]). There have been many attempts to fix booting from a compressed kernel on the HiveAP-330: - b683f1c36d8a ("mpc85xx: Use gzip compressed kernel on HiveAP-330") - 98089bb8ba82 ("mpc85xx: Use uncompressed kernel on the HiveAP-330") - 26cb167a5ca7 ("mpc85xx: Fix Aerohive HiveAP-330 initramfs image") We can no longer compress the kernel due to size, and the stock bootloader does not support any other types of compression. Since an uncompressed kernel no longer fits in the 8MiB kernel partition at 0x2840000, we need to patch u-boot to autoboot by running variable which isn't set by the bootloader on each autoboot. This commit repartitions the HiveAP, requiring a new COMPAT_VERSION, and uses the DEVICE_COMPAT_MESSAGE to guide the user to patch u-boot, which changes the variable run on boot to be `owrt_boot`; the user can then set the value of that variable appropriately. The following has been documented in the device's OpenWrt wiki page: <https://openwrt.org/toh/aerohive/hiveap-330>. Please look there first/too for more information. The from-stock and upgrade from a previous installation now becomes: 0) setup a network with a dhcp server and a tftp server at serverip (192.168.1.101) with the initramfs image in the servers root directory. 1) Hook into UART (9600 baud) and enter U-Boot. You may need to enter a password of administrator or AhNf?d@ta06 if prompted. If the password doesn't work. Try reseting the device by pressing and holding the reset button with the stock OS. 2) Once in U-Boot, set the new owrt_boot and tftp+boot the initramfs image: Use copy and paste! # fw_setenv owrt_boot 'setenv bootargs \"console=ttyS0,$baudrate\";bootm 0xEC040000 - 0xEC000000' # save # dhcp # setenv bootargs console=ttyS0,$baudrate # tftpboot 0x1000000 192.168.1.101:openwrt-mpc85xx-p1020-aerohive_hiveap-330-initramfs-kernel.bin # bootm 3) Once openwrt booted: carefully copy and paste this into the root shell. One step at a time # 3.0 install kmod-mtd-rw from the internet and load it opkg update; opkg install kmod-mtd-rw insmod mtd-rw i_want_a_brick=y # 3.1 create scripts that modifies uboot cat <<- "EOF" > /tmp/uboot-update.sh . /lib/functions/system.sh cp "/dev/mtd$(find_mtd_index 'u-boot')" /tmp/uboot cp /tmp/uboot /tmp/uboot_patched ofs=$(strings -n80 -td < /tmp/uboot | grep '^ [0-9]* setenv bootargs.*cp\.l' | cut -f2 -d' ') for off in $ofs; do printf "run owrt_boot; " | dd of=/tmp/uboot_patched bs=1 seek=${off} conv=notrunc done md5sum /tmp/uboot* EOF # 3.2 run the script to do the modification sh /tmp/uboot-update.sh # verify that /tmp/uboot and /tmp/uboot_patched are good # # my uboot was: (is printed during boot) # U-Boot 2009.11 (Jan 12 2017 - 00:27:25), Build: jenkins-HiveOS-Honolulu_AP350_Rel-245 # # d84b45a2e8aca60d630fbd422efc6b39 /tmp/uboot # 6dc420f24c2028b9cf7f0c62c0c7f692 /tmp/uboot_patched # 98ebc7e7480ce9148cd2799357a844b0 /tmp/uboot-update.sh <-- just for reference # 3.3 this produces the /tmp/u-boot_patched file. mtd write /tmp/uboot_patched u-boot 3) scp over the sysupgrade file to /tmp/ and run sysupgrade to flash OpenWrt: sysupgrade -n /tmp/openwrt-mpc85xx-p1020-aerohive_hiveap-330-squashfs-sysupgrade.bin 4) after the reboot, you are good to go. Other notes: - Note that after this sysupgrade, the AP will be unavailable for 7 minutes to reformat flash. The tri-color LED does not blink in any way to indicate this, though there is no risk in interrupting this process, other than the jffs2 reformat being reset. - Add a uci-default to fix the compat version. This will prevent updates from previous versions without going through the installation process. - Enable CONFIG_MTD_SPLIT_UIMAGE_FW and adjust partitioning to combine the kernel and rootfs into a single dts partition to maximize storage space, though in practice the kernel can grow no larger than 16MiB due to constraints of the older mpc85xx u-boot platform. - Because of that limit, KERNEL_SIZE has been raised to 16m. - A .tar.gz of the u-boot source for the AP330 (a.k.a. Goldengate) can be found here[2]. - The stock-jffs2 partition is also removed to make more space -- this is possible only now that it is no longer split away from the rootfs. - the console-override is gone. The device will now get the console through the bootargs. This has the advantage that you can set a different baudrate in uboot and the linux kernel will stick with it! - due to the repartitioning, the partition layout and names got a makeover. - the initramfs+fdt method is now combined into a MultiImage initramfs. The separate fdt download is no longer needed. - added uboot-envtools to the mpc85xx target. All targets have uboot and this way its available in the initramfs. [1]: https://bugs.openwrt.org/index.php?do=details&task_id=4110 [2]: magnet:?xt=urn:btih:e53b27006979afb632af5935fa0f2affaa822a59 Tested-by: Martin Kennedy <hurricos@gmail.com> Signed-off-by: Martin Kennedy <hurricos@gmail.com> (rewrote parts of the commit message, Initramfs-MultiImage, dropped bootargs-override, added wiki entry + link, uboot-envtools) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-12-22 18:08:33 +00:00
KERNEL := kernel-bin | uImage none
KERNEL_INITRAMFS := kernel-bin | MultiImage none
KERNEL_SIZE := 16m
IMAGES := sysupgrade.bin
IMAGE/sysupgrade.bin := append-dtb | pad-to 256k | append-kernel | \
append-rootfs | pad-rootfs | check-size | append-metadata
IMAGE_SIZE = 63m
DEVICE_COMPAT_VERSION := 2.0
DEVICE_COMPAT_MESSAGE := \n$\
!The partitioning of the HiveAP 330 has changed! \n$\
To upgrade, please take a look at the install instructions over \
at the device's wiki: <https://openwrt.org/toh/aerohive/hiveap-330> \n$\
An abridged version for the console is provided here for comfort. \n$\
Run the following script into a shell on the device and retry this \
sysupgrade again: \n$\
cat <<- "EOF" > /tmp/uboot-fix.sh; sh /tmp/uboot-fix.sh \n$\
. /lib/functions.sh \n$\
. /lib/functions/system.sh \n$\
opkg update && opkg install uboot-envtools kmod-mtd-rw || exit 2 \n$\
insmod mtd-rw i_want_a_brick=y || exit 3 \n$\
echo "/dev/mtd$$$$(find_mtd_index u-boot-env) 0x0 0x20000 0x10000" > "/etc/fw_env.config" \n$\
fw_setenv owrt_boot 'setenv bootargs console=ttyS0,9600;bootm 0xEC040000 - 0xEC000000' \n$\
cp "/dev/mtd$$$$(find_mtd_index 'u-boot')" /tmp/uboot \n$\
cp /tmp/uboot /tmp/uboot_patched \n$\
strings -td < /tmp/uboot | grep '^ *[0-9]* *\\(run owrt_boot\\|setenv bootargs\\).*cp\\.l' | \n$\
awk '{print $$$$1}' | \n$\
while read offset; do \n$\
echo -n "run owrt_boot; " | dd of=/tmp/uboot_patched bs=1 seek=$$$${offset} conv=notrunc \n$\
done \n$\
mtd write /tmp/uboot_patched u-boot \n$\
uci set system.@system[0].compat_version=2.0; uci commit; \n$\
EOF \n$\
\n$\
Note that if this fails, you will need to use the serial console \n$\
to re-install OpenWrt. \n$\
Note that after this sysupgrade, the AP will be unavailable for 7 \n$\
minutes to reformat flash."
endef
TARGET_DEVICES += aerohive_hiveap-330
define Device/enterasys_ws-ap3710i
DEVICE_VENDOR := Enterasys
DEVICE_MODEL := WS-AP3710i
BLOCKSIZE := 128k
KERNEL = kernel-bin | lzma | fit lzma $(KDIR)/image-$$(DEVICE_DTS).dtb
IMAGES := sysupgrade.bin
IMAGE/sysupgrade.bin := append-kernel | append-rootfs | pad-rootfs | append-metadata
endef
TARGET_DEVICES += enterasys_ws-ap3710i
mpc85xx: add support for Extreme Networks WS-AP3825i Hardware: - SoC: Freescale P1020 - CPU: 2x e500v2 @ 800MHz - Flash: 64MiB NOR (1x Intel JS28F512) - Memory: 256MiB (2x ProMOS DDR3 V73CAG01168RBJ-I9H 1Gb) - WiFi1: 2.4+5GHz abgn 3x3 (Atheros AR9590) - Wifi2: 5GHz an+ac 3x3 (Qualcomm Atheros QCA9890) - ETH: 2x PoE Gigabit Ethernet (2x Atheros AR8035) - Power: 12V (center-positive barrel) or 48V PoE (active or passive) - Serial: Cisco-compatible RJ45 next to 12V power socket (115200 baud) - LED Driver: TI LV164A - LEDs: (not functioning) - 2x Power (Green + Orange) - 4x ETH (ETH1 + ETH2) x (Green + Orange) - 2x WiFi (WiFi2 + WiFi1) Installation: 1. Grab the OpenWrt initramfs <openwrt-initramfs-bin>, e.g. openwrt-mpc85xx-p1020-extreme-networks_ws-ap3825i-initramfs-kernel.bin. Place it in the root directory of a DHCP+TFTP server, e.g. OpenWrt `dnsmasq` with configuration `dhcp.server.enable_tftp='1'`. 2. Connect to the serial port and boot the AP with options e.g. 115200,N,8. Stop autoboot in U-Boot by pressing Enter after 'Scanning JFFS2 FS:' begins, then waiting for the prompt to be interrupted. Credentials are identical to the one in the APs interface. By default it is admin / new2day: if these do not work, follow the OEM's reset procedure using the reset button. 3. Set the bootcmd so the AP can boot OpenWrt by executing: ```uboot setenv boot_openwrt "cp.b 0xEC000000 0x2000000 0x2000000; interrupts off; bootm start 0x2000000; bootm loados; fdt resize; fdt boardsetup; fdt chosen; bootm prep; bootm go;" setenv bootcmd "run boot_openwrt" saveenv ``` If you plan on going back to the vendor firmware - the bootcmd for it is stored in the boot_flash variable. 4. Load the initramfs image to RAM and boot by executing ```uboot setenv ipaddr <ipv4 client address>; setenv serverip <tftp server address>; tftpboot 0x2000000 <openwrt-initramfs-bin>; interrupts off; bootm start 0x2000000; bootm loados; fdt resize; fdt boardsetup; fdt chosen; bootm prep; bootm go; ``` 5. Make a backup of the "firmware" partition if you ever wish to go back to the vendor firmware. 6. Upload the OpenWrt sysupgrade image via SCP to the devices /tmp folder. 7. Flash OpenWrt using sysupgrade. ```ash sysupgrade /tmp/<openwrt-sysupgrade-bin> ``` Notes: - We must step through the `bootm` process manually to avoid fdt relocation. To explain: the stock U-boot (and stock Linux) are configured with a very large CONFIG_SYS_BOOTMAPSZ (and the device's stock Linux kernel is configured to be able to handle it). The U-boot version predates the check for the `fdt_high` variable, meaning that upon fdt relocation, the fdt can (and will) be moved to a very high address; the default appears to be 0x9ffa000. This address is so high that when the Linux kernel starts reading the fdt at the beginning of the boot process, it encounters a memory access exception and panics[5]. While it is possible to reduce the highest address the fdt will be relocated to by setting `bootm_size`, this also has the side effect of limiting the amount of RAM the kernel can use[3]. - Because it is not relocated, the flattened device tree needs to be padded in the build process to guarantee that `fdt resize` has enough space. - The primary ethernet MAC address is stored (and set) in U-boot; they are shimmed into the device tree by 'fdt boardsetup' through the 'local-mac-address' property of the respective ethernet node, so OpenWrt does not need to set this at runtime. Note that U-boot indexes the ethernet nodes by alias, which is why the device tree explicitly aliases ethernet1 to enet2. - LEDs do not function under OpenWrt. Each of 8 LEDs is connected to an output of a TI LV164A shift register, which is wired to GPIO lines and operates through bit-banged SPI. Unfortunately, I am unable to get the spi-gpio driver to recognize the `led_spi` device tree node at all, as confirmed by patching in printk messages demonstrating spi-gpio.c::spi_gpio_probe never runs. It is possible to manually articulate the shift register by exporting the GPIO lines and stepping their values through the sysfs. - Though they do not function under OpenWrt, I have left the pinout details of the LEDs and shift register in the device tree to represent real hardware. - An archive of the u-boot and Linux source for the AP3825i (which is one device of a range of devices code-named 'CHANTRY') be found here[1]. - The device has an identical case to both the Enterasys WS-AP3725i and Adtran BSAP-2030[2] (and potentially other Adtran BSAPs). Given that there is no FCC ID for the board itself (only its WLAN modules), it's likely these are generic boards, and even that the WS-AP3725i is identical, with only a change in WLAN card. I have ordered one to confirm this. - For additional information: the process of porting the board is documented in an OpenWrt forum thread[4]. [1]: magnet:?xt=urn:btih:f5306a5dfd06d42319e4554565429f84dde96bbc [2]: https://forum.openwrt.org/t/support-for-adtran-bluesocket-bsap-2030/48538 [3]: https://forum.openwrt.org/t/adding-openwrt-support-for-ws-ap3825i/101168/29 [4]: https://forum.openwrt.org/t/adding-openwrt-support-for-ws-ap3825i/101168 [5]: https://forum.openwrt.org/t/adding-openwrt-support-for-ws-ap3825i/101168/26 Tested-by: Martin Kennedy <hurricos@gmail.com> Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2021-11-28 01:59:18 +00:00
define Device/extreme-networks_ws-ap3825i
DEVICE_VENDOR := Extreme Networks
DEVICE_MODEL := WS-AP3825i
DEVICE_PACKAGES := kmod-ath10k-ct ath10k-firmware-qca988x-ct
BLOCKSIZE := 128k
KERNEL_NAME := simpleImage.ws-ap3825i
KERNEL_ENTRY := 0x1000000
KERNEL_LOADADDR := 0x1000000
KERNEL = kernel-bin | fit none $(KDIR)/image-$$(DEVICE_DTS).dtb
mpc85xx: add support for Extreme Networks WS-AP3825i Hardware: - SoC: Freescale P1020 - CPU: 2x e500v2 @ 800MHz - Flash: 64MiB NOR (1x Intel JS28F512) - Memory: 256MiB (2x ProMOS DDR3 V73CAG01168RBJ-I9H 1Gb) - WiFi1: 2.4+5GHz abgn 3x3 (Atheros AR9590) - Wifi2: 5GHz an+ac 3x3 (Qualcomm Atheros QCA9890) - ETH: 2x PoE Gigabit Ethernet (2x Atheros AR8035) - Power: 12V (center-positive barrel) or 48V PoE (active or passive) - Serial: Cisco-compatible RJ45 next to 12V power socket (115200 baud) - LED Driver: TI LV164A - LEDs: (not functioning) - 2x Power (Green + Orange) - 4x ETH (ETH1 + ETH2) x (Green + Orange) - 2x WiFi (WiFi2 + WiFi1) Installation: 1. Grab the OpenWrt initramfs <openwrt-initramfs-bin>, e.g. openwrt-mpc85xx-p1020-extreme-networks_ws-ap3825i-initramfs-kernel.bin. Place it in the root directory of a DHCP+TFTP server, e.g. OpenWrt `dnsmasq` with configuration `dhcp.server.enable_tftp='1'`. 2. Connect to the serial port and boot the AP with options e.g. 115200,N,8. Stop autoboot in U-Boot by pressing Enter after 'Scanning JFFS2 FS:' begins, then waiting for the prompt to be interrupted. Credentials are identical to the one in the APs interface. By default it is admin / new2day: if these do not work, follow the OEM's reset procedure using the reset button. 3. Set the bootcmd so the AP can boot OpenWrt by executing: ```uboot setenv boot_openwrt "cp.b 0xEC000000 0x2000000 0x2000000; interrupts off; bootm start 0x2000000; bootm loados; fdt resize; fdt boardsetup; fdt chosen; bootm prep; bootm go;" setenv bootcmd "run boot_openwrt" saveenv ``` If you plan on going back to the vendor firmware - the bootcmd for it is stored in the boot_flash variable. 4. Load the initramfs image to RAM and boot by executing ```uboot setenv ipaddr <ipv4 client address>; setenv serverip <tftp server address>; tftpboot 0x2000000 <openwrt-initramfs-bin>; interrupts off; bootm start 0x2000000; bootm loados; fdt resize; fdt boardsetup; fdt chosen; bootm prep; bootm go; ``` 5. Make a backup of the "firmware" partition if you ever wish to go back to the vendor firmware. 6. Upload the OpenWrt sysupgrade image via SCP to the devices /tmp folder. 7. Flash OpenWrt using sysupgrade. ```ash sysupgrade /tmp/<openwrt-sysupgrade-bin> ``` Notes: - We must step through the `bootm` process manually to avoid fdt relocation. To explain: the stock U-boot (and stock Linux) are configured with a very large CONFIG_SYS_BOOTMAPSZ (and the device's stock Linux kernel is configured to be able to handle it). The U-boot version predates the check for the `fdt_high` variable, meaning that upon fdt relocation, the fdt can (and will) be moved to a very high address; the default appears to be 0x9ffa000. This address is so high that when the Linux kernel starts reading the fdt at the beginning of the boot process, it encounters a memory access exception and panics[5]. While it is possible to reduce the highest address the fdt will be relocated to by setting `bootm_size`, this also has the side effect of limiting the amount of RAM the kernel can use[3]. - Because it is not relocated, the flattened device tree needs to be padded in the build process to guarantee that `fdt resize` has enough space. - The primary ethernet MAC address is stored (and set) in U-boot; they are shimmed into the device tree by 'fdt boardsetup' through the 'local-mac-address' property of the respective ethernet node, so OpenWrt does not need to set this at runtime. Note that U-boot indexes the ethernet nodes by alias, which is why the device tree explicitly aliases ethernet1 to enet2. - LEDs do not function under OpenWrt. Each of 8 LEDs is connected to an output of a TI LV164A shift register, which is wired to GPIO lines and operates through bit-banged SPI. Unfortunately, I am unable to get the spi-gpio driver to recognize the `led_spi` device tree node at all, as confirmed by patching in printk messages demonstrating spi-gpio.c::spi_gpio_probe never runs. It is possible to manually articulate the shift register by exporting the GPIO lines and stepping their values through the sysfs. - Though they do not function under OpenWrt, I have left the pinout details of the LEDs and shift register in the device tree to represent real hardware. - An archive of the u-boot and Linux source for the AP3825i (which is one device of a range of devices code-named 'CHANTRY') be found here[1]. - The device has an identical case to both the Enterasys WS-AP3725i and Adtran BSAP-2030[2] (and potentially other Adtran BSAPs). Given that there is no FCC ID for the board itself (only its WLAN modules), it's likely these are generic boards, and even that the WS-AP3725i is identical, with only a change in WLAN card. I have ordered one to confirm this. - For additional information: the process of porting the board is documented in an OpenWrt forum thread[4]. [1]: magnet:?xt=urn:btih:f5306a5dfd06d42319e4554565429f84dde96bbc [2]: https://forum.openwrt.org/t/support-for-adtran-bluesocket-bsap-2030/48538 [3]: https://forum.openwrt.org/t/adding-openwrt-support-for-ws-ap3825i/101168/29 [4]: https://forum.openwrt.org/t/adding-openwrt-support-for-ws-ap3825i/101168 [5]: https://forum.openwrt.org/t/adding-openwrt-support-for-ws-ap3825i/101168/26 Tested-by: Martin Kennedy <hurricos@gmail.com> Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2021-11-28 01:59:18 +00:00
IMAGES := sysupgrade.bin
IMAGE/sysupgrade.bin := append-kernel | append-rootfs | pad-rootfs | append-metadata
endef
TARGET_DEVICES += extreme-networks_ws-ap3825i
define Device/ocedo_panda
DEVICE_VENDOR := OCEDO
DEVICE_MODEL := Panda
mpc85xx: Patch HiveAP 330 u-boot to fix boot When Kernel 5.10 was enabled for mpc85xx, the kernel once again became too large upon decompression (>7MB or so) to decompress itself on boot (see FS#4110[1]). There have been many attempts to fix booting from a compressed kernel on the HiveAP-330: - b683f1c36d8a ("mpc85xx: Use gzip compressed kernel on HiveAP-330") - 98089bb8ba82 ("mpc85xx: Use uncompressed kernel on the HiveAP-330") - 26cb167a5ca7 ("mpc85xx: Fix Aerohive HiveAP-330 initramfs image") We can no longer compress the kernel due to size, and the stock bootloader does not support any other types of compression. Since an uncompressed kernel no longer fits in the 8MiB kernel partition at 0x2840000, we need to patch u-boot to autoboot by running variable which isn't set by the bootloader on each autoboot. This commit repartitions the HiveAP, requiring a new COMPAT_VERSION, and uses the DEVICE_COMPAT_MESSAGE to guide the user to patch u-boot, which changes the variable run on boot to be `owrt_boot`; the user can then set the value of that variable appropriately. The following has been documented in the device's OpenWrt wiki page: <https://openwrt.org/toh/aerohive/hiveap-330>. Please look there first/too for more information. The from-stock and upgrade from a previous installation now becomes: 0) setup a network with a dhcp server and a tftp server at serverip (192.168.1.101) with the initramfs image in the servers root directory. 1) Hook into UART (9600 baud) and enter U-Boot. You may need to enter a password of administrator or AhNf?d@ta06 if prompted. If the password doesn't work. Try reseting the device by pressing and holding the reset button with the stock OS. 2) Once in U-Boot, set the new owrt_boot and tftp+boot the initramfs image: Use copy and paste! # fw_setenv owrt_boot 'setenv bootargs \"console=ttyS0,$baudrate\";bootm 0xEC040000 - 0xEC000000' # save # dhcp # setenv bootargs console=ttyS0,$baudrate # tftpboot 0x1000000 192.168.1.101:openwrt-mpc85xx-p1020-aerohive_hiveap-330-initramfs-kernel.bin # bootm 3) Once openwrt booted: carefully copy and paste this into the root shell. One step at a time # 3.0 install kmod-mtd-rw from the internet and load it opkg update; opkg install kmod-mtd-rw insmod mtd-rw i_want_a_brick=y # 3.1 create scripts that modifies uboot cat <<- "EOF" > /tmp/uboot-update.sh . /lib/functions/system.sh cp "/dev/mtd$(find_mtd_index 'u-boot')" /tmp/uboot cp /tmp/uboot /tmp/uboot_patched ofs=$(strings -n80 -td < /tmp/uboot | grep '^ [0-9]* setenv bootargs.*cp\.l' | cut -f2 -d' ') for off in $ofs; do printf "run owrt_boot; " | dd of=/tmp/uboot_patched bs=1 seek=${off} conv=notrunc done md5sum /tmp/uboot* EOF # 3.2 run the script to do the modification sh /tmp/uboot-update.sh # verify that /tmp/uboot and /tmp/uboot_patched are good # # my uboot was: (is printed during boot) # U-Boot 2009.11 (Jan 12 2017 - 00:27:25), Build: jenkins-HiveOS-Honolulu_AP350_Rel-245 # # d84b45a2e8aca60d630fbd422efc6b39 /tmp/uboot # 6dc420f24c2028b9cf7f0c62c0c7f692 /tmp/uboot_patched # 98ebc7e7480ce9148cd2799357a844b0 /tmp/uboot-update.sh <-- just for reference # 3.3 this produces the /tmp/u-boot_patched file. mtd write /tmp/uboot_patched u-boot 3) scp over the sysupgrade file to /tmp/ and run sysupgrade to flash OpenWrt: sysupgrade -n /tmp/openwrt-mpc85xx-p1020-aerohive_hiveap-330-squashfs-sysupgrade.bin 4) after the reboot, you are good to go. Other notes: - Note that after this sysupgrade, the AP will be unavailable for 7 minutes to reformat flash. The tri-color LED does not blink in any way to indicate this, though there is no risk in interrupting this process, other than the jffs2 reformat being reset. - Add a uci-default to fix the compat version. This will prevent updates from previous versions without going through the installation process. - Enable CONFIG_MTD_SPLIT_UIMAGE_FW and adjust partitioning to combine the kernel and rootfs into a single dts partition to maximize storage space, though in practice the kernel can grow no larger than 16MiB due to constraints of the older mpc85xx u-boot platform. - Because of that limit, KERNEL_SIZE has been raised to 16m. - A .tar.gz of the u-boot source for the AP330 (a.k.a. Goldengate) can be found here[2]. - The stock-jffs2 partition is also removed to make more space -- this is possible only now that it is no longer split away from the rootfs. - the console-override is gone. The device will now get the console through the bootargs. This has the advantage that you can set a different baudrate in uboot and the linux kernel will stick with it! - due to the repartitioning, the partition layout and names got a makeover. - the initramfs+fdt method is now combined into a MultiImage initramfs. The separate fdt download is no longer needed. - added uboot-envtools to the mpc85xx target. All targets have uboot and this way its available in the initramfs. [1]: https://bugs.openwrt.org/index.php?do=details&task_id=4110 [2]: magnet:?xt=urn:btih:e53b27006979afb632af5935fa0f2affaa822a59 Tested-by: Martin Kennedy <hurricos@gmail.com> Signed-off-by: Martin Kennedy <hurricos@gmail.com> (rewrote parts of the commit message, Initramfs-MultiImage, dropped bootargs-override, added wiki entry + link, uboot-envtools) Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-12-22 18:08:33 +00:00
DEVICE_PACKAGES := kmod-rtc-ds1307
KERNEL = kernel-bin | gzip | fit gzip $(KDIR)/image-$$(DEVICE_DTS).dtb
PAGESIZE := 2048
SUBPAGESIZE := 512
BLOCKSIZE := 128k
IMAGES := fdt.bin sysupgrade.bin
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
IMAGE/fdt.bin := append-dtb
endef
TARGET_DEVICES += ocedo_panda