1895 lines
56 KiB
C
Raw Normal View History

2012-12-15 02:00:33 +00:00
/******************************************************************************
**
** FILE NAME : ifxmips_atm_core.c
** PROJECT : UEIP
** MODULES : ATM
**
** DATE : 7 Jul 2009
** AUTHOR : Xu Liang
** DESCRIPTION : ATM driver common source file (core functions)
** COPYRIGHT : Copyright (c) 2006
** Infineon Technologies AG
** Am Campeon 1-12, 85579 Neubiberg, Germany
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** HISTORY
** $Date $Author $Comment
** 07 JUL 2009 Xu Liang Init Version
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
**
** Copyright 2017 Alexander Couzens <lynxis@fe80.eu>
2012-12-15 02:00:33 +00:00
*******************************************************************************/
#define IFX_ATM_VER_MAJOR 1
#define IFX_ATM_VER_MID 0
#define IFX_ATM_VER_MINOR 26
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/ioctl.h>
#include <linux/atmdev.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/atm.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#ifdef CONFIG_XFRM
#include <net/xfrm.h>
#endif
#include <lantiq_soc.h>
#include "ifxmips_atm_core.h"
#define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
#define MODULE_PARM(a, b) module_param(a, int, 0)
/*!
\brief QSB cell delay variation due to concurrency
*/
static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
/*!
\brief QSB scheduler burst length
*/
static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
/*!
\brief QSB time step, all legal values are 1, 2, 4
*/
static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
/*!
\brief Write descriptor delay
*/
static int write_descriptor_delay = 0x20; /* Write descriptor delay */
/*!
\brief AAL5 padding byte ('~')
*/
static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
/*!
\brief Max frame size for RX
*/
static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
/*!
\brief Min frame size for RX
*/
static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
/*!
\brief Max frame size for TX
*/
static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
/*!
\brief Min frame size for TX
*/
static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
/*!
\brief Drop error packet in RX path
*/
static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
/*!
\brief Number of descriptors per DMA RX channel
*/
static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
/*!
\brief Number of descriptors per DMA TX channel
*/
static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
/*!
\brief PPE core clock cycles between descriptor write and effectiveness in external RAM
*/
static int dma_rx_clp1_descriptor_threshold = 38;
/*@}*/
MODULE_PARM(qsb_tau, "i");
MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
MODULE_PARM(qsb_srvm, "i");
MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
MODULE_PARM(qsb_tstep, "i");
MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
MODULE_PARM(write_descriptor_delay, "i");
MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
MODULE_PARM(aal5_fill_pattern, "i");
MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
MODULE_PARM(aal5r_max_packet_size, "i");
MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
MODULE_PARM(aal5r_min_packet_size, "i");
MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
MODULE_PARM(aal5s_max_packet_size, "i");
MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
MODULE_PARM(aal5s_min_packet_size, "i");
MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
MODULE_PARM(aal5r_drop_error_packet, "i");
MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
MODULE_PARM(dma_rx_descriptor_length, "i");
MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
MODULE_PARM(dma_tx_descriptor_length, "i");
MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
/*
* ####################################
* Definition
* ####################################
*/
#ifdef CONFIG_AMAZON_SE
#define ENABLE_LESS_CACHE_INV 1
#define LESS_CACHE_INV_LEN 96
#endif
#define DUMP_SKB_LEN ~0
/*
* ####################################
* Declaration
* ####################################
*/
/*
* Network Operations
*/
static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
static int ppe_open(struct atm_vcc *);
static void ppe_close(struct atm_vcc *);
static int ppe_send(struct atm_vcc *, struct sk_buff *);
static int ppe_send_oam(struct atm_vcc *, void *, int);
static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
/*
* ADSL LED
*/
static inline void adsl_led_flash(void);
/*
* 64-bit operation used by MIB calculation
*/
static inline void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
/*
* buffer manage functions
*/
static inline struct sk_buff* alloc_skb_rx(void);
static inline struct sk_buff* alloc_skb_tx(unsigned int);
static inline void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
static inline struct sk_buff *get_skb_rx_pointer(unsigned int);
static inline int get_tx_desc(unsigned int);
/*
* mailbox handler and signal function
*/
static inline void mailbox_oam_rx_handler(void);
static inline void mailbox_aal_rx_handler(void);
static irqreturn_t mailbox_irq_handler(int, void *);
static inline void mailbox_signal(unsigned int, int);
static void do_ppe_tasklet(unsigned long);
DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
2012-12-15 02:00:33 +00:00
/*
* QSB & HTU setting functions
*/
static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
static void qsb_global_set(void);
static inline void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
static inline void clear_htu_entry(unsigned int);
static void validate_oam_htu_entry(void);
static void invalidate_oam_htu_entry(void);
/*
* look up for connection ID
*/
static inline int find_vpi(unsigned int);
static inline int find_vpivci(unsigned int, unsigned int);
static inline int find_vcc(struct atm_vcc *);
static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *);
/*
* Init & clean-up functions
*/
static inline void check_parameters(void);
static inline int init_priv_data(void);
static inline void clear_priv_data(void);
static inline void init_rx_tables(void);
static inline void init_tx_tables(void);
/*
* Exteranl Function
*/
#if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
extern void ifx_push_oam(unsigned char *);
#else
static inline void ifx_push_oam(unsigned char *dummy) {}
#endif
#if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
extern int (*ifx_mei_atm_showtime_exit)(void);
extern int ifx_mei_atm_led_blink(void);
#else
static inline int ifx_mei_atm_led_blink(void) { return 0; }
static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
{
if ( is_showtime != NULL )
*is_showtime = 0;
return 0;
}
int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
int (*ifx_mei_atm_showtime_exit)(void) = NULL;
EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
#endif
static struct atm_priv_data g_atm_priv_data;
static struct atmdev_ops g_ifx_atm_ops = {
.open = ppe_open,
.close = ppe_close,
.ioctl = ppe_ioctl,
.send = ppe_send,
.send_oam = ppe_send_oam,
.change_qos = ppe_change_qos,
.owner = THIS_MODULE,
};
static int g_showtime = 0;
static void *g_xdata_addr = NULL;
static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
{
int ret = 0;
atm_cell_ifEntry_t mib_cell;
atm_aal5_ifEntry_t mib_aal5;
atm_aal5_vcc_x_t mib_vcc;
unsigned int value;
int conn;
if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
|| _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
return -ENOTTY;
if ( _IOC_DIR(cmd) & _IOC_READ )
ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
else if ( _IOC_DIR(cmd) & _IOC_WRITE )
ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
if ( ret )
return -EFAULT;
switch (cmd) {
case PPE_ATM_MIB_CELL: /* cell level MIB */
/* These MIB should be read at ARC side, now put zero only. */
mib_cell.ifHCInOctets_h = 0;
mib_cell.ifHCInOctets_l = 0;
mib_cell.ifHCOutOctets_h = 0;
mib_cell.ifHCOutOctets_l = 0;
mib_cell.ifInErrors = 0;
mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
mib_cell.ifOutErrors = 0;
ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
break;
case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
value = WAN_MIB_TABLE->wrx_total_byte;
u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
g_atm_priv_data.prev_wrx_total_byte = value;
mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
value = WAN_MIB_TABLE->wtx_total_byte;
u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
g_atm_priv_data.prev_wtx_total_byte = value;
mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
break;
case PPE_ATM_MIB_VCC: /* VCC related MIB */
copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
if (conn >= 0) {
mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
} else
ret = -EINVAL;
break;
default:
ret = -ENOIOCTLCMD;
}
return ret;
}
static int ppe_open(struct atm_vcc *vcc)
{
int ret;
short vpi = vcc->vpi;
int vci = vcc->vci;
struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
int conn;
int f_enable_irq = 0;
if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
return -EPROTONOSUPPORT;
#if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
/* check bandwidth */
if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
|| (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
#if 0
2012-12-15 02:00:33 +00:00
|| (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
#endif
2012-12-15 02:00:33 +00:00
|| (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
{
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
#endif
/* check existing vpi,vci */
conn = find_vpivci(vpi, vci);
if ( conn >= 0 ) {
ret = -EADDRINUSE;
goto PPE_OPEN_EXIT;
}
/* check whether it need to enable irq */
if ( g_atm_priv_data.conn_table == 0 )
f_enable_irq = 1;
/* allocate connection */
for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
g_atm_priv_data.conn[conn].vcc = vcc;
break;
}
}
if ( conn == MAX_PVC_NUMBER ) {
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
/* reserve bandwidth */
switch ( vcc->qos.txtp.traffic_class ) {
case ATM_CBR:
case ATM_VBR_RT:
port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
break;
case ATM_VBR_NRT:
#if 0
2012-12-15 02:00:33 +00:00
port->tx_current_cell_rate += vcc->qos.txtp.scr;
#endif
2012-12-15 02:00:33 +00:00
break;
case ATM_UBR_PLUS:
port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
break;
}
/* set qsb */
set_qsb(vcc, &vcc->qos, conn);
/* update atm_vcc structure */
vcc->itf = (int)vcc->dev->dev_data;
vcc->vpi = vpi;
vcc->vci = vci;
set_bit(ATM_VF_READY, &vcc->flags);
/* enable irq */
if ( f_enable_irq ) {
*MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
*MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
enable_irq(PPE_MAILBOX_IGU1_INT);
}
/* set port */
WTX_QUEUE_CONFIG(conn + FIRST_QSB_QID)->sbid = (int)vcc->dev->dev_data;
/* set htu entry */
set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
*MBOX_IGU1_ISRC |= (1 << (conn + FIRST_QSB_QID + 16));
*MBOX_IGU1_IER |= (1 << (conn + FIRST_QSB_QID + 16));
2012-12-15 02:00:33 +00:00
ret = 0;
PPE_OPEN_EXIT:
return ret;
}
static void ppe_close(struct atm_vcc *vcc)
{
int conn;
struct port *port;
struct connection *connection;
if ( vcc == NULL )
return;
/* get connection id */
conn = find_vcc(vcc);
if ( conn < 0 ) {
pr_err("can't find vcc\n");
goto PPE_CLOSE_EXIT;
}
connection = &g_atm_priv_data.conn[conn];
port = &g_atm_priv_data.port[connection->port];
/* clear htu */
clear_htu_entry(conn);
/* release connection */
connection->vcc = NULL;
connection->aal5_vcc_crc_err = 0;
connection->aal5_vcc_oversize_sdu = 0;
clear_bit(conn, &g_atm_priv_data.conn_table);
/* disable irq */
if ( g_atm_priv_data.conn_table == 0 )
2012-12-15 02:00:33 +00:00
disable_irq(PPE_MAILBOX_IGU1_INT);
/* release bandwidth */
switch ( vcc->qos.txtp.traffic_class )
{
case ATM_CBR:
case ATM_VBR_RT:
port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
break;
case ATM_VBR_NRT:
#if 0
2012-12-15 02:00:33 +00:00
port->tx_current_cell_rate -= vcc->qos.txtp.scr;
#endif
2012-12-15 02:00:33 +00:00
break;
case ATM_UBR_PLUS:
port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
break;
}
/* wait for incoming packets to be processed by upper layers */
tasklet_unlock_wait(&g_dma_tasklet);
2012-12-15 02:00:33 +00:00
PPE_CLOSE_EXIT:
return;
}
static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
int ret;
int conn;
int desc_base;
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
int byteoff;
int required;
/* the len of the data without offset and header */
int datalen;
unsigned long flags;
2012-12-15 02:00:33 +00:00
struct tx_descriptor reg_desc = {0};
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
struct tx_inband_header *header;
2012-12-15 02:00:33 +00:00
if ( vcc == NULL || skb == NULL )
return -EINVAL;
conn = find_vcc(vcc);
if ( conn < 0 ) {
ret = -EINVAL;
goto FIND_VCC_FAIL;
}
if ( !g_showtime ) {
pr_debug("not in showtime\n");
ret = -EIO;
goto PPE_SEND_FAIL;
}
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
required = sizeof(*header) + byteoff;
if (!skb_clone_writable(skb, required)) {
int expand_by = 0;
int ret;
2012-12-15 02:00:33 +00:00
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
if (skb_headroom(skb) < required)
expand_by = required - skb_headroom(skb);
2012-12-15 02:00:33 +00:00
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
ret = pskb_expand_head(skb, expand_by, 0, GFP_ATOMIC);
if (ret) {
printk("pskb_expand_head failed.\n");
atm_free_tx_skb_vcc(skb, vcc);
return ret;
}
}
2012-12-15 02:00:33 +00:00
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
datalen = skb->len;
header = (void *)skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
2012-12-15 02:00:33 +00:00
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
if ( vcc->qos.aal == ATM_AAL5 ) {
2012-12-15 02:00:33 +00:00
/* setup inband trailer */
header->uu = 0;
header->cpi = 0;
header->pad = aal5_fill_pattern;
header->res1 = 0;
/* setup cell header */
header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
header->pti = ATM_PTI_US0;
header->vci = vcc->vci;
header->vpi = vcc->vpi;
header->gfc = 0;
/* setup descriptor */
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = datalen;
reg_desc.byteoff = byteoff;
reg_desc.iscell = 0;
} else {
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = skb->len;
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
reg_desc.byteoff = byteoff;
2012-12-15 02:00:33 +00:00
reg_desc.iscell = 1;
}
reg_desc.own = 1;
reg_desc.c = 1;
reg_desc.sop = reg_desc.eop = 1;
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
spin_lock_irqsave(&g_atm_priv_data.conn[conn].lock, flags);
2012-12-15 02:00:33 +00:00
desc_base = get_tx_desc(conn);
if ( desc_base < 0 ) {
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
spin_unlock_irqrestore(&g_atm_priv_data.conn[conn].lock, flags);
2012-12-15 02:00:33 +00:00
pr_debug("ALLOC_TX_CONNECTION_FAIL\n");
ret = -EIO;
goto PPE_SEND_FAIL;
}
/* update descriptor send pointer */
if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
spin_unlock_irqrestore(&g_atm_priv_data.conn[conn].lock, flags);
if ( vcc->stats )
atomic_inc(&vcc->stats->tx);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wtx_pdu++;
2012-12-15 02:00:33 +00:00
/* write discriptor to memory and write back cache */
g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
dma_cache_wback((unsigned long)skb->data, skb->len);
mailbox_signal(conn, 1);
adsl_led_flash();
return 0;
FIND_VCC_FAIL:
pr_err("FIND_VCC_FAIL\n");
g_atm_priv_data.wtx_err_pdu++;
dev_kfree_skb_any(skb);
return ret;
PPE_SEND_FAIL:
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wtx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->tx_err);
dev_kfree_skb_any(skb);
return ret;
}
/* operation and maintainance */
static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
{
int conn;
struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
int desc_base;
struct sk_buff *skb;
struct tx_descriptor reg_desc = {0};
if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
&& find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
|| ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
&& find_vpi(uni_cell_header->vpi) < 0) )
{
g_atm_priv_data.wtx_err_oam++;
return -EINVAL;
}
if ( !g_showtime ) {
pr_err("not in showtime\n");
g_atm_priv_data.wtx_drop_oam++;
return -EIO;
}
conn = find_vcc(vcc);
if ( conn < 0 ) {
pr_err("FIND_VCC_FAIL\n");
g_atm_priv_data.wtx_drop_oam++;
return -EINVAL;
}
skb = alloc_skb_tx(CELL_SIZE);
if ( skb == NULL ) {
pr_err("ALLOC_SKB_TX_FAIL\n");
g_atm_priv_data.wtx_drop_oam++;
return -ENOMEM;
}
skb_put(skb, CELL_SIZE);
memcpy(skb->data, cell, CELL_SIZE);
reg_desc.dataptr = (unsigned int)skb->data >> 2;
reg_desc.datalen = CELL_SIZE;
reg_desc.byteoff = 0;
reg_desc.iscell = 1;
reg_desc.own = 1;
reg_desc.c = 1;
reg_desc.sop = reg_desc.eop = 1;
desc_base = get_tx_desc(conn);
if ( desc_base < 0 ) {
dev_kfree_skb_any(skb);
pr_err("ALLOC_TX_CONNECTION_FAIL\n");
g_atm_priv_data.wtx_drop_oam++;
return -EIO;
}
if ( vcc->stats )
atomic_inc(&vcc->stats->tx);
/* update descriptor send pointer */
if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
/* write discriptor to memory and write back cache */
g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
mailbox_signal(conn, 1);
g_atm_priv_data.wtx_oam++;
adsl_led_flash();
return 0;
}
static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
{
int conn;
if ( vcc == NULL || qos == NULL )
return -EINVAL;
conn = find_vcc(vcc);
if ( conn < 0 )
return -EINVAL;
set_qsb(vcc, qos, conn);
return 0;
}
static inline void adsl_led_flash(void)
{
ifx_mei_atm_led_blink();
}
/*
* Description:
* Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
* Input:
* opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
* opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
* ret --- ppe_u64_t, pointer to a variable to hold result
* Output:
* none
*/
static inline void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
{
ret->l = opt1.l + opt2;
if ( ret->l < opt1.l || ret->l < opt2 )
ret->h++;
}
static inline struct sk_buff* alloc_skb_rx(void)
{
struct sk_buff *skb;
skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
if ( skb != NULL ) {
/* must be burst length alignment */
if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
/* pub skb in reserved area "skb->data - 4" */
*((struct sk_buff **)skb->data - 1) = skb;
/* write back and invalidate cache */
dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
/* invalidate cache */
#if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
dma_cache_inv((unsigned long)skb->data, LESS_CACHE_INV_LEN);
#else
dma_cache_inv((unsigned long)skb->data, RX_DMA_CH_AAL_BUF_SIZE);
#endif
}
return skb;
}
static inline struct sk_buff* alloc_skb_tx(unsigned int size)
{
struct sk_buff *skb;
/* allocate memory including header and padding */
size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
size &= ~(DATA_BUFFER_ALIGNMENT - 1);
skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
/* must be burst length alignment */
if ( skb != NULL )
skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
return skb;
}
static inline void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
{
if ( vcc->pop != NULL )
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
}
static inline struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
{
unsigned int skb_dataptr;
struct sk_buff *skb;
skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
skb = *(struct sk_buff **)skb_dataptr;
ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
return skb;
}
static inline int get_tx_desc(unsigned int conn)
{
int desc_base = -1;
struct connection *p_conn = &g_atm_priv_data.conn[conn];
if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
desc_base = p_conn->tx_desc_pos;
if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
p_conn->tx_desc_pos = 0;
}
return desc_base;
}
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
static void free_tx_ring(unsigned int queue)
{
unsigned long flags;
int i;
struct connection *conn = &g_atm_priv_data.conn[queue];
struct sk_buff *skb;
if (!conn)
return;
spin_lock_irqsave(&conn->lock, flags);
for (i = 0; i < dma_tx_descriptor_length; i++) {
if (conn->tx_desc[i].own == 0 && conn->tx_skb[i] != NULL) {
skb = conn->tx_skb[i];
conn->tx_skb[i] = NULL;
atm_free_tx_skb_vcc(skb, ATM_SKB(skb)->vcc);
}
}
spin_unlock_irqrestore(&conn->lock, flags);
}
static void mailbox_tx_handler(unsigned int queue_bitmap)
{
int i;
int bit;
/* only get valid queues */
queue_bitmap &= g_atm_priv_data.conn_table;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if (queue_bitmap & bit)
free_tx_ring(i);
}
}
2012-12-15 02:00:33 +00:00
static inline void mailbox_oam_rx_handler(void)
{
unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
struct rx_descriptor reg_desc;
struct uni_cell_header *header;
int conn;
struct atm_vcc *vcc;
unsigned int i;
for ( i = 0; i < vlddes; i++ ) {
unsigned int loop_count = 0;
do {
reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
if ( ++loop_count == 1000 )
break;
} while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, oam_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.oam_desc_pos);
header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
conn = find_vpivci(header->vpi, header->vci);
else if ( header->vci == 0x03 || header->vci == 0x04 )
conn = find_vpi(header->vpi);
else
conn = -1;
if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
vcc = g_atm_priv_data.conn[conn].vcc;
if ( vcc->push_oam != NULL )
vcc->push_oam(vcc, header);
else
ifx_push_oam((unsigned char *)header);
g_atm_priv_data.wrx_oam++;
adsl_led_flash();
} else
g_atm_priv_data.wrx_drop_oam++;
reg_desc.byteoff = 0;
reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
reg_desc.own = 1;
reg_desc.c = 0;
g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
g_atm_priv_data.oam_desc_pos = 0;
dma_cache_inv((unsigned long)header, CELL_SIZE);
mailbox_signal(RX_DMA_CH_OAM, 0);
}
}
static inline void mailbox_aal_rx_handler(void)
{
unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
struct rx_descriptor reg_desc;
int conn;
struct atm_vcc *vcc;
struct sk_buff *skb, *new_skb;
struct rx_inband_trailer *trailer;
unsigned int i;
for ( i = 0; i < vlddes; i++ ) {
unsigned int loop_count = 0;
do {
reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
if ( ++loop_count == 1000 )
break;
} while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, aal_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.aal_desc_pos);
conn = reg_desc.id;
if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
vcc = g_atm_priv_data.conn[conn].vcc;
skb = get_skb_rx_pointer(reg_desc.dataptr);
if ( reg_desc.err ) {
if ( vcc->qos.aal == ATM_AAL5 ) {
trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
if ( trailer->stw_crc )
g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
if ( trailer->stw_ovz )
g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
g_atm_priv_data.wrx_drop_pdu++;
}
if ( vcc->stats ) {
atomic_inc(&vcc->stats->rx_drop);
atomic_inc(&vcc->stats->rx_err);
}
reg_desc.err = 0;
} else if ( atm_charge(vcc, skb->truesize) ) {
new_skb = alloc_skb_rx();
if ( new_skb != NULL ) {
#if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
if ( reg_desc.byteoff + reg_desc.datalen > LESS_CACHE_INV_LEN )
dma_cache_inv((unsigned long)skb->data + LESS_CACHE_INV_LEN, reg_desc.byteoff + reg_desc.datalen - LESS_CACHE_INV_LEN);
#endif
skb_reserve(skb, reg_desc.byteoff);
skb_put(skb, reg_desc.datalen);
ATM_SKB(skb)->vcc = vcc;
vcc->push(vcc, skb);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx);
adsl_led_flash();
reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
} else {
atm_return(vcc, skb->truesize);
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx_drop);
}
} else {
if ( vcc->qos.aal == ATM_AAL5 )
g_atm_priv_data.wrx_drop_pdu++;
if ( vcc->stats )
atomic_inc(&vcc->stats->rx_drop);
}
} else {
g_atm_priv_data.wrx_drop_pdu++;
}
reg_desc.byteoff = 0;
reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
reg_desc.own = 1;
reg_desc.c = 0;
g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
g_atm_priv_data.aal_desc_pos = 0;
mailbox_signal(RX_DMA_CH_AAL, 0);
}
}
static void do_ppe_tasklet(unsigned long data)
{
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
unsigned int irqs = *MBOX_IGU1_ISR;
*MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
if (irqs & (1 << RX_DMA_CH_AAL))
mailbox_aal_rx_handler();
if (irqs & (1 << RX_DMA_CH_OAM))
mailbox_oam_rx_handler();
/* any valid tx irqs */
if ((irqs >> (FIRST_QSB_QID + 16)) & g_atm_priv_data.conn_table)
mailbox_tx_handler(irqs >> (FIRST_QSB_QID + 16));
if ((*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0)
tasklet_schedule(&g_dma_tasklet);
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
else if (*MBOX_IGU1_ISR >> (FIRST_QSB_QID + 16)) /* TX queue */
tasklet_schedule(&g_dma_tasklet);
else
enable_irq(PPE_MAILBOX_IGU1_INT);
}
2012-12-15 02:00:33 +00:00
static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
{
if ( !*MBOX_IGU1_ISR )
return IRQ_HANDLED;
disable_irq_nosync(PPE_MAILBOX_IGU1_INT);
tasklet_schedule(&g_dma_tasklet);
2012-12-15 02:00:33 +00:00
return IRQ_HANDLED;
}
static inline void mailbox_signal(unsigned int queue, int is_tx)
{
int count = 1000;
if ( is_tx ) {
while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) && count > 0 )
count--;
*MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
} else {
while ( MBOX_IGU3_ISR_ISR(queue) && count > 0 )
count--;
*MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
}
ASSERT(count > 0, "queue = %u, is_tx = %d, MBOX_IGU3_ISR = 0x%08x", queue, is_tx, IFX_REG_R32(MBOX_IGU3_ISR));
}
static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
{
struct clk *fpi_clk = clk_get_fpi();
unsigned int qsb_clk = clk_get_rate(fpi_clk);
unsigned int qsb_qid = queue + FIRST_QSB_QID;
union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
unsigned int tmp;
/*
* Peak Cell Rate (PCR) Limiter
*/
if ( qos->txtp.max_pcr == 0 )
qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
else {
/* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
/* check if overflow takes place */
qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
}
#if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
// A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
// Send packets to these two PVCs at same time, it trigger strange behavior.
// In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
// In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
// To work around, create UBR always with max_pcr.
// If user want to create UBR without max_pcr, we give a default one larger than line-rate.
if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
int port = g_atm_priv_data.conn[queue].port;
unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
if ( tmp > QSB_TP_TS_MAX )
tmp = QSB_TP_TS_MAX;
else if ( tmp < 1 )
tmp = 1;
qsb_queue_parameter_table.bit.tp = tmp;
}
#endif
/*
* Weighted Fair Queueing Factor (WFQF)
*/
switch ( qos->txtp.traffic_class ) {
case ATM_CBR:
case ATM_VBR_RT:
/* real time queue gets weighted fair queueing bypass */
qsb_queue_parameter_table.bit.wfqf = 0;
break;
case ATM_VBR_NRT:
case ATM_UBR_PLUS:
/* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
/* WFQF is maximum cell rate / garenteed cell rate */
/* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
if ( qos->txtp.min_pcr == 0 )
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
else {
tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
if ( tmp == 0 )
qsb_queue_parameter_table.bit.wfqf = 1;
else if ( tmp > QSB_WFQ_NONUBR_MAX )
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
else
qsb_queue_parameter_table.bit.wfqf = tmp;
}
break;
default:
case ATM_UBR:
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
}
/*
* Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
*/
if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
#if 0
2012-12-15 02:00:33 +00:00
if ( qos->txtp.scr == 0 ) {
#endif
2012-12-15 02:00:33 +00:00
/* disable shaper */
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
#if 0
2012-12-15 02:00:33 +00:00
} else {
/* Cell Loss Priority (CLP) */
if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
/* CLP1 */
qsb_queue_parameter_table.bit.vbr = 1;
else
/* CLP0 */
qsb_queue_parameter_table.bit.vbr = 0;
/* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
if ( tmp == 0 )
qsb_queue_vbr_parameter_table.bit.taus = 1;
else if ( tmp > QSB_TAUS_MAX )
qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
else
qsb_queue_vbr_parameter_table.bit.taus = tmp;
}
#endif
2012-12-15 02:00:33 +00:00
} else {
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
}
/* Queue Parameter Table (QPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
/* Queue VBR Paramter Table (QVPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
}
static void qsb_global_set(void)
{
struct clk *fpi_clk = clk_get_fpi();
unsigned int qsb_clk = clk_get_rate(fpi_clk);
int i;
unsigned int tmp1, tmp2, tmp3;
*QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
*QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
*QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
/*
* set SCT and SPT per port
*/
for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
tmp2 = tmp1 >> 6; /* integer value of Tsb */
tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
/* carry over to integer part (?) */
if ( tmp3 == (1 << 6) ) {
tmp3 = 0;
tmp2++;
}
if ( tmp2 == 0 )
tmp2 = tmp3 = 1;
/* 1. set mask */
/* 2. write value to data transfer register */
/* 3. start the tranfer */
/* SCT (FracRate) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(tmp3);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) |
QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
QSB_RAMAC_TESEL_SET(i & 0x01);
/* SPT (SBV + PN + IntRage) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) |
QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
QSB_RAMAC_TESEL_SET(i & 0x01);
}
}
}
static inline void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
{
struct htu_entry htu_entry = {
res1: 0x00,
clp: is_retx ? 0x01 : 0x00,
pid: g_atm_priv_data.conn[queue].port & 0x01,
vpi: vpi,
vci: vci,
pti: 0x00,
vld: 0x01};
struct htu_mask htu_mask = {
set: 0x01,
clp: 0x01,
pid_mask: 0x02,
vpi_mask: 0x00,
vci_mask: 0x0000,
pti_mask: 0x03, // 0xx, user data
clear: 0x00};
struct htu_result htu_result = {
res1: 0x00,
cellid: queue,
res2: 0x00,
type: aal5 ? 0x00 : 0x01,
ven: 0x01,
res3: 0x00,
qid: queue};
*HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
*HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
*HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
}
static inline void clear_htu_entry(unsigned int queue)
{
HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
}
static void validate_oam_htu_entry(void)
{
HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
}
static void invalidate_oam_htu_entry(void)
{
HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
}
static inline int find_vpi(unsigned int vpi)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc != NULL
&& vpi == g_atm_priv_data.conn[i].vcc->vpi )
return i;
}
return -1;
}
static inline int find_vpivci(unsigned int vpi, unsigned int vci)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc != NULL
&& vpi == g_atm_priv_data.conn[i].vcc->vpi
&& vci == g_atm_priv_data.conn[i].vcc->vci )
return i;
}
return -1;
}
static inline int find_vcc(struct atm_vcc *vcc)
{
int i;
unsigned int bit;
for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
if ( (g_atm_priv_data.conn_table & bit) != 0
&& g_atm_priv_data.conn[i].vcc == vcc )
return i;
}
return -1;
}
static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *buf)
{
int len = 0;
unsigned int major, minor;
ops->fw_ver(&major, &minor);
len += sprintf(buf + len, "ATM%d.%d.%d", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
len += sprintf(buf + len, " ATM (A1) firmware version %d.%d\n", major, minor);
return len;
}
static inline void check_parameters(void)
{
/* Please refer to Amazon spec 15.4 for setting these values. */
if ( qsb_tau < 1 )
qsb_tau = 1;
if ( qsb_tstep < 1 )
qsb_tstep = 1;
else if ( qsb_tstep > 4 )
qsb_tstep = 4;
else if ( qsb_tstep == 3 )
qsb_tstep = 2;
/* There is a delay between PPE write descriptor and descriptor is */
/* really stored in memory. Host also has this delay when writing */
/* descriptor. So PPE will use this value to determine if the write */
/* operation makes effect. */
if ( write_descriptor_delay < 0 )
write_descriptor_delay = 0;
if ( aal5_fill_pattern < 0 )
aal5_fill_pattern = 0;
else
aal5_fill_pattern &= 0xFF;
/* Because of the limitation of length field in descriptors, the packet */
/* size could not be larger than 64K minus overhead size. */
if ( aal5r_max_packet_size < 0 )
aal5r_max_packet_size = 0;
else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
if ( aal5r_min_packet_size < 0 )
aal5r_min_packet_size = 0;
else if ( aal5r_min_packet_size > aal5r_max_packet_size )
aal5r_min_packet_size = aal5r_max_packet_size;
if ( aal5s_max_packet_size < 0 )
aal5s_max_packet_size = 0;
else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
if ( aal5s_min_packet_size < 0 )
aal5s_min_packet_size = 0;
else if ( aal5s_min_packet_size > aal5s_max_packet_size )
aal5s_min_packet_size = aal5s_max_packet_size;
if ( dma_rx_descriptor_length < 2 )
dma_rx_descriptor_length = 2;
if ( dma_tx_descriptor_length < 2 )
dma_tx_descriptor_length = 2;
if ( dma_rx_clp1_descriptor_threshold < 0 )
dma_rx_clp1_descriptor_threshold = 0;
else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
if ( dma_tx_descriptor_length < 2 )
dma_tx_descriptor_length = 2;
}
static inline int init_priv_data(void)
{
void *p;
int i;
struct rx_descriptor rx_desc = {0};
struct sk_buff *skb;
volatile struct tx_descriptor *p_tx_desc;
struct sk_buff **ppskb;
// clear atm private data structure
memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
// allocate memory for RX (AAL) descriptors
p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return -1;
dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.aal_desc_base = p;
p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
// allocate memory for RX (OAM) descriptors
p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return -1;
dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.oam_desc_base = p;
p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
// allocate memory for RX (OAM) buffer
p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return -1;
dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
g_atm_priv_data.oam_buf_base = p;
p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
g_atm_priv_data.oam_buf = p;
// allocate memory for TX descriptors
p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
if ( p == NULL )
return -1;
dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
g_atm_priv_data.tx_desc_base = p;
// allocate memory for TX skb pointers
p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
if ( p == NULL )
return -1;
dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
g_atm_priv_data.tx_skb_base = p;
// setup RX (AAL) descriptors
rx_desc.own = 1;
rx_desc.c = 0;
rx_desc.sop = 1;
rx_desc.eop = 1;
rx_desc.byteoff = 0;
rx_desc.id = 0;
rx_desc.err = 0;
rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
skb = alloc_skb_rx();
if ( skb == NULL )
return -1;
rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
g_atm_priv_data.aal_desc[i] = rx_desc;
}
// setup RX (OAM) descriptors
p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
rx_desc.own = 1;
rx_desc.c = 0;
rx_desc.sop = 1;
rx_desc.eop = 1;
rx_desc.byteoff = 0;
rx_desc.id = 0;
rx_desc.err = 0;
rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
g_atm_priv_data.oam_desc[i] = rx_desc;
p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
}
// setup TX descriptors and skb pointers
p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
ltq-atm: rewrite tx path to use IRQs The ATM subsystem is different from the generic ethernet NICs. The ATM subsystem requires a callback when a packet has been sent. It means a tx skb_buff need to be used after it has sent. While the generic NIC can fill up the TX ring and free skb_buffs if it encounter a ring buffer slot with an already sent skbuff. The ATM drivers need call the pop() function after it has send a single ATM package. The ATM subsystem controls via this ways the queuing. The ppe engine use DMA channels for read and write. Every atm_vcc has it's own TX DMA channel and each TX DMA channel has it's own ring buffer. The old driver had multiple issues: - Call the subsystem callback at the beginning of tx function (ppe_send). Didn't allowed the ATM subsystem to control the enqueued package amount. - Filled up the TX ring until full and fail futher - copy or decouple the skb from all other subsystem before giving it over to TX ring The new tx path uses interupts. - call the subsystem callback _after_ it was sent by hardware - no need to copy our decouple the skb any more - gives back control to the atm subsystem over the enqueued packages - use an interupt for every sent atm package Using interupts shouldn't be a problem because of the slow uplink bandwidth of ADSL. The speed _through_ the DSL router was always as high as it should be, only traffic generated on the router itself were affected. After changing to new tx path, the speed of iperf's run on the router itself reached the same speed. The master/trunk wasn't as much affected because of TCP optimisations (reboot-5022-gb2ea46fe236a). The following results are taken on the remote server, which receives the stream over the internet and the DSL line. The sync moves between every sync a litte bit, but is so far stable Latency / Interleave Delay: Down: Fast (0.25 ms) / Up: Fast (0.50 ms) Data Rate: Down: 13.287 Mb/s / Up: 1.151 Mb/s reboot-5521-g9f8d28285d without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 947 KBytes 773 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 928 KBytes 757 Kbits/sec receiver reboot-5521-g9f8d28285d with patch [ 5] 0.00-10.06 sec 1.16 MBytes 970 Kbits/sec 0 sender [ 5] 0.00-10.06 sec 1.15 MBytes 959 Kbits/sec receiver v17.01.4-239-g55c23e44f4 without patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.04 sec 87.4 KBytes 71.3 Kbits/sec 0 sender [ 5] 0.00-10.04 sec 59.6 KBytes 48.7 Kbits/sec receiver v17.01.4-239-g55c23e44f4 with patch [ ID] Interval Transfer Bandwidth Retr [ 5] 0.00-10.05 sec 1.18 MBytes 983 Kbits/sec 1 sender [ 5] 0.00-10.05 sec 1.15 MBytes 959 Kbits/sec receiver Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
2018-01-08 09:54:58 +01:00
spin_lock_init(&g_atm_priv_data.conn[i].lock);
2012-12-15 02:00:33 +00:00
g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
}
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
return 0;
}
static inline void clear_priv_data(void)
{
int i, j;
struct sk_buff *skb;
for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
for ( j = 0; j < dma_tx_descriptor_length; j++ )
if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
}
}
if ( g_atm_priv_data.tx_skb_base != NULL )
kfree(g_atm_priv_data.tx_skb_base);
if ( g_atm_priv_data.tx_desc_base != NULL )
kfree(g_atm_priv_data.tx_desc_base);
if ( g_atm_priv_data.oam_buf_base != NULL )
kfree(g_atm_priv_data.oam_buf_base);
if ( g_atm_priv_data.oam_desc_base != NULL )
kfree(g_atm_priv_data.oam_desc_base);
if ( g_atm_priv_data.aal_desc_base != NULL ) {
for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
dev_kfree_skb_any(skb);
}
}
kfree(g_atm_priv_data.aal_desc_base);
}
}
static inline void init_rx_tables(void)
{
int i;
struct wrx_queue_config wrx_queue_config = {0};
struct wrx_dma_channel_config wrx_dma_channel_config = {0};
struct htu_entry htu_entry = {0};
struct htu_result htu_result = {0};
struct htu_mask htu_mask = {
set: 0x01,
clp: 0x01,
pid_mask: 0x00,
vpi_mask: 0x00,
vci_mask: 0x00,
pti_mask: 0x00,
clear: 0x00
};
/*
* General Registers
*/
*CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
#ifndef CONFIG_AMAZON_SE
*CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
#endif
*CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
*WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
*WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
/*
* WRX Queue Configuration Table
*/
wrx_queue_config.uumask = 0xFF;
wrx_queue_config.cpimask = 0xFF;
wrx_queue_config.uuexp = 0;
wrx_queue_config.cpiexp = 0;
wrx_queue_config.mfs = aal5r_max_packet_size;
wrx_queue_config.oversize = aal5r_max_packet_size;
wrx_queue_config.undersize = aal5r_min_packet_size;
wrx_queue_config.errdp = aal5r_drop_error_packet;
wrx_queue_config.dmach = RX_DMA_CH_AAL;
for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
*WRX_QUEUE_CONFIG(i) = wrx_queue_config;
WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
/*
* WRX DMA Channel Configuration Table
*/
wrx_dma_channel_config.chrl = 0;
wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
wrx_dma_channel_config.mode = 0;
wrx_dma_channel_config.rlcfg = 0;
wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
*WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
*WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
/*
* HTU Tables
*/
for (i = 0; i < MAX_PVC_NUMBER; i++) {
htu_result.qid = (unsigned int)i;
*HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
*HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
*HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
}
/* OAM HTU Entry */
htu_entry.vci = 0x03;
htu_mask.pid_mask = 0x03;
htu_mask.vpi_mask = 0xFF;
htu_mask.vci_mask = 0x0000;
htu_mask.pti_mask = 0x07;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
htu_entry.vci = 0x04;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
htu_entry.vci = 0x00;
htu_entry.pti = 0x04;
htu_mask.vci_mask = 0xFFFF;
htu_mask.pti_mask = 0x01;
htu_result.cellid = OAM_RX_QUEUE;
htu_result.type = 1;
htu_result.ven = 1;
htu_result.qid = OAM_RX_QUEUE;
*HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
*HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
*HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
}
static inline void init_tx_tables(void)
{
int i;
struct wtx_queue_config wtx_queue_config = {0};
struct wtx_dma_channel_config wtx_dma_channel_config = {0};
struct wtx_port_config wtx_port_config = {
res1: 0,
qid: 0,
qsben: 1
};
/*
* General Registers
*/
*CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
*WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
*CFG_WRDES_DELAY = write_descriptor_delay;
/*
* WTX Port Configuration Table
*/
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
*WTX_PORT_CONFIG(i) = wtx_port_config;
/*
* WTX Queue Configuration Table
*/
wtx_queue_config.qsben = 1;
wtx_queue_config.sbid = 0;
for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ ) {
wtx_queue_config.qsb_vcid = i;
*WTX_QUEUE_CONFIG(i) = wtx_queue_config;
}
/*
* WTX DMA Channel Configuration Table
*/
wtx_dma_channel_config.mode = 0;
wtx_dma_channel_config.deslen = 0;
wtx_dma_channel_config.desba = 0;
for ( i = 0; i < FIRST_QSB_QID; i++ )
*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
/* normal connection */
wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
}
}
static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
{
int i, j, port_num;
2012-12-15 02:00:33 +00:00
ASSERT(port_cell != NULL, "port_cell is NULL");
ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
if ( port_cell->tx_link_rate[j] > 0 )
break;
for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
g_atm_priv_data.port[i].tx_max_cell_rate =
port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
qsb_global_set();
for ( i = 0; i < MAX_PVC_NUMBER; i++ )
if ( g_atm_priv_data.conn[i].vcc != NULL )
set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
// TODO: ReTX set xdata_addr
g_xdata_addr = xdata_addr;
g_showtime = 1;
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_FOUND);
2012-12-15 02:00:33 +00:00
#if defined(CONFIG_VR9)
IFX_REG_W32(0x0F, UTP_CFG);
#endif
printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n",
g_atm_priv_data.port[0].tx_max_cell_rate,
g_atm_priv_data.port[1].tx_max_cell_rate,
(unsigned int)g_xdata_addr);
return 0;
}
static int atm_showtime_exit(void)
{
int port_num;
2012-12-15 02:00:33 +00:00
if ( !g_showtime )
return -1;
#if defined(CONFIG_VR9)
IFX_REG_W32(0x00, UTP_CFG);
#endif
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_LOST);
2012-12-15 02:00:33 +00:00
g_showtime = 0;
g_xdata_addr = NULL;
printk("leave showtime\n");
return 0;
}
extern struct ltq_atm_ops ar9_ops;
extern struct ltq_atm_ops vr9_ops;
extern struct ltq_atm_ops danube_ops;
extern struct ltq_atm_ops ase_ops;
static const struct of_device_id ltq_atm_match[] = {
#ifdef CONFIG_DANUBE
{ .compatible = "lantiq,ppe-danube", .data = &danube_ops },
#elif defined CONFIG_AMAZON_SE
{ .compatible = "lantiq,ppe-ase", .data = &ase_ops },
#elif defined CONFIG_AR9
{ .compatible = "lantiq,ppe-arx100", .data = &ar9_ops },
#elif defined CONFIG_VR9
{ .compatible = "lantiq,ppe-xrx200", .data = &vr9_ops },
#endif
{},
};
MODULE_DEVICE_TABLE(of, ltq_atm_match);
static int ltq_atm_probe(struct platform_device *pdev)
2012-12-15 02:00:33 +00:00
{
const struct of_device_id *match;
struct ltq_atm_ops *ops = NULL;
int ret;
int port_num;
struct port_cell_info port_cell = {0};
char ver_str[256];
match = of_match_device(ltq_atm_match, &pdev->dev);
if (!match) {
dev_err(&pdev->dev, "failed to find matching device\n");
return -ENOENT;
}
ops = (struct ltq_atm_ops *) match->data;
check_parameters();
ret = init_priv_data();
if ( ret != 0 ) {
pr_err("INIT_PRIV_DATA_FAIL\n");
goto INIT_PRIV_DATA_FAIL;
}
ops->init();
init_rx_tables();
init_tx_tables();
/* create devices */
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
if ( !g_atm_priv_data.port[port_num].dev ) {
pr_err("failed to register atm device %d!\n", port_num);
ret = -EIO;
goto ATM_DEV_REGISTER_FAIL;
} else {
g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
#if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
atm_dev_signal_change(g_atm_priv_data.port[port_num].dev, ATM_PHY_SIG_LOST);
#endif
2012-12-15 02:00:33 +00:00
}
}
/* register interrupt handler */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, 0, "atm_mailbox_isr", &g_atm_priv_data);
#else
2012-12-15 02:00:33 +00:00
ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
#endif
2012-12-15 02:00:33 +00:00
if ( ret ) {
if ( ret == -EBUSY ) {
pr_err("IRQ may be occupied by other driver, please reconfig to disable it.\n");
} else {
pr_err("request_irq fail irq:%d\n", PPE_MAILBOX_IGU1_INT);
}
goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
}
disable_irq(PPE_MAILBOX_IGU1_INT);
ret = ops->start(0);
if ( ret ) {
pr_err("ifx_pp32_start fail!\n");
goto PP32_START_FAIL;
}
port_cell.port_num = ATM_PORT_NUMBER;
ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
if ( g_showtime ) {
atm_showtime_enter(&port_cell, &g_xdata_addr);
} else {
qsb_global_set();
2012-12-15 02:00:33 +00:00
}
validate_oam_htu_entry();
ifx_mei_atm_showtime_enter = atm_showtime_enter;
ifx_mei_atm_showtime_exit = atm_showtime_exit;
ifx_atm_version(ops, ver_str);
printk(KERN_INFO "%s", ver_str);
platform_set_drvdata(pdev, ops);
printk("ifxmips_atm: ATM init succeed\n");
return 0;
PP32_START_FAIL:
free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
ATM_DEV_REGISTER_FAIL:
while ( port_num-- > 0 )
atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
INIT_PRIV_DATA_FAIL:
clear_priv_data();
printk("ifxmips_atm: ATM init failed\n");
return ret;
}
static int ltq_atm_remove(struct platform_device *pdev)
2012-12-15 02:00:33 +00:00
{
int port_num;
struct ltq_atm_ops *ops = platform_get_drvdata(pdev);
ifx_mei_atm_showtime_enter = NULL;
ifx_mei_atm_showtime_exit = NULL;
invalidate_oam_htu_entry();
ops->stop(0);
free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
ops->shutdown();
clear_priv_data();
return 0;
}
static struct platform_driver ltq_atm_driver = {
.probe = ltq_atm_probe,
.remove = ltq_atm_remove,
2012-12-15 02:00:33 +00:00
.driver = {
.name = "atm",
.owner = THIS_MODULE,
.of_match_table = ltq_atm_match,
},
};
module_platform_driver(ltq_atm_driver);
MODULE_LICENSE("Dual BSD/GPL");