openwifi/driver/rx_intf/rx_intf.c

448 lines
17 KiB
C

/*
* axi lite register access driver
* Author: Xianjun Jiao, Michael Mehari, Wei Liu
* SPDX-FileCopyrightText: 2019 UGent
* SPDX-License-Identifier: AGPL-3.0-or-later
*/
#include <linux/bitops.h>
#include <linux/dmapool.h>
#include <linux/dma/xilinx_dma.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_dma.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include "../hw_def.h"
static void __iomem *base_addr; // to store driver specific base address needed for mmu to translate virtual address to physical address in our FPGA design
/* IO accessors */
static inline u32 reg_read(u32 reg)
{
return ioread32(base_addr + reg);
}
static inline void reg_write(u32 reg, u32 value)
{
iowrite32(value, base_addr + reg);
}
static inline u32 RX_INTF_REG_MULTI_RST_read(void){
return reg_read(RX_INTF_REG_MULTI_RST_ADDR);
}
static inline u32 RX_INTF_REG_MIXER_CFG_read(void){
return reg_read(RX_INTF_REG_MIXER_CFG_ADDR);
}
static inline u32 RX_INTF_REG_IQ_SRC_SEL_read(void){
return reg_read(RX_INTF_REG_IQ_SRC_SEL_ADDR);
}
static inline u32 RX_INTF_REG_IQ_CTRL_read(void){
return reg_read(RX_INTF_REG_IQ_CTRL_ADDR);
}
static inline u32 RX_INTF_REG_START_TRANS_TO_PS_MODE_read(void){
return reg_read(RX_INTF_REG_START_TRANS_TO_PS_MODE_ADDR);
}
static inline u32 RX_INTF_REG_START_TRANS_TO_PS_read(void){
return reg_read(RX_INTF_REG_START_TRANS_TO_PS_ADDR);
}
static inline u32 RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_read(void){
return reg_read(RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_ADDR);
}
static inline u32 RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_read(void){
return reg_read(RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_ADDR);
}
static inline u32 RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read(void){
return reg_read(RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_ADDR);
}
static inline u32 RX_INTF_REG_CFG_DATA_TO_ANT_read(void){
return reg_read(RX_INTF_REG_CFG_DATA_TO_ANT_ADDR);
}
static inline u32 RX_INTF_REG_ANT_SEL_read(void){
return reg_read(RX_INTF_REG_ANT_SEL_ADDR);
}
static inline u32 RX_INTF_REG_INTERRUPT_TEST_read(void) {
return reg_read(RX_INTF_REG_INTERRUPT_TEST_ADDR);
}
static inline void RX_INTF_REG_MULTI_RST_write(u32 value){
reg_write(RX_INTF_REG_MULTI_RST_ADDR, value);
}
static inline void RX_INTF_REG_M_AXIS_RST_write(u32 value){
u32 reg_val;
if (value==0) {
reg_val = RX_INTF_REG_MULTI_RST_read();
reg_val = ( reg_val&(~(1<<4)) );
RX_INTF_REG_MULTI_RST_write(reg_val);
} else {
reg_val = RX_INTF_REG_MULTI_RST_read();
reg_val = ( reg_val|(1<<4) );
RX_INTF_REG_MULTI_RST_write(reg_val);
}
}
static inline void RX_INTF_REG_MIXER_CFG_write(u32 value){
reg_write(RX_INTF_REG_MIXER_CFG_ADDR, value);
}
static inline void RX_INTF_REG_IQ_SRC_SEL_write(u32 value){
reg_write(RX_INTF_REG_IQ_SRC_SEL_ADDR, value);
}
static inline void RX_INTF_REG_IQ_CTRL_write(u32 value){
reg_write(RX_INTF_REG_IQ_CTRL_ADDR, value);
}
static inline void RX_INTF_REG_START_TRANS_TO_PS_MODE_write(u32 value){
reg_write(RX_INTF_REG_START_TRANS_TO_PS_MODE_ADDR, value);
}
static inline void RX_INTF_REG_START_TRANS_TO_PS_write(u32 value){
reg_write(RX_INTF_REG_START_TRANS_TO_PS_ADDR, value);
}
static inline void RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write(u32 value){
reg_write(RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_ADDR, value);
}
static inline void RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(u32 value){
reg_write(RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_ADDR, value);
}
static inline void RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write(u32 value){
reg_write(RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_ADDR, value);
}
static inline void RX_INTF_REG_CFG_DATA_TO_ANT_write(u32 value){
reg_write(RX_INTF_REG_CFG_DATA_TO_ANT_ADDR, value);
}
static inline void RX_INTF_REG_BB_GAIN_write(u32 value) {
reg_write(RX_INTF_REG_BB_GAIN_ADDR, value);
}
static inline void RX_INTF_REG_ANT_SEL_write(u32 value){
reg_write(RX_INTF_REG_ANT_SEL_ADDR, value);
}
static inline void RX_INTF_REG_INTERRUPT_TEST_write(u32 value) {
reg_write(RX_INTF_REG_INTERRUPT_TEST_ADDR, value);
}
static inline void RX_INTF_REG_S2MM_INTR_DELAY_COUNT_write(u32 value) {
reg_write(RX_INTF_REG_S2MM_INTR_DELAY_COUNT_ADDR, value);
}
static inline void RX_INTF_REG_TLAST_TIMEOUT_TOP_write(u32 value) {
reg_write(RX_INTF_REG_TLAST_TIMEOUT_TOP_ADDR, value);
}
static const struct of_device_id dev_of_ids[] = {
{ .compatible = "sdr,rx_intf", },
{}
};
MODULE_DEVICE_TABLE(of, dev_of_ids);
static struct rx_intf_driver_api rx_intf_driver_api_inst;
struct rx_intf_driver_api *rx_intf_api = &rx_intf_driver_api_inst;
EXPORT_SYMBOL(rx_intf_api);
static inline u32 hw_init(enum rx_intf_mode mode, u32 num_dma_symbol_to_pl, u32 num_dma_symbol_to_ps){
int err=0, i;
u32 reg_val, mixer_cfg=0, ant_sel=0;
printk("%s hw_init mode %d\n", rx_intf_compatible_str, mode);
rx_intf_api->RX_INTF_REG_TLAST_TIMEOUT_TOP_write(7000);
//rst
for (i=0;i<8;i++)
rx_intf_api->RX_INTF_REG_MULTI_RST_write(0);
for (i=0;i<32;i++)
rx_intf_api->RX_INTF_REG_MULTI_RST_write(0xFFFFFFFF);
for (i=0;i<8;i++)
rx_intf_api->RX_INTF_REG_MULTI_RST_write(0);
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status. will be released when openwifi_start
switch(mode)
{
case RX_INTF_AXIS_LOOP_BACK:
printk("%s hw_init mode RX_INTF_AXIS_LOOP_BACK\n", rx_intf_compatible_str);
//setting the path and mode. This must be done before our dma end reset
rx_intf_api->RX_INTF_REG_IQ_SRC_SEL_write(0x15);
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write(1);
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write(0x37);// endless mode to support sg DMA loop back, start 1 trans from sw trigger
rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(num_dma_symbol_to_pl);
rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write(num_dma_symbol_to_ps);
// put bb_en to constant 1
reg_val = rx_intf_api->RX_INTF_REG_IQ_CTRL_read();
reg_val = (reg_val|0x8);
rx_intf_api->RX_INTF_REG_IQ_CTRL_write(reg_val);
// connect axis slave and master directly for loopback
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write(0x1037);
// reset dma end point in our design
reg_val = rx_intf_api->RX_INTF_REG_MULTI_RST_read();
reg_val = (reg_val&(~0x14) );
rx_intf_api->RX_INTF_REG_MULTI_RST_write(reg_val);
reg_val = reg_val|(0x14);
rx_intf_api->RX_INTF_REG_MULTI_RST_write(reg_val);
reg_val = reg_val&(~0x14);
rx_intf_api->RX_INTF_REG_MULTI_RST_write(reg_val);
//start 1 trans now from our m_axis to ps dma
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write(0);
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write(1);
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write(0);
break;
case RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:
printk("%s hw_init mode DDC_BW_20MHZ_AT_0MHZ\n", rx_intf_compatible_str);
mixer_cfg = 0x300200F4;
ant_sel=0;
break;
case RX_INTF_BW_20MHZ_AT_0MHZ_ANT1:
printk("%s hw_init mode DDC_BW_20MHZ_AT_0MHZ\n", rx_intf_compatible_str);
mixer_cfg = 0x300200F4;
ant_sel=1;
break;
case RX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:
printk("%s hw_init mode DDC_BW_20MHZ_AT_N_10MHZ\n", rx_intf_compatible_str);
mixer_cfg = 0x300202F6;
ant_sel=0;
break;
case RX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1:
printk("%s hw_init mode DDC_BW_20MHZ_AT_N_10MHZ\n", rx_intf_compatible_str);
mixer_cfg = 0x300202F6;
ant_sel=1;
break;
case RX_INTF_BW_20MHZ_AT_P_10MHZ_ANT0:
printk("%s hw_init mode DDC_BW_20MHZ_AT_P_10MHZ\n", rx_intf_compatible_str);
mixer_cfg = 0x3001F602;
ant_sel=0;
break;
case RX_INTF_BW_20MHZ_AT_P_10MHZ_ANT1:
printk("%s hw_init mode DDC_BW_20MHZ_AT_P_10MHZ\n", rx_intf_compatible_str);
mixer_cfg = 0x3001F602;
ant_sel=1;
break;
case RX_INTF_BYPASS:
printk("%s hw_init mode DDC_BYPASS\n", rx_intf_compatible_str);
mixer_cfg = 0x3001F602;
break;
default:
printk("%s hw_init mode %d is wrong!\n", rx_intf_compatible_str, mode);
err=1;
}
if (mode!=RX_INTF_AXIS_LOOP_BACK) {
// rx_intf_api->RX_INTF_REG_MIXER_CFG_write(mixer_cfg); --now rx doesn't have mixer anymore
// 0x000202F6 for: wifi ant0: -10MHz; wifi ant1: +10MHz; zigbee 4 ch ant0: -2, -7, -12, -17MHz; zigbee 4 ch ant1: +3, +8, +13, +18MHz
// 0x0001F602 for: wifi ant0: +10MHz; wifi ant1: -10MHz; zigbee 4 ch ant0: +3, +8, +13, +18MHz; zigbee 4 ch ant1: -2, -7, -12, -17MHz
// 0x0001F206 for: wifi ant0: -10MHz; wifi ant1: +10MHz; zigbee 4 ch ant0: +3, +8, +13, +18MHz; zigbee 4 ch ant1: -2, -7, -12, -17MHz
// 0x2101F602 for: wifi gain 4; zigbee gain 2
// 0xFE01F602 for: wifi gain 1/2; zigbee gain 1/4
// bits definitions:
// wifi ch selection: ant0 bit1~0; ant1 bit 9~8; ch offset: 0-0MHz; 1-5MHz; 2-10MHz; 3-15MHz(severe distortion)
// wifi ch +/- selection: ant0 bit2; ant1 bit 10; 0-positive; 1-negative
// zigbee 2M mixer +/- selection: ant0 bit3; ant1 bit 11; 0-positive; 1-negative
// zigbee secondary mixer +/- selection: ant0 bit4~7; ant1 bit 12~15; 0-positive; 1-negative
// zigbee ch slip offset: ant0 bit16; ant1 bit17; 0-select ch offset 0, 5, 10, 15; 1-select ch offset 5 10 15 20
// wifi gain: bit31~28; number of bits shifted to left in 2'complement code
// zigb gain: bit27~24; number of bits shifted to left in 2'complement code
// max amplitude calibration info (agc low, ddc w/o gain adj 0x0001F602): 5GHz, max amplitude 1.26e4. According to simulation, schr shrink 1bit should be enough
rx_intf_api->RX_INTF_REG_MULTI_RST_write(0);
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status. will be released when openwifi_start
//rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000);
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100);
//0x000-normal; 0x100-sig and fcs valid are controlled by bit4 and bit0;
//0x111-sig and fcs high; 0x110-sig high fcs low; 0x101-sig low fcs high; 0x100-sig and fcs low
rx_intf_api->RX_INTF_REG_S2MM_INTR_DELAY_COUNT_write(30*10); // delayed interrupt, counter clock 10MHz is assumed
rx_intf_api->RX_INTF_REG_IQ_CTRL_write(0);
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write(0x10025); //now bit 5 should be 1 to let pl_to_m_axis_intf decide num_dma_symbol_to_ps automatically
//rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write(0x00025); //bit16 enable_m_axis_auto_rst
//bit2-0: source of M AXIS transfer trigger
// -0 fcs_valid_from_acc
// -1 sig_valid_from_acc
// -2 sig_invalid_from_acc
// -3 start_1trans_s_axis_tlast_trigger
// -4 start_1trans_s_axis_tready_trigger
// -5 internal state machine together with bit5 1. By parsing signal field, num_dma_symbol_to_ps can be decided automatically
// -6 start_1trans_monitor_dma_to_ps_start_trigger
// -7 start_1trans_ext_trigger
//bit3: 1-fcs valid and invalid both connected; 0-only fcs valid connected (fcs_invalid_mode)
//bit4: 1-num_dma_symbol_to_pl from monitor; 0-num_dma_symbol_to_pl from slv_reg8
//bit5: 1-num_dma_symbol_to_ps from monitor; 0-num_dma_symbol_to_ps from slv_reg9
//bit6: 1-pl_to_m_axis_intf will try to send both ht and non-ht; 0-only send non-ht
//bit8: 1-endless S AXIS; 0-normal
//bit9: 1-endless M AXIS; 0-normal
//bit12: 1-direct loop back; 0-normal
//bit16: 1-auto m_axis rst (sig_valid_from_acc|sig_invalid_from_acc|ht_sig_valid|ht_sig_invalid|ht_unsupported); 0-normal
//bit24: 1-disable m_axis fifo_rst_by_fcs_invalid; 0-enable
//bit29,28: sig_valid_mode. 0- non-ht sig valid; 1- ht sig valid other- both
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write(OPENWIFI_MAX_SIGNAL_LEN_TH<<16); //bit31~16 max pkt length threshold
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write(0);
// 0-wifi_rx packet out; 1-loopback from input of wifi_rx
rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(num_dma_symbol_to_pl);
rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write(num_dma_symbol_to_ps);
rx_intf_api->RX_INTF_REG_CFG_DATA_TO_ANT_write(1<<8);
rx_intf_api->RX_INTF_REG_BB_GAIN_write(4);
rx_intf_api->RX_INTF_REG_ANT_SEL_write(ant_sel);
rx_intf_api->RX_INTF_REG_MULTI_RST_write(0x14);//rst m/s axis
rx_intf_api->RX_INTF_REG_MULTI_RST_write(0);
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status. will be released when openwifi_start
}
if (mode==RX_INTF_BYPASS) {
rx_intf_api->RX_INTF_REG_CFG_DATA_TO_ANT_write(0x10); //bit4 bypass enable
}
printk("%s hw_init err %d\n", rx_intf_compatible_str, err);
return(err);
}
static int dev_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct resource *io;
int err=1;
printk("\n");
if (np) {
const struct of_device_id *match;
match = of_match_node(dev_of_ids, np);
if (match) {
printk("%s dev_probe match!\n", rx_intf_compatible_str);
err = 0;
}
}
if (err)
return err;
rx_intf_api->hw_init=hw_init;
rx_intf_api->reg_read=reg_read;
rx_intf_api->reg_write=reg_write;
rx_intf_api->RX_INTF_REG_MULTI_RST_read=RX_INTF_REG_MULTI_RST_read;
rx_intf_api->RX_INTF_REG_MIXER_CFG_read=RX_INTF_REG_MIXER_CFG_read;
rx_intf_api->RX_INTF_REG_IQ_SRC_SEL_read=RX_INTF_REG_IQ_SRC_SEL_read;
rx_intf_api->RX_INTF_REG_IQ_CTRL_read=RX_INTF_REG_IQ_CTRL_read;
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_read=RX_INTF_REG_START_TRANS_TO_PS_MODE_read;
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_read=RX_INTF_REG_START_TRANS_TO_PS_read;
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_read=RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_read;
rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_read=RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_read;
rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read=RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read;
rx_intf_api->RX_INTF_REG_CFG_DATA_TO_ANT_read=RX_INTF_REG_CFG_DATA_TO_ANT_read;
rx_intf_api->RX_INTF_REG_ANT_SEL_read=RX_INTF_REG_ANT_SEL_read;
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_read=RX_INTF_REG_INTERRUPT_TEST_read;
rx_intf_api->RX_INTF_REG_MULTI_RST_write=RX_INTF_REG_MULTI_RST_write;
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write=RX_INTF_REG_M_AXIS_RST_write;
rx_intf_api->RX_INTF_REG_MIXER_CFG_write=RX_INTF_REG_MIXER_CFG_write;
rx_intf_api->RX_INTF_REG_IQ_SRC_SEL_write=RX_INTF_REG_IQ_SRC_SEL_write;
rx_intf_api->RX_INTF_REG_IQ_CTRL_write=RX_INTF_REG_IQ_CTRL_write;
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write=RX_INTF_REG_START_TRANS_TO_PS_MODE_write;
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write=RX_INTF_REG_START_TRANS_TO_PS_write;
rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write=RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write;
rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write=RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write;
rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write=RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write;
rx_intf_api->RX_INTF_REG_CFG_DATA_TO_ANT_write=RX_INTF_REG_CFG_DATA_TO_ANT_write;
rx_intf_api->RX_INTF_REG_BB_GAIN_write=RX_INTF_REG_BB_GAIN_write;
rx_intf_api->RX_INTF_REG_ANT_SEL_write=RX_INTF_REG_ANT_SEL_write;
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write=RX_INTF_REG_INTERRUPT_TEST_write;
rx_intf_api->RX_INTF_REG_S2MM_INTR_DELAY_COUNT_write=RX_INTF_REG_S2MM_INTR_DELAY_COUNT_write;
rx_intf_api->RX_INTF_REG_TLAST_TIMEOUT_TOP_write=RX_INTF_REG_TLAST_TIMEOUT_TOP_write;
/* Request and map I/O memory */
io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base_addr = devm_ioremap_resource(&pdev->dev, io);
if (IS_ERR(base_addr))
return PTR_ERR(base_addr);
rx_intf_api->io_start = io->start;
rx_intf_api->base_addr = (u32)base_addr;
printk("%s dev_probe io start 0x%08x end 0x%08x name %s flags 0x%08x desc 0x%08x\n", rx_intf_compatible_str,io->start,io->end,io->name,(u32)io->flags,(u32)io->desc);
printk("%s dev_probe base_addr 0x%08x\n", rx_intf_compatible_str,(u32)base_addr);
printk("%s dev_probe rx_intf_driver_api_inst 0x%08x\n", rx_intf_compatible_str, (u32)(&rx_intf_driver_api_inst) );
printk("%s dev_probe rx_intf_api 0x%08x\n", rx_intf_compatible_str, (u32)rx_intf_api);
printk("%s dev_probe succeed!\n", rx_intf_compatible_str);
//err = hw_init(DDC_CURRENT_CH_OFFSET_CFG,8,8);
err = hw_init(RX_INTF_BW_20MHZ_AT_0MHZ_ANT0,8,8);
return err;
}
static int dev_remove(struct platform_device *pdev)
{
printk("\n");
printk("%s dev_remove base_addr 0x%08x\n", rx_intf_compatible_str, (u32)base_addr);
printk("%s dev_remove rx_intf_driver_api_inst 0x%08x\n", rx_intf_compatible_str, (u32)(&rx_intf_driver_api_inst) );
printk("%s dev_remove rx_intf_api 0x%08x\n", rx_intf_compatible_str, (u32)rx_intf_api);
printk("%s dev_remove succeed!\n", rx_intf_compatible_str);
return 0;
}
static struct platform_driver dev_driver = {
.driver = {
.name = "sdr,rx_intf",
.owner = THIS_MODULE,
.of_match_table = dev_of_ids,
},
.probe = dev_probe,
.remove = dev_remove,
};
module_platform_driver(dev_driver);
MODULE_AUTHOR("Xianjun Jiao");
MODULE_DESCRIPTION("sdr,rx_intf");
MODULE_LICENSE("GPL v2");