openwrt/target/linux/ath79/dts/ar9344_zbtlink_zbt-wd323.dts

157 lines
2.4 KiB
Plaintext
Raw Normal View History

ath79: Add support for ZBT-WD323 ZBT-WD323 is a dual-LTE router based on AR9344. The detailed specifications are: * AR9344 560MHz/450MHz/225MHz (CPU/DDR/AHN). * 128 MB RAM * 16MB of flash(SPI-NOR, 22MHz) * 1x 2.4GHz wifi (Atheros AR9340) * 3x 10/100Mbos Ethernet (AR8229) * 1x USB2.0 port * 2x miniPCIe-slots (USB2.0 only) * 2x SIM slots (standard size) * 4x LEDs (1 gpio controlled) * 1x reset button * 1x 10 pin terminal block (RS232, RS485, 4x GPIO) * 2x CP210x UART bridge controllers (used for RS232 and RS485) * 1x 2 pin 5mm industrial interface (input voltage 12V~36V) * 1x DC jack * 1x RTC (PCF8563) Tested: - Ethernet switch - Wifi - USB port - MiniPCIe-slots (+ SIM slots) - Sysupgrade - Reset button - RS232 Intallation and recovery: The board ships with OpenWRT, but sysupgrade does not work as a different firmware format than what is expected is generated. The easiest way to install (and recover) the router, is to use the web-interface provided by the bootloader (Breed). While the interface is in Chinese, it is easy to use. First, in order to access the interface, you need to hold down the reset button for around five seconds. Then, go to 192.168.1.1 in your browser. Click on the second item in the list on the left to access the recovery page. The second item on the next page is where you select the firmware. Select the menu item containing "Atheros SDK" and "16MB" in the dropdown close to the buttom, and click on the button at the bottom to start installation/recovery. Notes: * RS232 is available on /dev/ttyUSB0 and RS485 on /dev/ttyUSB1 Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com> [removed unused poll-interval from gpio-keys, i2c-gpio 4.19 compat] Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-05-31 13:43:14 +00:00
// SPDX-License-Identifier: GPL-2.0-or-later OR MIT
#include "ar9344.dtsi"
ath79: Add support for ZBT-WD323 ZBT-WD323 is a dual-LTE router based on AR9344. The detailed specifications are: * AR9344 560MHz/450MHz/225MHz (CPU/DDR/AHN). * 128 MB RAM * 16MB of flash(SPI-NOR, 22MHz) * 1x 2.4GHz wifi (Atheros AR9340) * 3x 10/100Mbos Ethernet (AR8229) * 1x USB2.0 port * 2x miniPCIe-slots (USB2.0 only) * 2x SIM slots (standard size) * 4x LEDs (1 gpio controlled) * 1x reset button * 1x 10 pin terminal block (RS232, RS485, 4x GPIO) * 2x CP210x UART bridge controllers (used for RS232 and RS485) * 1x 2 pin 5mm industrial interface (input voltage 12V~36V) * 1x DC jack * 1x RTC (PCF8563) Tested: - Ethernet switch - Wifi - USB port - MiniPCIe-slots (+ SIM slots) - Sysupgrade - Reset button - RS232 Intallation and recovery: The board ships with OpenWRT, but sysupgrade does not work as a different firmware format than what is expected is generated. The easiest way to install (and recover) the router, is to use the web-interface provided by the bootloader (Breed). While the interface is in Chinese, it is easy to use. First, in order to access the interface, you need to hold down the reset button for around five seconds. Then, go to 192.168.1.1 in your browser. Click on the second item in the list on the left to access the recovery page. The second item on the next page is where you select the firmware. Select the menu item containing "Atheros SDK" and "16MB" in the dropdown close to the buttom, and click on the button at the bottom to start installation/recovery. Notes: * RS232 is available on /dev/ttyUSB0 and RS485 on /dev/ttyUSB1 Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com> [removed unused poll-interval from gpio-keys, i2c-gpio 4.19 compat] Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-05-31 13:43:14 +00:00
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/input/input.h>
/ {
model = "ZBT WD323";
compatible = "zbtlink,zbt-wd323", "qca,ar9344";
keys {
compatible = "gpio-keys";
reset {
label = "reset";
gpios = <&gpio 16 GPIO_ACTIVE_LOW>;
linux,code = <KEY_RESTART>;
};
};
i2c {
compatible = "i2c-gpio";
#address-cells = <1>;
#size-cells = <0>;
pinctrl-names = "default";
pinctrl-0 = <&enable_gpio15 &enable_gpio19>;
sda-gpios = <&gpio 19 GPIO_ACTIVE_LOW>;
scl-gpios = <&gpio 15 GPIO_ACTIVE_LOW>;
pcf8563: pcf8563@51 {
compatible = "nxp,pcf8563";
reg = <0x51>;
#clock-cells = <0>;
};
};
leds {
compatible = "gpio-leds";
pinctrl-names = "default";
pinctrl-0 = <&enable_gpio20_gpio22>;
wifi {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "green:wifi";
ath79: Add support for ZBT-WD323 ZBT-WD323 is a dual-LTE router based on AR9344. The detailed specifications are: * AR9344 560MHz/450MHz/225MHz (CPU/DDR/AHN). * 128 MB RAM * 16MB of flash(SPI-NOR, 22MHz) * 1x 2.4GHz wifi (Atheros AR9340) * 3x 10/100Mbos Ethernet (AR8229) * 1x USB2.0 port * 2x miniPCIe-slots (USB2.0 only) * 2x SIM slots (standard size) * 4x LEDs (1 gpio controlled) * 1x reset button * 1x 10 pin terminal block (RS232, RS485, 4x GPIO) * 2x CP210x UART bridge controllers (used for RS232 and RS485) * 1x 2 pin 5mm industrial interface (input voltage 12V~36V) * 1x DC jack * 1x RTC (PCF8563) Tested: - Ethernet switch - Wifi - USB port - MiniPCIe-slots (+ SIM slots) - Sysupgrade - Reset button - RS232 Intallation and recovery: The board ships with OpenWRT, but sysupgrade does not work as a different firmware format than what is expected is generated. The easiest way to install (and recover) the router, is to use the web-interface provided by the bootloader (Breed). While the interface is in Chinese, it is easy to use. First, in order to access the interface, you need to hold down the reset button for around five seconds. Then, go to 192.168.1.1 in your browser. Click on the second item in the list on the left to access the recovery page. The second item on the next page is where you select the firmware. Select the menu item containing "Atheros SDK" and "16MB" in the dropdown close to the buttom, and click on the button at the bottom to start installation/recovery. Notes: * RS232 is available on /dev/ttyUSB0 and RS485 on /dev/ttyUSB1 Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com> [removed unused poll-interval from gpio-keys, i2c-gpio 4.19 compat] Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-05-31 13:43:14 +00:00
gpios = <&gpio 12 GPIO_ACTIVE_LOW>;
linux,default-trigger = "phy0tpt";
};
lan1 {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "orange:lan1";
ath79: Add support for ZBT-WD323 ZBT-WD323 is a dual-LTE router based on AR9344. The detailed specifications are: * AR9344 560MHz/450MHz/225MHz (CPU/DDR/AHN). * 128 MB RAM * 16MB of flash(SPI-NOR, 22MHz) * 1x 2.4GHz wifi (Atheros AR9340) * 3x 10/100Mbos Ethernet (AR8229) * 1x USB2.0 port * 2x miniPCIe-slots (USB2.0 only) * 2x SIM slots (standard size) * 4x LEDs (1 gpio controlled) * 1x reset button * 1x 10 pin terminal block (RS232, RS485, 4x GPIO) * 2x CP210x UART bridge controllers (used for RS232 and RS485) * 1x 2 pin 5mm industrial interface (input voltage 12V~36V) * 1x DC jack * 1x RTC (PCF8563) Tested: - Ethernet switch - Wifi - USB port - MiniPCIe-slots (+ SIM slots) - Sysupgrade - Reset button - RS232 Intallation and recovery: The board ships with OpenWRT, but sysupgrade does not work as a different firmware format than what is expected is generated. The easiest way to install (and recover) the router, is to use the web-interface provided by the bootloader (Breed). While the interface is in Chinese, it is easy to use. First, in order to access the interface, you need to hold down the reset button for around five seconds. Then, go to 192.168.1.1 in your browser. Click on the second item in the list on the left to access the recovery page. The second item on the next page is where you select the firmware. Select the menu item containing "Atheros SDK" and "16MB" in the dropdown close to the buttom, and click on the button at the bottom to start installation/recovery. Notes: * RS232 is available on /dev/ttyUSB0 and RS485 on /dev/ttyUSB1 Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com> [removed unused poll-interval from gpio-keys, i2c-gpio 4.19 compat] Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-05-31 13:43:14 +00:00
gpios = <&gpio 20 GPIO_ACTIVE_LOW>;
};
lan2 {
ath79: remove model name from LED labels Currently, we request LED labels in OpenWrt to follow the scheme modelname:color:function However, specifying the modelname at the beginning is actually entirely useless for the devices we support in OpenWrt. On the contrary, having this part actually introduces inconvenience in several aspects: - We need to ensure/check consistency with the DTS compatible - We have various exceptions where not the model name is used, but the vendor name (like tp-link), which is hard to track and justify even for core-developers - Having model-based components will not allow to share identical LED definitions in DTSI files - The inconsistency in what's used for the model part complicates several scripts, e.g. board.d/01_leds or LED migrations from ar71xx where this was even more messy Apart from our needs, upstream has deprecated the label property entirely and introduced new properties to specify color and function properties separately. However, the implementation does not appear to be ready and probably won't become ready and/or match our requirements in the foreseeable future. However, the limitation of generic LEDs to color and function properties follows the same idea pointed out above. Generic LEDs will get names like "green:status" or "red:indicator" then, and if a "devicename" is prepended, it will be the one of an internal device, like "phy1:amber:status". With this patch, we move into the same direction, and just drop the boardname from the LED labels. This allows to consolidate a few definitions in DTSI files (will be much more on ramips), and to drop a few migrations compared to ar71xx that just changed the boardname. But mainly, it will liberate us from a completely useless subject to take care of for device support review and maintenance. To also drop the boardname from existing configurations, a simple migration routine is added unconditionally. Although this seems unfamiliar at first look, a quick check in kernel for the arm/arm64 dts files revealed that while 1033 lines have labels with three parts *:*:*, still 284 actually use a two-part labelling *:*, and thus is also acceptable and not even rare there. Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-26 15:31:17 +00:00
label = "orange:lan2";
ath79: Add support for ZBT-WD323 ZBT-WD323 is a dual-LTE router based on AR9344. The detailed specifications are: * AR9344 560MHz/450MHz/225MHz (CPU/DDR/AHN). * 128 MB RAM * 16MB of flash(SPI-NOR, 22MHz) * 1x 2.4GHz wifi (Atheros AR9340) * 3x 10/100Mbos Ethernet (AR8229) * 1x USB2.0 port * 2x miniPCIe-slots (USB2.0 only) * 2x SIM slots (standard size) * 4x LEDs (1 gpio controlled) * 1x reset button * 1x 10 pin terminal block (RS232, RS485, 4x GPIO) * 2x CP210x UART bridge controllers (used for RS232 and RS485) * 1x 2 pin 5mm industrial interface (input voltage 12V~36V) * 1x DC jack * 1x RTC (PCF8563) Tested: - Ethernet switch - Wifi - USB port - MiniPCIe-slots (+ SIM slots) - Sysupgrade - Reset button - RS232 Intallation and recovery: The board ships with OpenWRT, but sysupgrade does not work as a different firmware format than what is expected is generated. The easiest way to install (and recover) the router, is to use the web-interface provided by the bootloader (Breed). While the interface is in Chinese, it is easy to use. First, in order to access the interface, you need to hold down the reset button for around five seconds. Then, go to 192.168.1.1 in your browser. Click on the second item in the list on the left to access the recovery page. The second item on the next page is where you select the firmware. Select the menu item containing "Atheros SDK" and "16MB" in the dropdown close to the buttom, and click on the button at the bottom to start installation/recovery. Notes: * RS232 is available on /dev/ttyUSB0 and RS485 on /dev/ttyUSB1 Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com> [removed unused poll-interval from gpio-keys, i2c-gpio 4.19 compat] Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-05-31 13:43:14 +00:00
gpios = <&gpio 22 GPIO_ACTIVE_LOW>;
};
};
};
&wdt {
status = "okay";
pinctrl-names = "default";
pinctrl-0 = <&enable_gpio21>;
};
&uart {
status = "okay";
};
&gpio {
pinctrl-names = "default";
pinctrl-0 = <&jtag_disable_pins>;
};
&usb {
status = "okay";
};
&usb_phy {
status = "okay";
};
&eth0 {
status = "okay";
phy-handle = <&swphy4>;
mtd-mac-address = <&art 0x0>;
};
&eth1 {
status = "okay";
mtd-mac-address = <&art 0x6>;
};
&spi {
status = "okay";
flash@0 {
compatible = "jedec,spi-nor";
spi-max-frequency = <22000000>;
reg = <0>;
partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;
uboot@0 {
reg = <0x0 0x40000>;
read-only;
};
uboot-env@40000 {
reg = <0x40000 0x10000>;
read-only;
};
firmware@50000 {
compatible = "denx,uimage";
reg = <0x50000 0xfa0000>;
};
art: art@ff0000 {
reg = <0xff0000 0x10000>;
read-only;
};
};
};
};
&wmac {
status = "okay";
mtd-cal-data = <&art 0x1000>;
};
&pinmux {
enable_gpio15: pinmux_enable_gpio15 {
pinctrl-single,bits = <0xc 0x0 0xff000000>;
};
enable_gpio19: pinmux_enable_gpio19 {
pinctrl-single,bits = <0x10 0x0 0xff000000>;
};
enable_gpio20_gpio22: pinmux_enable_gpio20_gpio22 {
pinctrl-single,bits = <0x14 0x0 0xff00ff>;
};
enable_gpio21: pinmux_enable_gpio21 {
pinctrl-single,bits = <0x14 0x0 0xff00>;
};
};