2021-12-29 18:39:26 +00:00
|
|
|
# SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
|
|
|
|
|
|
|
|
define Device/allnet_all-sg8208m
|
|
|
|
SOC := rtl8382
|
|
|
|
IMAGE_SIZE := 7168k
|
|
|
|
DEVICE_VENDOR := ALLNET
|
|
|
|
DEVICE_MODEL := ALL-SG8208M
|
|
|
|
UIMAGE_MAGIC := 0x00000006
|
|
|
|
UIMAGE_NAME := 2.2.2.0
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += allnet_all-sg8208m
|
|
|
|
|
|
|
|
define Device/d-link_dgs-1210
|
|
|
|
SOC := rtl8382
|
|
|
|
IMAGE_SIZE := 13824k
|
|
|
|
DEVICE_VENDOR := D-Link
|
realtek: add DGS-1210-28 factory image
DGS-1210 switches support dual image, with each image composed of a
kernel and a rootfs partition. For image1, kernel and rootfs are in
sequence. The current OpenWrt image (written using a serial console),
uses those partitions together as the firmware partition, ignoring the
partition division. The current OEM u-boot fails to validate image1 but
it will only trigger firmware recovery if both image1 and image2 fail,
and it does not switch the boot image in case one of them fails the
check.
The OEM factory image is composed of concatenated blocks of data, each
one prefixed with a 0x40-byte cameo header. A normal OEM firmware will
have two of these blocks (kernel, rootfs). The OEM firmware only checks
the header before writing unconditionally the data (except the header)
to the correspoding partition.
The OpenWrt factory image mimics the OEM image by cutting the
kernel+rootfs firmware at the exact size of the OEM kernel partition
and packing it as "the kernel partition" and the rest of the kernel and
the rootfs as "the rootfs partition". It will only work if written to
image1 because image2 has a sysinfo partition between kernel2 and
rootfs2, cutting the kernel code in the middle.
Steps to install:
1) switch to image2 (containing an OEM image), using web or these CLI
commands:
- config firmware image_id 2 boot_up
- reboot
2) flash the factory_image1.bin to image1. OEM web (v6.30.016)
is crashing for any upload (ssh keys, firmware), even applying OEM
firmwares. These CLI commands can upload a new firmware to the other
image location (not used to boot):
- download firmware_fromTFTP <tftpserver> factory_image1.bin
- config firmware image_id 1 boot_up
- reboot
To debrick the device, you'll need serial access. If you want to
recover to an OpenWrt, you can replay the serial installation
instructions. For returning to the original firmware, press ESC during
the boot to trigger the emergency firmware recovery procedure. After
that, use D-Link Network Assistant v2.0.2.4 to flash a new firmware.
The device documentation does describe that holding RESET for 12s
trigger the firmware recovery. However, the latest shipped U-Boot
"2011.12.(2.1.5.67086)-Candidate1" from "Aug 24 2021 - 17:33:09" cannot
trigger that from a cold boot. In fact, any U-Boot procedure that relies
on the RESET button, like reset settings, will only work if started from
a running original firmware. That, in practice, cancels the benefit of
having two images and a firmware recovery procedure (if you are not
consider dual-booting OpenWrt).
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
(cherry picked from commit 1005dc0a64587e954364ff3a64bbb38b2ca371cd)
2022-06-23 20:50:03 +00:00
|
|
|
DLINK_KERNEL_PART_SIZE := 1572864
|
2022-07-05 06:46:59 +00:00
|
|
|
KERNEL := kernel-bin | append-dtb | gzip | uImage gzip | dlink-cameo
|
2021-12-29 18:39:26 +00:00
|
|
|
endef
|
|
|
|
|
|
|
|
define Device/d-link_dgs-1210-10p
|
|
|
|
$(Device/d-link_dgs-1210)
|
|
|
|
DEVICE_MODEL := DGS-1210-10P
|
|
|
|
DEVICE_PACKAGES += lua-rs232
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += d-link_dgs-1210-10p
|
|
|
|
|
|
|
|
define Device/d-link_dgs-1210-16
|
|
|
|
$(Device/d-link_dgs-1210)
|
|
|
|
DEVICE_MODEL := DGS-1210-16
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += d-link_dgs-1210-16
|
|
|
|
|
|
|
|
define Device/d-link_dgs-1210-28
|
|
|
|
$(Device/d-link_dgs-1210)
|
|
|
|
DEVICE_MODEL := DGS-1210-28
|
realtek: add DGS-1210-28 factory image
DGS-1210 switches support dual image, with each image composed of a
kernel and a rootfs partition. For image1, kernel and rootfs are in
sequence. The current OpenWrt image (written using a serial console),
uses those partitions together as the firmware partition, ignoring the
partition division. The current OEM u-boot fails to validate image1 but
it will only trigger firmware recovery if both image1 and image2 fail,
and it does not switch the boot image in case one of them fails the
check.
The OEM factory image is composed of concatenated blocks of data, each
one prefixed with a 0x40-byte cameo header. A normal OEM firmware will
have two of these blocks (kernel, rootfs). The OEM firmware only checks
the header before writing unconditionally the data (except the header)
to the correspoding partition.
The OpenWrt factory image mimics the OEM image by cutting the
kernel+rootfs firmware at the exact size of the OEM kernel partition
and packing it as "the kernel partition" and the rest of the kernel and
the rootfs as "the rootfs partition". It will only work if written to
image1 because image2 has a sysinfo partition between kernel2 and
rootfs2, cutting the kernel code in the middle.
Steps to install:
1) switch to image2 (containing an OEM image), using web or these CLI
commands:
- config firmware image_id 2 boot_up
- reboot
2) flash the factory_image1.bin to image1. OEM web (v6.30.016)
is crashing for any upload (ssh keys, firmware), even applying OEM
firmwares. These CLI commands can upload a new firmware to the other
image location (not used to boot):
- download firmware_fromTFTP <tftpserver> factory_image1.bin
- config firmware image_id 1 boot_up
- reboot
To debrick the device, you'll need serial access. If you want to
recover to an OpenWrt, you can replay the serial installation
instructions. For returning to the original firmware, press ESC during
the boot to trigger the emergency firmware recovery procedure. After
that, use D-Link Network Assistant v2.0.2.4 to flash a new firmware.
The device documentation does describe that holding RESET for 12s
trigger the firmware recovery. However, the latest shipped U-Boot
"2011.12.(2.1.5.67086)-Candidate1" from "Aug 24 2021 - 17:33:09" cannot
trigger that from a cold boot. In fact, any U-Boot procedure that relies
on the RESET button, like reset settings, will only work if started from
a running original firmware. That, in practice, cancels the benefit of
having two images and a firmware recovery procedure (if you are not
consider dual-booting OpenWrt).
Signed-off-by: Luiz Angelo Daros de Luca <luizluca@gmail.com>
(cherry picked from commit 1005dc0a64587e954364ff3a64bbb38b2ca371cd)
2022-06-23 20:50:03 +00:00
|
|
|
CAMEO_KERNEL_PART := 2
|
|
|
|
CAMEO_ROOTFS_PART := 3
|
|
|
|
CAMEO_CUSTOMER_SIGNATURE := 2
|
|
|
|
CAMEO_BOARD_VERSION := 32
|
|
|
|
IMAGES += factory_image1.bin
|
|
|
|
IMAGE/factory_image1.bin := append-kernel | pad-to 64k | \
|
|
|
|
append-rootfs | pad-rootfs | pad-to 16 | check-size | dlink-headers
|
2021-12-29 18:39:26 +00:00
|
|
|
endef
|
|
|
|
TARGET_DEVICES += d-link_dgs-1210-28
|
|
|
|
|
|
|
|
define Device/inaba_aml2-17gp
|
|
|
|
SOC := rtl8382
|
|
|
|
IMAGE_SIZE := 13504k
|
|
|
|
DEVICE_VENDOR := INABA
|
|
|
|
DEVICE_MODEL := Abaniact AML2-17GP
|
|
|
|
UIMAGE_MAGIC := 0x83800000
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += inaba_aml2-17gp
|
|
|
|
|
realtek: add support for I-O DATA BSH-G24MB
I-O DATA BSH-G24MB is a 24 port gigabit switch, based on RTL8382M.
Specification:
- SoC : Realtek RTL8382M
- RAM : DDR2 128 MiB (Nanya NT5TU128M8HE-AC)
- Flash : SPI-NOR 16 MiB (Macronix MX25L12835FM2I-10G)
- Ethernet : 10/100/1000 Mbps x24
- port 1-8 : RTL8218B
- port 9-16 : RTL8218B (SoC)
- port 17-24 : RTL8218B
- LEDs/Keys : 2x, 1x
- UART : pin header on PCB
- JP2: 3.3V, TX, RX, GND from rear side
- 115200n8
- Power : 100 VAC, 50/60 Hz
- Plug : IEC 60320-C13
Flash instruction using sysupgrade image:
1. Boot BSH-G24MB normally
2. Connect BSH-G24MB to the DHCP enabled network
3. Find the device's IP address and open the WebUI and login
Note: by default, the device obtains IP address from DHCP server of
the network
4. Open firmware update page ("ファームウェア アップデート")
5. Rename the OpenWrt sysupgrade image to "bsh-g24mb_v100.image" and
select it
6. Press apply ("適用") button to perform update
7. Wait ~150 seconds to complete flashing
Note:
- BSH-G24MB has a power-related LED ("電源"), but it's not connected to
the GPIO of the SoC or RTL8231 and cannot be controlled. Instead of
it, use system status LED on other than running-state.
- "sys_loop" LED indicates system status and loop-detection status in
stock firmware.
- BSH-G24MB has 2x os-image partitions named as "RUNTIME"/"RUNTIME2" in
16 MiB SPI-NOR flash and the size of image per partition is only
6848 KiB. The secondary image is never used on stock firmware, so also
use it on OpenWrt to get more space.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
2021-04-17 01:10:27 +00:00
|
|
|
define Device/iodata_bsh-g24mb
|
|
|
|
SOC := rtl8382
|
|
|
|
IMAGE_SIZE := 13696k
|
|
|
|
DEVICE_VENDOR := I-O DATA
|
|
|
|
DEVICE_MODEL := BSH-G24MB
|
|
|
|
UIMAGE_MAGIC := 0x83800013
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += iodata_bsh-g24mb
|
|
|
|
|
2021-12-29 18:39:26 +00:00
|
|
|
define Device/netgear_gs108t-v3
|
|
|
|
$(Device/netgear_nge)
|
|
|
|
DEVICE_MODEL := GS108T
|
|
|
|
DEVICE_VARIANT := v3
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_gs108t-v3
|
|
|
|
|
|
|
|
define Device/netgear_gs110tpp-v1
|
|
|
|
$(Device/netgear_nge)
|
|
|
|
DEVICE_MODEL := GS110TPP
|
|
|
|
DEVICE_VARIANT := v1
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_gs110tpp-v1
|
|
|
|
|
|
|
|
define Device/netgear_gs308t-v1
|
|
|
|
$(Device/netgear_nge)
|
|
|
|
DEVICE_MODEL := GS308T
|
|
|
|
DEVICE_VARIANT := v1
|
|
|
|
UIMAGE_MAGIC := 0x4e474335
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_gs308t-v1
|
|
|
|
|
|
|
|
define Device/netgear_gs310tp-v1
|
|
|
|
$(Device/netgear_nge)
|
|
|
|
DEVICE_MODEL := GS310TP
|
|
|
|
DEVICE_VARIANT := v1
|
|
|
|
UIMAGE_MAGIC := 0x4e474335
|
|
|
|
DEVICE_PACKAGES += lua-rs232
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_gs310tp-v1
|
|
|
|
|
realtek: add support for Panasonic Switch-M8eG PN28080K
Panasonic Switch-M8eG PN28080K is a 8 + 1 port gigabit switch, based on
RTL8380M.
Specification:
- SoC : Realtek RTL8380M
- RAM : DDR3 128 MiB (Winbond W631GG8KB-15)
- Flash : SPI-NOR 32 MiB (Macronix MX25L25635FMI-10G)
- Ethernet : 10/100/1000 Mbps x8 + 1
- port 1-8 : TP, RTL8218B (SoC)
- port 9 : SFP, RTL8380M (SoC)
- LEDs/Keys : 7x / 1x
- UART : RS-232 port on the front panel (connector: RJ-45)
- 3:TX, 4:GND, 5:GND, 6:RX (pin number: RJ-45)
- 9600n8
- Power : 100-240 VAC, 50/60 Hz, 0.5 A
- Plug : IEC 60320-C13
- Stock OS : VxWorks based
Flash instruction using initramfs image:
1. Prepare the TFTP server with the IP address 192.168.1.111
2. Rename the OpenWrt initramfs image to "0101A8C0.img" and place it to
the TFTP directory
3. Download the official upgrading firmware (ex: pn28080k_v30000.rom)
and place it to the TFTP directory
4. Boot M8eG and interrupt the U-Boot with Ctrl + C keys
5. Execute the following commands and boot with the OpenWrt initramfs
image
rtk network on
tftpboot 0x81000000
bootm
6. Backup mtdblock files to the computer by scp or anything and reboot
7. Interrupt the U-Boot and execute the following commands to re-create
filesystem in the flash
ffsmount c:/
ffsfmt c:/
this step takes a long time, about ~ 4 mins
8. Execute the following commands to put the official images to the
filesystem
updatert <official image>
example:
updatert pn28080k_v30000.rom
this step takes about ~ 40 secs
9. Set the environment variables of the U-Boot by the following commands
setenv loadaddr 0xb4e00000
setenv bootcmd bootm
saveenv
10: Download the OpenWrt initramfs image and boot with it
tftpboot 0x81000000 0101A8C0.img
bootm
11: On the initramfs image, download the sysupgrade image and perform
sysupgrade with it
sysupgrade <imagename>
12: Wait ~ 120 seconds to complete flashing
Note:
- "Switch-M8eG" is a model name, and "PN28080K" is a model number.
Switch-M8eG has an another (old) model number ("PN28080"), it's not a
Realtek based hardware.
- Switch-M8eG has a "POWER" LED (Green), but it's not connected to any
GPIO pin.
- The U-Boot checks the runtime images in the flash when booting and
fails to execute anything in "bootcmd" variable if the images are not
exsisting.
- A filesystem is formed in the flash (0x100000-0x1DFFFFF) on the stock
firmware and it includes the stock images, configuration files and
checksum files. It's unknown format, can't be managed on the OpenWrt.
To get the enough space for OpenWrt, move the filesystem to the head
of "fs_reserved" partition by execution of "ffsfmt" and "updatert".
- On the other devices in the same series of Switch-M8eG PN28080K, the
INT pin on the PCA9555 is not connected to anywhere.
Back to the stock firmware:
1. Delete "loadaddr" variable and set "bootcmd" to the original value
on U-Boot:
setenv loadaddr
setenv bootcmd 'bootm 0x81000000'
on OpenWrt:
fw_setenv loadaddr
fw_setenv bootcmd 'bootm 0x81000000'
2. Perform reset or reboot
on U-Boot:
reset
on OpenWrt:
reboot
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Reviewed-by: Sander Vanheule <sander@svanheule.net>
2022-03-09 14:31:00 +00:00
|
|
|
define Device/panasonic_m8eg-pn28080k
|
|
|
|
SOC := rtl8380
|
|
|
|
IMAGE_SIZE := 16384k
|
|
|
|
DEVICE_VENDOR := Panasonic
|
|
|
|
DEVICE_MODEL := Switch-M8eG
|
|
|
|
DEVICE_VARIANT := PN28080K
|
|
|
|
DEVICE_PACKAGES := kmod-i2c-mux-pca954x
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += panasonic_m8eg-pn28080k
|
|
|
|
|
2021-12-29 18:39:26 +00:00
|
|
|
define Device/zyxel_gs1900
|
|
|
|
SOC := rtl8380
|
|
|
|
IMAGE_SIZE := 6976k
|
|
|
|
DEVICE_VENDOR := ZyXEL
|
|
|
|
UIMAGE_MAGIC := 0x83800000
|
|
|
|
KERNEL_INITRAMFS := kernel-bin | append-dtb | gzip | zyxel-vers | \
|
|
|
|
uImage gzip
|
|
|
|
endef
|
|
|
|
|
|
|
|
define Device/zyxel_gs1900-10hp
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
DEVICE_MODEL := GS1900-10HP
|
|
|
|
ZYXEL_VERS := AAZI
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-10hp
|
|
|
|
|
realtek: add support for ZyXEL GS1900-16
The ZyXEL GS1900-16 is a 16 port gigabit switch similar to other GS1900 switches.
Specifications
--------------
* Device: ZyXEL GS1900-16
* SoC: Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash: 16 MiB Macronix MX25L12835F
* RAM: 128 MiB DDR2 SDRAM Nanya NT5TU128M8HE
* Ethernet: 16x 10/100/1000 Mbps
* LEDs: 1 PWR LED (green, not configurable)
1 SYS LED (green, configurable)
16 ethernet port link/activity LEDs (green, SoC controlled)
* Buttons: 1 "RESET" button on front panel
* Power 120-240V AC C13
* UART: 1 serial header (J12) with populated standard pin connector on
the right back of the PCB.
Pinout (front to back):
+ Pin 1 - VCC marked with white dot
+ Pin 2 - RX
+ Pin 3 - TX
+ PIn 4 - GND
Serial connection parameters: 115200 8N1.
Installation
------------
OEM upgrade method:
* Log in to OEM management web interface
* Navigate to Maintenance > Firmware
* Select the HTTP radio button
* Select the Active radio button
* Use the browse button to locate the
realtek-generic-zyxel_gs1900-16-initramfs-kernel.bin
file amd select open so File Path is update with filename.
* Select the Apply button. Screen will display "Prepare
for firmware upgrade ...".
*Wait until screen shows "Do you really want to reboot?"
then select the OK button
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade -n /tmp/realtek-generic-zyxel_gs1900-16-squashfs-sysupgrade.bin
it may be necessary to restart the network (/etc/init.d/network restart) on
the running initramfs image.
U-Boot TFTP method:
* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
space bar, and enable the network:
> rtk network on
* Since the GS1900-16 is a dual-partition device, you want to keep the OEM
firmware on the backup partition for the time being. OpenWrt can only boot
from the first partition anyway (hardcoded in the DTS). To make sure we are
manipulating the first partition, issue the following commands:
> setsys bootpartition 0
> savesys
* Download the image onto the device and boot from it:
> tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-16-initramfs-kernel.bin
> bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade -n /tmp/openwrt-realtek-generic-zyxel_gs1900-16-squashfs-sysupgrade.bin
it may be necessary to restart the network (/etc/init.d/network restart) on
the running initramfs image.
Signed-off-by: Raylynn Knight <rayknight@me.com>
[removed duplicate patch title, align RAM specification]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
(cherry picked from commit 580723e86ae53f14273ff8c3a0ebf5d15b4ce1f1)
2022-04-10 07:26:59 +00:00
|
|
|
define Device/zyxel_gs1900-16
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
SOC := rtl8382
|
|
|
|
DEVICE_MODEL := GS1900-16
|
|
|
|
ZYXEL_VERS := AAHJ
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-16
|
|
|
|
|
2021-12-29 18:39:26 +00:00
|
|
|
define Device/zyxel_gs1900-8
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
DEVICE_MODEL := GS1900-8
|
|
|
|
ZYXEL_VERS := AAHH
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-8
|
|
|
|
|
|
|
|
define Device/zyxel_gs1900-8hp-v1
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
DEVICE_MODEL := GS1900-8HP
|
|
|
|
DEVICE_VARIANT := v1
|
|
|
|
ZYXEL_VERS := AAHI
|
|
|
|
DEVICE_PACKAGES += lua-rs232
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-8hp-v1
|
|
|
|
|
|
|
|
define Device/zyxel_gs1900-8hp-v2
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
DEVICE_MODEL := GS1900-8HP
|
|
|
|
DEVICE_VARIANT := v2
|
|
|
|
ZYXEL_VERS := AAHI
|
|
|
|
DEVICE_PACKAGES += lua-rs232
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-8hp-v2
|
|
|
|
|
realtek: add ZyXEL GS1900-24 v1 support
The ZyXEL GS1900-24 v1 is a 24 port switch with two SFP ports, similar to
the other GS1900 switches.
Specifications
--------------
* Device: ZyXEL GS1900-24 v1
* SoC: Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash: 16 MiB
* RAM: Winbond W9751G8KB-25 64 MiB DDR2 SDRAM
* Ethernet: 24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:
* 1 PWR LED (green, not configurable)
* 1 SYS LED (green, configurable)
* 24 ethernet port link/activity LEDs (green, SoC controlled)
* 2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:
* 1 "RESET" button on front panel (soft reset)
* 1 button ('SW1') behind right hex grate (hardwired power-off)
* Power: 120-240V AC C13
* UART: Internal populated 10-pin header ('J5') providing RS232;
connected to SoC UART through a SIPEX 3232EC for voltage
level shifting.
* 'J5' RS232 Pinout (dot as pin 1):
2) SoC RXD
3) GND
10) SoC TXD
Serial connection parameters: 115200 8N1.
Installation
------------
OEM upgrade method:
* Log in to OEM management web interface
* Navigate to Maintenance > Firmware > Management
* If "Active Image" has the first option selected, OpenWrt will need to be
flashed to the "Active" partition. If the second option is selected,
OpenWrt will need to be flashed to the "Backup" partition.
* Navigate to Maintenance > Firmware > Upload
* Upload the openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-initramfs-kernel.bin
file by your preferred method to the previously determined partition.
When prompted, select to boot from the newly flashed image, and reboot
the switch.
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-squashfs-sysupgrade.bin
U-Boot TFTP method:
* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs
image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
space bar, and enable the network:
> rtk network on
> Since the GS1900-24 v1 is a dual-partition device, you want to keep the
OEM firmware on the backup partition for the time being. OpenWrt can
only be installed in the first partition anyway (hardcoded in the
DTS). To ensure we are set to boot from the first partition, issue the
following commands:
> setsys bootpartition 0
> savesys
* Download the image onto the device and boot from it:
> tftpboot 0x81f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-initramfs-kernel.bin
> bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24-v1-squashfs-sysupgrade.bin
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
2022-03-05 19:02:36 +00:00
|
|
|
define Device/zyxel_gs1900-24-v1
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
SOC := rtl8382
|
|
|
|
DEVICE_MODEL := GS1900-24
|
|
|
|
DEVICE_VARIANT := v1
|
|
|
|
ZYXEL_VERS := AAHL
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-24-v1
|
|
|
|
|
realtek: add support for ZyXEL GS1900-24E
The ZyXEL GS1900-24E is a 24 port gigabit switch similar to other GS1900
switches.
Specifications
--------------
* Device: ZyXEL GS1900-24E
* SoC: Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash: 16 MiB Macronix MX25L12835F
* RAM: 128 MiB DDR2 SDRAM Nanya NT5TU128M8GE
* Ethernet: 24x 10/100/1000 Mbps
* LEDs: 1 PWR LED (green, not configurable)
1 SYS LED (green, configurable)
24 ethernet port link/activity LEDs (green, SoC controlled)
* Buttons: 1 "RESET" button on front panel
* Switch: 1 Power switch on rear of device
* Power 120-240V AC C13
* UART: 1 serial header (JP2) with populated standard pin connector on
the left side of the PCB.
Pinout (front to back):
+ Pin 1 - VCC marked with white dot
+ Pin 2 - RX
+ Pin 3 - TX
+ PIn 4 - GND
Serial connection parameters: 115200 8N1.
Installation
------------
OEM upgrade method:
* Log in to OEM management web interface
* Navigate to Maintenance > Firmware
* Select the HTTP radio button
* Select the Active radio button
* Use the browse button to locate the
realtek-rtl838x-zyxel_gs1900-24e-initramfs-kernel.bin
file and select open so File Path is updated with filename.
* Select the Apply button. Screen will display "Prepare
for firmware upgrade ...".
*Wait until screen shows "Do you really want to reboot?"
then select the OK button
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade -n /tmp/realtek-rtl838x-zyxel_gs1900-24e-squashfs-sysupgrade.bin
it may be necessary to restart the network (/etc/init.d/network restart) on
the running initramfs image.
U-Boot TFTP method:
* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
space bar, and enable the network:
> rtk network on
* Since the GS1900-24E is a dual-partition device, you want to keep the OEM
firmware on the backup partition for the time being. OpenWrt can only boot
from the first partition anyway (hardcoded in the DTS). To make sure we are
manipulating the first partition, issue the following commands:
> setsys bootpartition 0
> savesys
* Download the image onto the device and boot from it:
> tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24e-initramfs-kernel.bin
> bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade -n /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24e-squashfs-sysupgrade.bin
it may be necessary to restart the network (/etc/init.d/network restart) on
the running initramfs image.
Signed-off-by: Raylynn Knight <rayknight@me.com>
(cherry picked from commit b515ad10a6e1bd5c5da0ea95366fb19c92a75dea)
2022-05-17 03:15:54 +00:00
|
|
|
define Device/zyxel_gs1900-24e
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
SOC := rtl8382
|
|
|
|
DEVICE_MODEL := GS1900-24E
|
|
|
|
ZYXEL_VERS := AAHK
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-24e
|
|
|
|
|
realtek: add ZyXEL GS1900-24HP v1 support
The ZyXEL GS1900-24HP v1 is a 24 port PoE switch with two SFP ports,
similar to the other GS1900 switches.
Specifications
--------------
* Device: ZyXEL GS1900-24HP v1
* SoC: Realtek RTL8382M 500 MHz MIPS 4KEc
* Flash: 16 MiB
* RAM: Winbond W9751G8KB-25 64 MiB DDR2 SDRAM
* Ethernet: 24x 10/100/1000 Mbps, 2x SFP 100/1000 Mbps
* LEDs:
* 1 PWR LED (green, not configurable)
* 1 SYS LED (green, configurable)
* 24 ethernet port link/activity LEDs (green, SoC controlled)
* 24 ethernet port PoE status LEDs
* 2 SFP status/activity LEDs (green, SoC controlled)
* Buttons:
* 1 "RESET" button on front panel (soft reset)
* 1 button ('SW1') behind right hex grate (hardwired power-off)
* PoE:
* Management MCU: ST Micro ST32F100 Microcontroller
* 6 BCM59111 PSE chips
* 170W power budget
* Power: 120-240V AC C13
* UART: Internal populated 10-pin header ('J5') providing RS232;
connected to SoC UART through a TI or SIPEX 3232C for voltage
level shifting.
* 'J5' RS232 Pinout (dot as pin 1):
2) SoC RXD
3) GND
10) SoC TXD
Serial connection parameters: 115200 8N1.
Installation
------------
OEM upgrade method:
* Log in to OEM management web interface
* Navigate to Maintenance > Firmware > Management
* If "Active Image" has the first option selected, OpenWrt will need to be
flashed to the "Active" partition. If the second option is selected,
OpenWrt will need to be flashed to the "Backup" partition.
* Navigate to Maintenance > Firmware > Upload
* Upload the openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-initramfs-kernel.bin
file by your preferred method to the previously determined partition.
When prompted, select to boot from the newly flashed image, and reboot
the switch.
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-squashfs-sysupgrade.bin
U-Boot TFTP method:
* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs
image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
space bar, and enable the network:
> rtk network on
* Since the GS1900-24HP v1 is a dual-partition device, you want to keep the
OEM firmware on the backup partition for the time being. OpenWrt can
only be installed in the first partition anyway (hardcoded in the
DTS). To ensure we are set to boot from the first partition, issue the
following commands:
> setsys bootpartition 0
> savesys
* Download the image onto the device and boot from it:
> tftpboot 0x81f00000 192.168.1.10:openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-initramfs-kernel.bin
> bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
> sysupgrade /tmp/openwrt-realtek-rtl838x-zyxel_gs1900-24hp-v1-squashfs-sysupgrade.bin
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[Add info on PoE hardware to commit message]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
(cherry picked from commit a5ac8ad0ba9df50bdd0dda1dc26cf36f83006893)
2022-03-05 19:02:36 +00:00
|
|
|
define Device/zyxel_gs1900-24hp-v1
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
SOC := rtl8382
|
|
|
|
DEVICE_MODEL := GS1900-24HP
|
|
|
|
DEVICE_VARIANT := v1
|
|
|
|
ZYXEL_VERS := AAHM
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-24hp-v1
|
|
|
|
|
2021-12-29 18:39:26 +00:00
|
|
|
define Device/zyxel_gs1900-24hp-v2
|
|
|
|
$(Device/zyxel_gs1900)
|
|
|
|
SOC := rtl8382
|
|
|
|
DEVICE_MODEL := GS1900-24HP
|
|
|
|
DEVICE_VARIANT := v2
|
|
|
|
ZYXEL_VERS := ABTP
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_gs1900-24hp-v2
|