openwrt/target/linux/ramips/base-files/lib/ramips.sh

737 lines
9.5 KiB
Bash
Raw Normal View History

#!/bin/sh
#
# Copyright (C) 2010-2013 OpenWrt.org
#
ramips_board_detect() {
local machine
local name
machine=$(awk 'BEGIN{FS="[ \t]+:[ \t]"} /machine/ {print $2}' /proc/cpuinfo)
case "$machine" in
*"11AC NAS Router")
name="11acnas"
;;
*"3G150B")
name="3g150b"
;;
*"3G300M")
name="3g300m"
;;
*"3g-6200n")
name="3g-6200n"
;;
*"3g-6200nl")
name="3g-6200nl"
;;
*"A5-V11")
name="a5-v11"
;;
*"Ai-BR100")
name="ai-br100"
;;
*"Air3GII")
name="air3gii"
;;
*"ALL0239-3G")
name="all0239-3g"
;;
*"ALL0256N (4M)")
name="all0256n-4M"
;;
*"ALL0256N (8M)")
name="all0256n-8M"
;;
*"ALL5002")
name="all5002"
;;
*"ALL5003")
name="all5003"
;;
*"AR670W")
name="ar670w"
;;
*"AR725W")
name="ar725w"
;;
*"ASL26555 (8M)")
name="asl26555-8M"
;;
*"ASL26555 (16M)")
name="asl26555-16M"
;;
*"ATP-52B")
name="atp-52b"
;;
*"AWAPN2403")
name="awapn2403"
;;
*"AWM002 EVB (4M)")
name="awm002-evb-4M"
;;
*"AWM002 EVB (8M)")
name="awm002-evb-8M"
;;
*"BC2")
name="bc2"
;;
*"BR-6475nD")
name="br-6475nd"
;;
*"Broadway")
name="broadway"
;;
ramips: add support for the HNET C108 The HNET C108 (http://www.szhwtech88.com/Product-product-cid-100-id-4374.html) is a mifi based on MT7602A, which has the following specifications: * CPU: MT7620A * 1x 10/100Mbps Ethernet. * 16 MB Flash. * 64 MB RAM. * 1x USB 2.0 port. Only power is connected, this port is meant for charging other devices. * 1x mini-PCIe slots. * 1x SIM slots. * 1x 2.4Ghz WIFI. * 1x button. * 6000 mAh battery. * 5x controllable LEDs. Works: * Wifi. * Switch. * mini-PCIe slot. Only tested with a USB device (a modem). * SIM slot. * Sysupgrade. * Button (reset). Not working (also applies to the factory firmware): * Wifi LED. It is always switched on, there is no relation to the up/down state or activity of the wireless interface. Not tested: * SD card reader. Notes: * The C108 has no dedicated status LED. I therefore set the LAN LED as status LED. Installation: The router comes pre-installed with OpenWRT, including a variant of Luci. The initial firmware install can be done through this UI, following normal procedure. I.e., access the UI and update the firmware using the sysupgrade-image. Remember to select that you do not want to keep existing settings. Recovery: If you brick the device, the C108 supports recovery using TFTP. Keep the reset button pressed for ~5sec when booting to trigger TFTP. Set the address of the network interface on your machine to 10.10.10.3/24, and rename your image file to Kernal.bin. Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
2017-09-06 09:14:16 +00:00
*"C108")
name="c108"
;;
*"C20i")
name="c20i"
;;
*"C50")
name="c50"
;;
*"Carambola")
name="carambola"
;;
*"CF-WR800N")
name="cf-wr800n"
;;
*"CS-QR10")
name="cs-qr10"
;;
*"CY-SWR1100")
name="cy-swr1100"
;;
*"D105")
name="d105"
;;
*"D240")
name="d240"
;;
*"DAP-1350")
name="dap-1350"
;;
*"DB-WRT01")
name="db-wrt01"
;;
*"DCH-M225")
name="dch-m225"
;;
*"DCS-930")
name="dcs-930"
;;
*"DCS-930L B1")
name="dcs-930l-b1"
;;
*"DIR-300 B1")
name="dir-300-b1"
;;
*"DIR-300 B7")
name="dir-300-b7"
;;
*"DIR-320 B1")
name="dir-320-b1"
;;
*"DIR-600 B1")
name="dir-600-b1"
;;
*"DIR-610 A1")
name="dir-610-a1"
;;
*"DIR-615 D")
name="dir-615-d"
;;
*"DIR-615 H1")
name="dir-615-h1"
;;
*"DIR-620 A1")
name="dir-620-a1"
;;
*"DIR-620 D1")
name="dir-620-d1"
;;
*"DIR-645")
name="dir-645"
;;
*"DIR-810L")
name="dir-810l"
;;
*"DIR-860L B1")
name="dir-860l-b1"
;;
*"Dovado Tiny AC")
name="tiny-ac"
;;
*"DuZun DM06")
name="duzun-dm06"
;;
*"DWR-512 B")
name="dwr-512-b"
;;
*"E1700")
name="e1700"
;;
*"ESR-9753")
name="esr-9753"
;;
*"EW1200")
name="ew1200"
;;
*"EX2700")
name="ex2700";
;;
*"EX3700/EX3800")
name="ex3700"
;;
*"F5D8235 v1")
name="f5d8235-v1"
;;
*"F5D8235 v2")
name="f5d8235-v2"
;;
*"F7C027")
name="f7c027"
;;
*"FireWRT")
name="firewrt"
;;
*"Fonera 2.0N")
name="fonera20n"
;;
*"FreeStation5")
name="freestation5"
;;
*"GB-PC1")
name="gb-pc1"
;;
*"GL-MT300A")
name="gl-mt300a"
;;
*"GL-MT300N")
name="gl-mt300n"
;;
*"GL-MT750")
name="gl-mt750"
;;
*"GL-MT300N-V2")
name="gl-mt300n-v2"
;;
*"HC5661")
name="hc5661"
;;
*"HC5661A")
name="hc5661a"
;;
*"HC5761")
name="hc5761"
;;
*"HC5861")
name="hc5861"
;;
*"HC5962")
name="hc5962"
;;
*"HG255D")
name="hg255d"
;;
*"HLK-RM04")
name="hlk-rm04"
;;
*"HPM")
name="hpm"
;;
*"HT-TM02")
name="ht-tm02"
;;
*"HW550-3G")
name="hw550-3g"
;;
*"IP2202")
name="ip2202"
;;
*"JHR-N805R")
name="jhr-n805r"
;;
*"JHR-N825R")
name="jhr-n825r"
;;
*"JHR-N926R")
name="jhr-n926r"
;;
*"K2P")
name="k2p"
;;
*"M3")
name="m3"
;;
*"M4 (4M)")
name="m4-4M"
;;
*"M4 (8M)")
name="m4-8M"
;;
*"MediaTek LinkIt Smart 7688")
name="linkits7688"
;;
*"Memory 2 Move")
name="m2m"
;;
*"Mercury MAC1200R v2")
name="mac1200rv2"
;;
*"Mi Router 3G")
name="mir3g"
;;
*"MicroWRT")
name="microwrt"
;;
*"MiniEMBPlug")
name="miniembplug"
;;
*"MiniEMBWiFi")
name="miniembwifi"
;;
*"MiWiFi Mini")
name="miwifi-mini"
;;
*"MiWiFi Nano")
name="miwifi-nano"
;;
*"MLW221")
name="mlw221"
;;
*"MLWG2")
name="mlwg2"
;;
*"MOFI3500-3GN")
name="mofi3500-3gn"
;;
*"MPR-A1")
name="mpr-a1"
;;
*"MPR-A2")
name="mpr-a2"
;;
*"MR-102N")
name="mr-102n"
;;
*"MR200")
name="mr200"
;;
*"MT7620a + MT7530 evaluation"*)
name="mt7620a_mt7530"
;;
*"MT7620a V22SG"*)
name="mt7620a_v22sg"
;;
*"MT7621 evaluation"*)
name="mt7621"
;;
*"MT7628AN evaluation"*)
name="mt7628"
;;
*"MT7688 evaluation"*)
name="mt7688"
;;
*"MZK-750DHP")
name="mzk-750dhp"
;;
*"MZK-DP150N")
name="mzk-dp150n"
;;
*"MZK-EX300NP")
name="mzk-ex300np"
;;
*"MZK-EX750NP")
name="mzk-ex750np"
;;
*"MZK-W300NH2"*)
name="mzk-w300nh2"
;;
*"MZK-WDPR"*)
name="mzk-wdpr"
;;
*"NA930")
name="na930"
;;
*"NBG-419N")
name="nbg-419n"
;;
*"NBG-419N v2")
name="nbg-419n2"
;;
*"Newifi-D1")
name="newifi-d1"
;;
*"NCS601W")
name="ncs601w"
;;
*"NixcoreX1 (8M)")
name="nixcore-x1-8M"
;;
*"NixcoreX1 (16M)")
name="nixcore-x1-16M"
;;
*"NW718")
name="nw718"
;;
*"Onion Omega2")
name="omega2"
;;
*"Onion Omega2+")
name="omega2p"
;;
*"OY-0001")
name="oy-0001"
;;
*"PBR-D1")
name="pbr-d1"
;;
*"PBR-M1")
name="pbr-m1"
;;
*"PSG1208")
name="psg1208"
;;
*"PSG1218 rev.A")
name="psg1218a"
;;
*"PSG1218 rev.B")
name="psg1218b"
;;
*"PSR-680W"*)
name="psr-680w"
;;
*"PWH2004")
name="pwh2004"
;;
*"PX-4885 (4M)")
name="px-4885-4M"
;;
*"PX-4885 (8M)")
name="px-4885-8M"
;;
*"Q7")
name="zte-q7"
;;
*"R6220")
name="r6220"
;;
*"RB750Gr3")
name="rb750gr3"
;;
*"RE350 v1")
name="re350-v1"
;;
*"RE6500")
name="re6500"
;;
*"RN502J")
name="xdxrn502j"
;;
*"RP-N53")
name="rp-n53"
;;
*"RT5350F-OLinuXino")
name="rt5350f-olinuxino"
;;
*"RT5350F-OLinuXino-EVB")
name="rt5350f-olinuxino-evb"
;;
*"RT-AC51U")
name="rt-ac51u"
;;
*"RT-G32 B1")
name="rt-g32-b1"
;;
*"RT-N10+")
name="rt-n10-plus"
;;
*"RT-N12+")
name="rt-n12p"
;;
*"RT-N13U")
name="rt-n13u"
;;
*"RT-N14U")
name="rt-n14u"
;;
*"RT-N15")
name="rt-n15"
;;
*"RT-N56U")
name="rt-n56u"
;;
*"RUT5XX")
name="rut5xx"
;;
*"SamKnows Whitebox 8")
name="sk-wb8"
;;
*"SAP-G3200U3")
name="sap-g3200u3"
;;
*"SL-R7205"*)
name="sl-r7205"
;;
*"TEW-638APB v2")
name="tew-638apb-v2"
;;
*"TEW-691GR")
name="tew-691gr"
;;
*"TEW-692GR")
name="tew-692gr"
;;
*"TEW-714TRU")
name="tew-714tru"
;;
*"Timecloud")
name="timecloud"
;;
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
*"TL-WR840N v4")
name="tl-wr840n-v4"
;;
ramips: add support for TP-Link TL-WR840N v5 TP-Link TL-WR840N v5 is simple N300 router with 5-port FE switch and non-detachable antennas, based on MediaTek MT7628NN (aka MT7628N) WiSoC. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 4 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - 1x LED (GPIO-controlled), 1x button * LED in TL-WR840N v5 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Orange LED is registered so you can later use it for your own purposes. Flash instruction: Unlike TL-WR840N v4 flashing through WEB UI works in v5. 1. Download lede-ramips-mt76x8-tl-wr840n-v5-squashfs-sysupgrade.bin image. 2. Go to 192.168.0.1 3. Flash the sysupgrade image through Firmware upgrade section of WEB UI. 4. Wait until green LED stops flashing and use the router. Notes: TFTP recovery is broken since TP-Link reused bootloader code for v4 and that does not take into account only 4 MB of flash and bricks the device. So do not use TFTP Recovery or you will have to rewrite SPI flash. They fixed it in later GPL code,but it is unknown which version of bootloader you have. After manually compiling and flashing bootloader from GPL sources TFTP recovery works properly. Signed-off-by: Robert Marko <robimarko@gmail.com>
2017-11-08 13:00:06 +00:00
*"TL-WR840N v5")
name="tl-wr840n-v5"
;;
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
*"TL-WR841N v13")
name="tl-wr841n-v13"
;;
*"U25AWF-H1")
name="u25awf-h1"
;;
ramips: add support for UniElec U7621-06 UniElec U7621-06 is a router platform board based on MediaTek MT7621AT. The device has the following specifications: - MT7621AT (880 MHz) - 256/512 MB of RAM (DDR3) - 8/16/32/64 MB of FLASH (SPI NOR) - 5x 1 Gbps Ethernet (MT7621 built-in switch) - 1x ASMedia ASM1061 (for mSATA and SATA) - 2x miniPCIe slots (PCIe bus only) - 1x mSATA slot (with USB 2.0 bus for modem) - 1x SATA - 1x miniSIM slot - 1x microSD slot - 1x USB 3.0 - 12x LEDs (3 GPIO-controlled) - 1x reset button - 1x UART header (4-pins) - 1x GPIO header (30-pins) - 1x FPC connector for LEDs (20-pin, 0.5 mm pitch) - 1x DC jack for main power (12 V) The following has been tested and is working: - Ethernet switch - miniPCIe slots (tested with Wi-Fi cards) - mSATA slot (tested with modem and mSATA drive) - miniSIM slot - sysupgrade - reset button - microSD slot Installation: This board might come with a different firmware versions (MediaTek SDK, PandoraBox, Padavan, etc.). If your board comes with PandoraBox, you can install LEDE using sysupgrade. Just SSH to the router and perform forced sysupgrade (due to a board name mismatch). The default IP of this board should be: 192.168.1.1 and username/password: root/admin. In case of a different firmware, you can use web based recovery described below. Use the following command to perform the sysupgrade (for the 256MB RAM/16MB flash version): sysupgrade -n -F lede-ramips-mt7621-u7621-06-256M-16M-squashfs-sysupgrade.bin Recovery: This board contains a Chinese, closed-source bootloader called Breed (Boot and Recovery Environment for Embedded Devices). Breed supports web recovery and to enter it, you keep the reset button pressed for around 5 seconds during boot. Your machine will be assigned an IP through DHCP and the router will use IP address 192.168.1.1. The recovery website is in Chinese, but is easy to use. Click on the second item in the list to access the recovery page, then the second item on the next page is where you select the firmware. In order to start the recovery, you click the button at the bottom. LEDs list (top row, left to right): - LED_WWAN# (connected with pin 42 in LTE/mSATA slot) - Power (connected directly to 3V3) - CTS2_N (GPIO10, configured as "status" LED) - TXD2 (GPIO11, configured as "led4", without default trigger) - RXD2 (GPIO12, configured as "led5", without default trigger) - LED_WLAN# (connected with pin 44 in wifi0 slot) LEDs list (bottom row, left to right): - ESW_P0_LED_0 - ESW_P1_LED_0 - ESW_P2_LED_0 - ESW_P3_LED_0 - ESW_P4_LED_0 - LED_WLAN# (connected with pin 44 in wifi1 slot) Other notes: 1. The board is available with different amounts of RAM and flash. We have only added support for the 256/16 MB configuration, as that seems to be the default. However, all the required infrastructure is in place for making support for the other configurations easy. 2. The manufacturer offers five different wireless cards with MediaTek chipsets, based on MT76x2, MT7603 and MT7615. Images of the board all show that the miniPCIe slots are dedicated to specific Wi-Fi cards. However, the slots are generic. 3. All boards we got access to had the same EEPROM content. The default firmware reads the Ethernet MAC from offset 0xe000 in factory partition. This offset only contains 0xffs, so a random MAC will be generated on every boot of the router. There is a valid MAC stored at offset 0xe006 and this MAC is shown as the WAN MAC in the bootloader. However, it is the same on all boards we have checked. Based on information provided by the vendor, all boards sold in small quantities are considered more as samples for development purposes. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
2017-11-02 15:04:49 +00:00
*"U7621-06 (256M RAM/16M flash)")
name="u7621-06-256M-16M"
;;
ramips: add support for UniElec U7628-01 UniElec U7628-01 is a router platform board based on MediaTek MT7628AN. The device has the following specifications: - MT7628AN (580MHz) - 64/128/256 MB of RAM (DDR2) - 8/16 MB of flash (SPI NOR) - 5x 10/100 Mbps Ethernet (MT7628 built-in switch) - 1x 2T2R 2.4 GHz Wi-Fi (MT7628) - 1x miniPCIe slot (with PCIe and USB 2.0 buses) - 1x miniSIM slot - 1x microSD slot - 1x USB 2.0 port - 7x single-color LEDs (GPIO-controlled) - 1x bi-color LED (green GPIO-controlled, red -> LED_WLAN# in miniPCIe) - 1x reset button - 1x UART header (4-pins) - 1x SDXC/GPIO header (10-pins, connected with microSD slot) - 1x DC jack for main power (12 V) The following has been tested and is working: - Ethernet switch - miniPCIe slot (tested with modem and Wi-Fi card) - miniSIM slot - sysupgrade - reset button - USB 2.0 port* Due to a missing driver (MMC over GPIO) this is not supported: - microSD card reader * Warning: USB buses in miniPCIe and regular A-type socket are connected together, without any proper analog switch or USB HUB. Installation: This board might come with a different firmware versions (MediaTek SDK, PandoraBox, Padavan, etc.). If your board comes with PandoraBox, you can install LEDE using sysupgrade. Just SSH to the router and perform forced sysupgrade (due to a board name mismatch). The default IP of this board should be: 192.168.1.1 and username/password: root/admin. In case of a different firmware, you can use web based recovery described below. Use the following command to perform the sysupgrade (for the 128MB RAM/16MB flash version): sysupgrade -n -F lede-ramips-mt76x8-u7628-01-128M-16M-squashfs-sysupgrade.bin Recovery: This board contains a Chinese, closed-source bootloader called Breed (Boot and Recovery Environment for Embedded Devices). Breed supports web recovery and to enter it, you keep the reset button pressed for around 5 seconds during boot. Your machine will be assigned an IP through DHCP and the router will use IP address 192.168.1.1. The recovery website is in Chinese, but is easy to use. Click on the second item in the list to access the recovery page, then the second item on the next page is where you select the firmware. In order to start the recovery, you click the button at the bottom. SDXC/GPIO header (J3): 1. SDXC_D3 / I2C_SCLK 2. SDXC_D2 / I2C_SD 3. SDXC_D1 / I2S_DI 4. SDXC_D0 / I2S_WS 5. SDXC_CMD / I2S_CLK 6. SDXC_CLK / GPIO0 7. SDXC_CD / UART_RXD1 8. UART_TXD1 9. 3V3 10. GND Other notes: 1. The board is available with different amounts of RAM and flash. We have only added support for the 128/16 MB configuration, as that seems to be the default. However, all the required infrastructure is in place for making support for the other configurations easy. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
2017-11-03 20:12:49 +00:00
*"U7628-01 (128M RAM/16M flash)")
name="u7628-01-128M-16M"
;;
ramips: add support for Ubiquiti EdgeRouter X (UBNT-ERX) This router is based on MT7621 SoC, no wifi, no usb, nand. Works: * Boots. * Ethernet. * Switch. * Button (reset). * Flashing OpenWrt from stock firmware. * Upgrading OpenWrt. Doesn't work: * No GPIO leds. All leds are controlled by switch, but stock firmware was able to control them. * SoC has crypto engine but no open driver. * SoC has nat acceleration, but no open driver. * This router has 2MB spi flash soldered in but MT nand/spi drivers do not support pin sharing, so it is not accessable and disabled. Stock firmware could read it and it was empty. * PoE out. Router has serial pins populated. If looking at the top of the router, then counting from Eth sockets pins go as: 'GND, RX, TX, GND'. 3.3v, 57600. U-boot bootloader supports tftpboot, controlled from serial. This router has two kernel partitions: 'live' and 'backup'. They are swapped during flashing (on both stock and OpenWrt). Active partition is controlled by a flag in a factory partition. U-boot has custom command to switch active kernel partition. Kernel partitions are 'bare flash' 3MB. Stock bootloader has no UBI support. Stock rootfs is UBIFS. Flashing procedure. Stock firmware uses custom kernel patch to mount squashfs from a file that is located on UBIFS volume. This makes wiping out this volume from within stock firmware difficult. Instead this patch builds image that is flashable by stock firmware and contains initrams image (with minimal set of packages to fit into kernel partition). Once this is flashed one can reboot into initramfs OpenWrt and use sysupgrade to flash OpenWrt including rootfs into nand. Note: factory image is only built if initramfs image is enabled. Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com> SVN-Revision: 47881
2015-12-12 07:38:06 +00:00
*"UBNT-ERX")
name="ubnt-erx"
;;
*"UBNT-ERX-SFP")
name="ubnt-erx-sfp"
;;
*"UR-326N4G")
name="ur-326n4g"
;;
*"UR-336UN")
name="ur-336un"
;;
*"V11ST-FE")
name="v11st-fe"
;;
*"V22RW-2X2")
name="v22rw-2x2"
;;
*"VoCore (8M)")
name="vocore-8M"
;;
*"VoCore (16M)")
name="vocore-16M"
;;
*"VoCore2")
name="vocore2"
;;
*"VoCore2-Lite")
name="vocore2lite"
;;
*"VR500")
name="vr500"
;;
*"W150M")
name="w150m"
;;
*"W2914NS v2")
name="w2914nsv2"
;;
*"W306R V2.0")
name="w306r-v20"
;;
*"W502U")
name="w502u"
;;
*"WCR-1166DS")
name="wcr-1166ds"
;;
*"WCR-150GN")
name="wcr-150gn"
;;
ramips: Add support for ZBT WE1026-5G The ZBT WE1026-5G (http://www.zbtlink.com/products/router/WE1026-5G.html) is the follow-up to the ZBT WE1026 and is based on MT7620. For the previous WE1026, the ZBT WE826 image could be used. However, as the name implies, the -5G comes equipped with a 5GHz wifi radio. As the WE826 only has a 2.4GHz radio, the addition of 5GHz means that a separate image is needed for the WE1026-5G. I suspect that this image will also work on the previous WE1026, but I don't have a device to test with. The WE1026-5G has following specifications: * CPU: MT7620A * 1x 10/100Mbps Ethernet. * 16 MB Flash. * 64 MB RAM. * 1x USB 2.0 port. * 1x mini-PCIe slots. * 1x SIM slots. * 1x 2.4Ghz WIFI. * 1x 5GHz wifi (MT7612) * 1x button. * 3x controllable LEDs. Works: * Wifi. * Switch. * mini-PCIe slot. Only tested with a USB device (a modem). * SIM slot. * Sysupgrade. * Button (reset). Not working: * The 5GHz WIFI LED is completely dead. I suspect the issue is the same as on other devices with Mediatek 5Ghz wifi-cards/chips. The LED is controlled by the driver, and mt76 (currently) does not support this. Not tested: * SD card reader. Notes: * The modem (labeled 3G/4G) and power LEDs are controlled by the hardware. * There is a 32MB version of this device available, but I do not have access to it. I have therefor only added support for the 16MB version, but added all the required infrastructure to make adding support for the 32MB version easy. Installation: The router comes pre-installed with OpenWRT, including a variant of Luci. The initial firmware install can be done through this UI, following normal procedure. I.e., access the UI and update the firmware using the sysupgrade-image. Remember to select that you do not want to keep existing settings. Recovery: If you brick the device, the WE1026-5G supports recovery using HTTP. Keep the reset button pressed for ~5sec when booting to start the web server. Set the address of the network interface on your machine to 192.168.1.2/24, and point your browser to 192.168.1.1 to access the recovery UI. From the recovery UI you can upload a firmware image. Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
2017-09-10 12:44:47 +00:00
*"WE1026-5G (16M)")
name="we1026-5g-16m"
;;
*"WF-2881")
name="wf-2881"
;;
*"WHR-1166D")
name="whr-1166d"
;;
*"WHR-300HP2")
name="whr-300hp2"
;;
*"WHR-600D")
name="whr-600d"
;;
*"WHR-G300N")
name="whr-g300n"
;;
*"WiTi")
name="witi"
;;
*"WIZARD 8800")
name="wizard8800"
;;
*"WizFi630A")
name="wizfi630a"
ramips: add support for Ubiquiti EdgeRouter X (UBNT-ERX) This router is based on MT7621 SoC, no wifi, no usb, nand. Works: * Boots. * Ethernet. * Switch. * Button (reset). * Flashing OpenWrt from stock firmware. * Upgrading OpenWrt. Doesn't work: * No GPIO leds. All leds are controlled by switch, but stock firmware was able to control them. * SoC has crypto engine but no open driver. * SoC has nat acceleration, but no open driver. * This router has 2MB spi flash soldered in but MT nand/spi drivers do not support pin sharing, so it is not accessable and disabled. Stock firmware could read it and it was empty. * PoE out. Router has serial pins populated. If looking at the top of the router, then counting from Eth sockets pins go as: 'GND, RX, TX, GND'. 3.3v, 57600. U-boot bootloader supports tftpboot, controlled from serial. This router has two kernel partitions: 'live' and 'backup'. They are swapped during flashing (on both stock and OpenWrt). Active partition is controlled by a flag in a factory partition. U-boot has custom command to switch active kernel partition. Kernel partitions are 'bare flash' 3MB. Stock bootloader has no UBI support. Stock rootfs is UBIFS. Flashing procedure. Stock firmware uses custom kernel patch to mount squashfs from a file that is located on UBIFS volume. This makes wiping out this volume from within stock firmware difficult. Instead this patch builds image that is flashable by stock firmware and contains initrams image (with minimal set of packages to fit into kernel partition). Once this is flashed one can reboot into initramfs OpenWrt and use sysupgrade to flash OpenWrt including rootfs into nand. Note: factory image is only built if initramfs image is enabled. Signed-off-by: Nikolay Martynov <mar.kolya@gmail.com> SVN-Revision: 47881
2015-12-12 07:38:06 +00:00
;;
*"WL-330N")
name="wl-330n"
;;
*"WL-330N3G")
name="wl-330n3g"
;;
*"WL-341 v3")
name="wl-341v3"
;;
*"WL-351 v1 002")
name="wl-351"
;;
*"WL-WN575A3")
name="wl-wn575a3"
;;
*"WLI-TX4-AG300N")
name="wli-tx4-ag300n"
;;
ramips: add support for Sitecom WLR-6000 The Sitecom firmware upgrade file has SENAO_FIRMWARE_TYPE 2 set. This looks rather wrong since SENAO_FIRMWARE_TYPE 2 is kernel only but the file is way to big for only including a kernel. The factory image need to have the dlf file extension. Otherwise the Sitecom firmware rejects the file. The stock firmware uses the following mac addresses: LAN: 00:0C:F6:AA:BB:D8 (u-boot env: ethaddr) 2,4: 00:0C:F6:AA:BB:D8 (EEPROM) 5: 00:0C:F6:AA:BB:DC (EEPROM) WAN: 00:0C:F6:AA:C8:43 (u-boot env: wanaddr) Assuming the mac address range :D8 to :DC is reserved for this device, the MAC addresses were reorder to have a unique MAC address for each interface: 2.4GHz: 00:0C:F6:AA:BB:D8 LAN: 00:0C:F6:AA:BB:D9 WAN: 00:0C:F6:AA:BB:DA 5 GHz: 00:0C:F6:AA:BB:DC The first MAC is assigned to the 2.4GHz WiFi interface to keep compatibility with the SSIDs printed on the case, which have the last three sextets of the MAC address appended. There are still issues with the rt2x00 driver. It is not possible to use both wireless interfaces at the same time. The 2.4 GHz wireless (PCIe) only works if the internal 5GHz wireless is/has been enabled or used for scanning. The internal 5GHz wireless only works if the 2.4GHz wireless (PCIe) was never enabled. Disabling the 2.4Ghz after it was enabled will result in stations seeing the 5Ghz AP but are unable to connect. Due to the not optimal working wifi the manufacture, backup and storage partitions of the OEM firmware are kept for now to allow an easy switch back to the Sitecom firmware. Signed-off-by: Jasper Scholte <NightNL@outlook.com> Signed-off-by: Mathias Kresin <dev@kresin.me>
2016-08-14 21:30:44 +00:00
*"WLR-6000")
name="wlr-6000"
;;
*"WMDR-143N")
name="wmdr-143n"
;;
*"WMR-300")
name="wmr-300"
;;
*"WN3000RPv3")
name="wn3000rpv3"
;;
*"WNCE2001")
name="wnce2001"
;;
*"WNDR3700v5")
name="wndr3700v5"
;;
*"WR512-3GN (4M)")
name="wr512-3gn-4M"
;;
*"WR512-3GN (8M)")
name="wr512-3gn-8M"
;;
*"WR6202")
name="wr6202"
;;
*"WRH-300CR")
name="wrh-300cr"
;;
*"WRTNODE")
name="wrtnode"
;;
*"WRTnode2R")
name="wrtnode2r"
;;
*"WRTnode2P")
name="wrtnode2p"
;;
*"WSR-1166DHP")
name="wsr-1166"
;;
*"WSR-600DHP")
name="wsr-600"
;;
*"WT1520 (4M)")
name="wt1520-4M"
;;
*"WT1520 (8M)")
name="wt1520-8M"
;;
*"WT3020 (4M)")
name="wt3020-4M"
;;
*"WT3020 (8M)")
name="wt3020-8M"
;;
*"WZR-AGL300NH")
name="wzr-agl300nh"
;;
*"X5")
name="x5"
;;
*"X8")
name="x8"
;;
*"Y1")
name="y1"
;;
*"Y1S")
name="y1s"
;;
*"ZBT-APE522II")
name="zbt-ape522ii"
;;
*"ZBT-CPE102")
name="zbt-cpe102"
;;
*"ZBT-WA05")
name="zbt-wa05"
;;
*"ZBT-WE1326")
name="zbt-we1326"
;;
*"ZBT-WE2026")
name="zbt-we2026"
;;
*"ZBT-WE826 (16M)")
name="zbt-we826-16M"
;;
*"ZBT-WE826 (32M)")
name="zbt-we826-32M"
;;
*"ZBT-WG2626")
name="zbt-wg2626"
;;
*"ZBT-WG3526 (16M)")
name="zbt-wg3526-16M"
;;
*"ZBT-WG3526 (32M)")
name="zbt-wg3526-32M"
;;
*"ZBT-WR8305RT")
name="zbt-wr8305rt"
;;
*"ZyXEL Keenetic")
name="kn"
;;
*"ZyXEL Keenetic Omni")
name="kn_rc"
;;
*"ZyXEL Keenetic Omni II")
name="kn_rf"
;;
*"ZyXEL Keenetic Viva")
name="kng_rc"
;;
*"YK1")
name="youku-yk1"
;;
esac
# use generic board detect if no name is set
[ -z "$name" ] && return
[ -e "/tmp/sysinfo/" ] || mkdir -p "/tmp/sysinfo/"
echo "$name" > /tmp/sysinfo/board_name
echo "$machine" > /tmp/sysinfo/model
}