openwifi/driver/sdr.c
Xianjun Jiao 109b1cfd3a Fix the issue of iGent env related big ping delay:
1. The issue only happens at zcu102 side, when it is tested as AP together with zedboard
2. The issue does not happen when zcu102 is client and zedboard is AP
3. The issue (most likely) does not happen in places other than iGent (like Pablo home)
4. Sometimes it does happen at my home when I test zcu102 as AP together with COTS WiFi
5. Indeed seems like the environment related. Guess some quick small packets in the environment quickly flush/round-up/mess-up the rx dma cyclic buffer, and the rx interrupt internal static variable target_buf_idx_old loses track of the background automatic rx dma cyclic buffer
6. The fix is for all board types (zcu102, zedboard, 7035, etc)
7. The driver compiling make_all.sh script generates USE_NEW_RX_INTERRUPT macro to pre_def.h to enable the new code (while keeping the old code). You can use the script as before.
8. The logic of the fix is that exhaustive search all the rx dma cyclic buffer in rx interrupt to get packet to Linux in the first place.
2021-09-29 16:52:45 +02:00

2301 lines
94 KiB
C

// Author: Xianjun Jiao, Michael Mehari, Wei Liu
// SPDX-FileCopyrightText: 2019 UGent
// SPDX-License-Identifier: AGPL-3.0-or-later
#include <linux/bitops.h>
#include <linux/dmapool.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/sched/task.h>
#include <linux/dma/xilinx_dma.h>
#include <linux/spi/spi.h>
#include <net/mac80211.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/gpio.h>
#include <linux/leds.h>
#define IIO_AD9361_USE_PRIVATE_H_
#include <../../drivers/iio/adc/ad9361_regs.h>
#include <../../drivers/iio/adc/ad9361.h>
#include <../../drivers/iio/adc/ad9361_private.h>
#include <../../drivers/iio/frequency/cf_axi_dds.h>
extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
bool tx1, bool tx2, bool immed);
extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
struct ctrl_outs_control *ctrl);
#include "../user_space/sdrctl_src/nl80211_testmode_def.h"
#include "hw_def.h"
#include "sdr.h"
#include "git_rev.h"
// driver API of component driver
extern struct tx_intf_driver_api *tx_intf_api;
extern struct rx_intf_driver_api *rx_intf_api;
extern struct openofdm_tx_driver_api *openofdm_tx_api;
extern struct openofdm_rx_driver_api *openofdm_rx_api;
extern struct xpu_driver_api *xpu_api;
static int test_mode = 0; // 0 normal; 1 rx test
MODULE_AUTHOR("Xianjun Jiao");
MODULE_DESCRIPTION("SDR driver");
MODULE_LICENSE("GPL v2");
module_param(test_mode, int, 0);
MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
// ---------------rfkill---------------------------------------
static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
{
int reg;
if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
else
reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
if (reg == AD9361_RADIO_ON_TX_ATT)
return true;// 0 off, 1 on
return false;
}
void openwifi_rfkill_init(struct ieee80211_hw *hw)
{
struct openwifi_priv *priv = hw->priv;
priv->rfkill_off = openwifi_is_radio_enabled(priv);
printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
wiphy_rfkill_start_polling(hw->wiphy);
}
void openwifi_rfkill_poll(struct ieee80211_hw *hw)
{
bool enabled;
struct openwifi_priv *priv = hw->priv;
enabled = openwifi_is_radio_enabled(priv);
// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
if (unlikely(enabled != priv->rfkill_off)) {
priv->rfkill_off = enabled;
printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
}
}
void openwifi_rfkill_exit(struct ieee80211_hw *hw)
{
printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
wiphy_rfkill_stop_polling(hw->wiphy);
}
//----------------rfkill end-----------------------------------
//static void ad9361_rf_init(void);
//static void ad9361_rf_stop(void);
//static void ad9361_rf_calc_rssi(void);
static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
struct ieee80211_conf *conf)
{
struct openwifi_priv *priv = dev->priv;
u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
u32 actual_tx_lo;
bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
if (change_flag) {
priv->actual_rx_lo = actual_rx_lo;
actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
if (actual_rx_lo<2412) {
priv->rssi_correction = 153;
} else if (actual_rx_lo<=2484) {
priv->rssi_correction = 153;
} else if (actual_rx_lo<5160) {
priv->rssi_correction = 153;
} else if (actual_rx_lo<=5240) {
priv->rssi_correction = 145;
} else if (actual_rx_lo<=5320) {
priv->rssi_correction = 148;
} else {
priv->rssi_correction = 148;
}
// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
if (actual_rx_lo < 2500) {
//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
if (priv->band != BAND_2_4GHZ) {
priv->band = BAND_2_4GHZ;
xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
}
// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time. let's add 2us for those device that is really "slow"!
// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
}
else {
//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
if (priv->band != BAND_5_8GHZ) {
priv->band = BAND_5_8GHZ;
xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
}
// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting. let's add 2us for those device that is really "slow"!
// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
}
//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
// //-- use less
//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
}
printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag);
}
const struct openwifi_rf_ops ad9361_rf_ops = {
.name = "ad9361",
// .init = ad9361_rf_init,
// .stop = ad9361_rf_stop,
.set_chan = ad9361_rf_set_channel,
// .calc_rssi = ad9361_rf_calc_rssi,
};
u16 reverse16(u16 d) {
union u16_byte2 tmp0, tmp1;
tmp0.a = d;
tmp1.c[0] = tmp0.c[1];
tmp1.c[1] = tmp0.c[0];
return(tmp1.a);
}
u32 reverse32(u32 d) {
union u32_byte4 tmp0, tmp1;
tmp0.a = d;
tmp1.c[0] = tmp0.c[3];
tmp1.c[1] = tmp0.c[2];
tmp1.c[2] = tmp0.c[1];
tmp1.c[3] = tmp0.c[0];
return(tmp1.a);
}
static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
{
struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
int i;
ring->stop_flag = 0;
ring->bd_wr_idx = 0;
ring->bd_rd_idx = 0;
ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
if (ring->bds==NULL) {
printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
return -ENOMEM;
}
for (i = 0; i < NUM_TX_BD; i++) {
ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
//at first right after skb allocated, head, data, tail are the same.
ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
}
return 0;
}
static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
{
struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
int i;
ring->stop_flag = 0;
ring->bd_wr_idx = 0;
ring->bd_rd_idx = 0;
for (i = 0; i < NUM_TX_BD; i++) {
if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
continue;
if (ring->bds[i].dma_mapping_addr != 0)
dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
// if (ring->bds[i].skb_linked!=NULL)
// dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
(ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
ring_idx, i, (void*)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr);
ring->bds[i].skb_linked=0;
ring->bds[i].dma_mapping_addr = 0;
}
if (ring->bds)
kfree(ring->bds);
ring->bds = NULL;
}
static int openwifi_init_rx_ring(struct openwifi_priv *priv)
{
int i;
u8 *pdata_tmp;
priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
if (!priv->rx_cyclic_buf) {
printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
return(-1);
}
// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
for (i=0; i<NUM_RX_BD; i++) {
pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
(*((u32*)(pdata_tmp+0 ))) = 0;
(*((u32*)(pdata_tmp+4 ))) = 0;
}
printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
return 0;
}
static void openwifi_free_rx_ring(struct openwifi_priv *priv)
{
if (priv->rx_cyclic_buf)
dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
priv->rx_cyclic_buf_dma_mapping_addr = 0;
priv->rx_cyclic_buf = 0;
}
static int rx_dma_setup(struct ieee80211_hw *dev){
struct openwifi_priv *priv = dev->priv;
struct dma_device *rx_dev = priv->rx_chan->device;
priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
if (!(priv->rxd)) {
openwifi_free_rx_ring(priv);
printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
return(-1);
}
priv->rxd->callback = 0;
priv->rxd->callback_param = 0;
priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
if (dma_submit_error(priv->rx_cookie)) {
printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
return(-1);
}
dma_async_issue_pending(priv->rx_chan);
return(0);
}
static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct openwifi_priv *priv = dev->priv;
struct ieee80211_rx_status rx_status = {0};
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0, ht_flag, short_gi;//, fc_di;
// u32 dma_driver_buf_idx_mod;
u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
s8 signal;
u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
bool content_ok = false, len_overflow = false;
#ifdef USE_NEW_RX_INTERRUPT
int i;
spin_lock(&priv->lock);
for (i=0; i<NUM_RX_BD; i++) {
pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
continue;
#else
static u8 target_buf_idx_old = 0;
spin_lock(&priv->lock);
while(1) { // loop all rx buffers that have new rx packets
pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
break;
#endif
tsft_low = (*((u32*)(pdata_tmp+0 )));
tsft_high = (*((u32*)(pdata_tmp+4 )));
rssi_val = (*((u16*)(pdata_tmp+8 )));
len = (*((u16*)(pdata_tmp+12)));
len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
rate_idx = (*((u16*)(pdata_tmp+14)));
short_gi = ((rate_idx&0x20)!=0);
rate_idx = (rate_idx&0xDF);
fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
// dma_driver_buf_idx_mod = (state.residue&0x7f);
fcs_ok = ((fcs_ok&0x80)!=0);
ht_flag = ((rate_idx&0x10)!=0);
if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
// printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
// }
content_ok = true;
} else {
printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
content_ok = false;
}
rssi_val = (rssi_val>>1);
if ( (rssi_val+128)<priv->rssi_correction )
signal = -128;
else
signal = rssi_val - priv->rssi_correction;
// fc_di = (*((u32*)(pdata_tmp+16)));
// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
// addr1_low32 = (*((u32*)(pdata_tmp+16+4+2)));
// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
// addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2)));
// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
// addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2)));
if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
addr1_low32 = *((u32*)(hdr->addr1+2));
addr1_high16 = *((u16*)(hdr->addr1));
if (len>=20) {
addr2_low32 = *((u32*)(hdr->addr2+2));
addr2_high16 = *((u16*)(hdr->addr2));
}
if (len>=26) {
addr3_low32 = *((u32*)(hdr->addr3+2));
addr3_high16 = *((u16*)(hdr->addr3));
}
if (len>=28)
sc = hdr->seq_ctrl;
if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
printk("%s openwifi_rx_interrupt:%4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
#ifdef USE_NEW_RX_INTERRUPT
sc, fcs_ok, i, signal);
#else
sc, fcs_ok, target_buf_idx_old, signal);
#endif
}
// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
if (content_ok) {
skb = dev_alloc_skb(len);
if (skb) {
skb_put_data(skb,pdata_tmp+16,len);
rx_status.antenna = 0;
// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
rx_status.signal = signal;
rx_status.freq = dev->conf.chandef.chan->center_freq;
rx_status.band = dev->conf.chandef.chan->band;
rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
rx_status.flag |= RX_FLAG_MACTIME_START;
if (!fcs_ok)
rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
if (rate_idx <= 15)
rx_status.encoding = RX_ENC_LEGACY;
else
rx_status.encoding = RX_ENC_HT;
rx_status.bw = RATE_INFO_BW_20;
if (short_gi)
rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
} else
printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
}
(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
loop_count++;
#ifndef USE_NEW_RX_INTERRUPT
target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
#endif
}
if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
// openwifi_rx_interrupt_out:
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct openwifi_priv *priv = dev->priv;
struct openwifi_ring *ring;
struct sk_buff *skb;
struct ieee80211_tx_info *info;
u32 reg_val, hw_queue_len, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;//, i;
u8 tx_result_report;
// u16 prio_rd_idx_store[64]={0};
spin_lock(&priv->lock);
while(1) { // loop all packets that have been sent by FPGA
reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();
if (reg_val!=0xFFFFFFFF) {
prio = ((0x7FFFF & reg_val)>>(5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
cw = ((0xF0000000 & reg_val) >> 28);
num_slot_random = ((0xFF80000 &reg_val)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
if(cw > 10) {
cw = 10 ;
num_slot_random += 512 ;
}
ring = &(priv->tx_ring[prio]);
ring->bd_rd_idx = ((reg_val>>5)&MAX_PHY_TX_SN);
skb = ring->bds[ring->bd_rd_idx].skb_linked;
dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
skb->len, DMA_MEM_TO_DEV);
if ( ring->stop_flag == 1) {
// Wake up Linux queue if FPGA and driver ring have room
queue_idx = ((reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN))&(MAX_NUM_HW_QUEUE-1));
dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx);
ieee80211_wake_queue(dev, prio);
ring->stop_flag = 0;
}
}
if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
printk("%s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
continue;
}
skb_pull(skb, LEN_PHY_HEADER);
//skb_trim(skb, num_byte_pad_skb);
info = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(info);
tx_result_report = (reg_val&0x1F);
if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
if ((tx_result_report&0x10)==0)
info->flags |= IEEE80211_TX_STAT_ACK;
// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
// info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
// info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
// info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
// info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
}
info->status.rates[0].count = (tx_result_report&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
info->status.rates[1].idx = -1;
info->status.rates[2].idx = -1;
info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4
if ( (tx_result_report&0x10) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
printk("%s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx);
if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
printk("%s openwifi_tx_interrupt: tx_result %02x prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random,cw);
ieee80211_tx_status_irqsafe(dev, skb);
loop_count++;
// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
} else
break;
}
if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
u32 gen_parity(u32 v){
v ^= v >> 1;
v ^= v >> 2;
v = (v & 0x11111111U) * 0x11111111U;
return (v >> 28) & 1;
}
u8 gen_ht_sig_crc(u64 m)
{
u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, ht_sig_crc;
for (i = 0; i < 34; i++)
{
temp = c[7] ^ ((m >> i) & 0x01);
c[7] = c[6];
c[6] = c[5];
c[5] = c[4];
c[4] = c[3];
c[3] = c[2];
c[2] = c[1] ^ temp;
c[1] = c[0] ^ temp;
c[0] = temp;
}
ht_sig_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
return ht_sig_crc;
}
u32 calc_phy_header(u8 rate_hw_value, bool use_ht_rate, bool use_short_gi, u32 len, u8 *bytes){
//u32 signal_word = 0 ;
u8 SIG_RATE = 0, HT_SIG_RATE;
u8 len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
u32 l_len, ht_len, ht_sig1, ht_sig2;
// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
// HT-mixed mode ht signal
if(use_ht_rate)
{
SIG_RATE = wifi_mcs_table_11b_force_up[4];
HT_SIG_RATE = rate_hw_value;
l_len = 24 * len / wifi_n_dbps_ht_table[rate_hw_value];
ht_len = len;
}
else
{
// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
l_len = len;
}
len_2to0 = l_len & 0x07 ;
len_10to3 = (l_len >> 3 ) & 0xFF ;
len_msb = (l_len >> 11) & 0x01 ;
b0=SIG_RATE | (len_2to0 << 5) ;
b1 = len_10to3 ;
header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
b2 = ( len_msb | (header_parity << 1) ) ;
memset(bytes,0,16);
bytes[0] = b0 ;
bytes[1] = b1 ;
bytes[2] = b2;
// HT-mixed mode signal
if(use_ht_rate)
{
ht_sig1 = (HT_SIG_RATE & 0x7F) | ((ht_len << 8) & 0xFFFF00);
ht_sig2 = 0x04 | (use_short_gi << 7);
ht_sig2 = ht_sig2 | (gen_ht_sig_crc(ht_sig1 | ht_sig2 << 24) << 10);
bytes[3] = 1;
bytes[8] = (ht_sig1 & 0xFF);
bytes[9] = (ht_sig1 >> 8) & 0xFF;
bytes[10] = (ht_sig1 >> 16) & 0xFF;
bytes[11] = (ht_sig2 & 0xFF);
bytes[12] = (ht_sig2 >> 8) & 0xFF;
bytes[13] = (ht_sig2 >> 16) & 0xFF;
return(HT_SIG_RATE);
}
else
{
//signal_word = b0+(b1<<8)+(b2<<16) ;
//return signal_word;
return(SIG_RATE);
}
}
static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
cdev_to_gpio_led_data(struct led_classdev *led_cdev)
{
return container_of(led_cdev, struct gpio_led_data, cdev);
}
static void openwifi_tx(struct ieee80211_hw *dev,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct openwifi_priv *priv = dev->priv;
unsigned long flags;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct openwifi_ring *ring;
dma_addr_t dma_mapping_addr;
unsigned int prio, i;
u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
u32 rate_signal_value,rate_hw_value,ack_flag;
u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, dma_reg, cts_reg;//, openofdm_state_history;
u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
bool use_rts_cts, use_cts_protect, use_ht_rate=false, use_short_gi, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
__le16 frame_control,duration_id;
u32 dma_fifo_no_room_flag, hw_queue_len;
enum dma_status status;
// static bool led_status=0;
// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
// if ( (priv->phy_tx_sn&7) ==0 ) {
// openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
// if (openofdm_state_history!=openofdm_state_history_old){
// led_status = (~led_status);
// openofdm_state_history_old = openofdm_state_history;
// gpiod_set_value(led_dat->gpiod, led_status);
// }
// }
if (test_mode==1){
printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
goto openwifi_tx_early_out;
}
if (skb->data_len>0) {// more data are not in linear data area skb->data
printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
goto openwifi_tx_early_out;
}
len_mac_pdu = skb->len;
len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
// get Linux priority/queue setting info and target mac address
prio = skb_get_queue_mapping(skb);
addr1_low32 = *((u32*)(hdr->addr1+2));
ring = &(priv->tx_ring[prio]);
// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
queue_idx = prio;
} else {// customized prio to queue_idx mapping
//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
// check current packet belonging to which slice/hw-queue
for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
break;
}
}
//}
queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
}
// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
// check whether the packet is bigger than DMA buffer size
num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
if (num_dma_byte > TX_BD_BUF_SIZE) {
// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
goto openwifi_tx_early_out;
}
num_byte_pad = num_dma_byte-len_phy_packet;
// get other info from packet header
addr1_high16 = *((u16*)(hdr->addr1));
if (len_mac_pdu>=20) {
addr2_low32 = *((u32*)(hdr->addr2+2));
addr2_high16 = *((u16*)(hdr->addr2));
}
if (len_mac_pdu>=26) {
addr3_low32 = *((u32*)(hdr->addr3+2));
addr3_high16 = *((u16*)(hdr->addr3));
}
duration_id = hdr->duration_id;
frame_control=hdr->frame_control;
ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
fc_type = ((frame_control)>>2)&3;
fc_subtype = ((frame_control)>>4)&0xf;
fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
//if it is broadcasting or multicasting addr
addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
(addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
(addr1_high16==0x3333) ||
(addr1_high16==0x0001 && hdr->addr1[2]==0x5E) );
if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
} else {
pkt_need_ack = 0;
}
// get Linux rate (MCS) setting
rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
retry_limit_raw = info->control.rates[0].count;
rc_flags = info->control.rates[0].flags;
use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
if (use_rts_cts)
printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
if (use_cts_protect) {
cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
} else if (force_use_cts_protect) { // could override mac80211 setting here.
cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
sifs = (priv->actual_rx_lo<2500?10:16);
if (pkt_need_ack)
ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
}
// this is 11b stuff
// if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
// printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
if (len_mac_pdu>=28) {
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
priv->seqno += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
}
sc = hdr->seq_ctrl;
}
if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
printk("%s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
len_mac_pdu, (use_ht_rate == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
ring->bd_wr_idx,ring->bd_rd_idx);
// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
// info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
// info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
// info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
// info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
// -----------end of preprocess some info from header and skb----------------
// /* HW will perform RTS-CTS when only RTS flags is set.
// * HW will perform CTS-to-self when both RTS and CTS flags are set.
// * RTS rate and RTS duration will be used also for CTS-to-self.
// */
// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
// tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
// rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
// len_mac_pdu, info);
// printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
// tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
// rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
// len_mac_pdu, info);
// printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
// }
// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
if (skb_headroom(skb)<LEN_PHY_HEADER) {
struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER\n", sdr_compatible_str, ring->bd_wr_idx);
if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
goto openwifi_tx_early_out;
}
if (skb->sk != NULL)
skb_set_owner_w(skb_new, skb->sk);
dev_kfree_skb(skb);
skb = skb_new;
}
skb_push( skb, LEN_PHY_HEADER );
rate_signal_value = calc_phy_header(rate_hw_value, use_ht_rate, use_short_gi, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
if (skb_tailroom(skb)<num_byte_pad) {
printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
// skb_pull(skb, LEN_PHY_HEADER);
goto openwifi_tx_early_out;
}
skb_put( skb, num_byte_pad );
retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
dma_buf = skb->data;
cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
dma_reg = ( (( ((prio<<(NUM_BIT_MAX_NUM_HW_QUEUE+NUM_BIT_MAX_PHY_TX_SN))|(ring->bd_wr_idx<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
/* We must be sure that tx_flags is written last because the HW
* looks at it to check if the rest of data is valid or not
*/
//wmb();
// entry->flags = cpu_to_le32(tx_flags);
/* We must be sure this has been written before following HW
* register write, because this write will make the HW attempts
* to DMA the just-written data
*/
//wmb();
spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD) || ring->stop_flag==1 ) {
ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
ring->stop_flag = 1;
goto openwifi_tx_early_out_after_lock;
}
// --------end of check whether FPGA fifo (queue_idx) has enough room------------
status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
if (status!=DMA_COMPLETE) {
printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
goto openwifi_tx_early_out_after_lock;
}
if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
printk("%s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x\n", sdr_compatible_str, num_byte_pad, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
goto openwifi_tx_early_out_after_lock;
}
//-------------------------fire skb DMA to hardware----------------------------------
dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
num_dma_byte, DMA_MEM_TO_DEV);
if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
goto openwifi_tx_early_out_after_lock;
}
sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
if (!(priv->txd)) {
printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
goto openwifi_tx_after_dma_mapping;
}
priv->tx_cookie = priv->txd->tx_submit(priv->txd);
if (dma_submit_error(priv->tx_cookie)) {
printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
goto openwifi_tx_after_dma_mapping;
}
// seems everything is ok. let's mark this pkt in bd descriptor ring
ring->bds[ring->bd_wr_idx].skb_linked = skb;
ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
dma_async_issue_pending(priv->tx_chan);
if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) )
printk("%s openwifi_tx: WARNING 2 %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
spin_unlock_irqrestore(&priv->lock, flags);
return;
openwifi_tx_after_dma_mapping:
dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
openwifi_tx_early_out_after_lock:
// skb_pull(skb, LEN_PHY_HEADER);
dev_kfree_skb(skb);
spin_unlock_irqrestore(&priv->lock, flags);
// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
return;
openwifi_tx_early_out:
dev_kfree_skb(skb);
// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
}
static int openwifi_start(struct ieee80211_hw *dev)
{
struct openwifi_priv *priv = dev->priv;
int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
u32 reg;
for (i=0; i<MAX_NUM_VIF; i++) {
priv->vif[i] = NULL;
}
memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
//turn on radio
if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
} else {
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
}
if (reg == AD9361_RADIO_ON_TX_ATT) {
priv->rfkill_off = 1;// 0 off, 1 on
printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
}
else
printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
priv->ctrl_out.index=0x16;
else
priv->ctrl_out.index=0x17;
ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
if (ret < 0) {
printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
} else {
printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
}
priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
xpu_api->hw_init(priv->xpu_cfg);
agc_gain_delay = 50; //samples
rssi_half_db_offset = 150; // to be consistent
xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
xpu_api->XPU_REG_FORCE_IDLE_MISC_write(75); //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
// setup time schedule of 4 slices
// slice 0
xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
// slice 1
xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
// slice 2
xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
// slice 3
xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
// all slice sync rest
xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
xpu_api->XPU_REG_MULTI_RST_write(0<<7);
//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
if (test_mode==1) {
printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
goto normal_out;
}
priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
ret = PTR_ERR(priv->rx_chan);
pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
goto err_dma;
}
priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
ret = PTR_ERR(priv->tx_chan);
pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
goto err_dma;
}
printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
ret = openwifi_init_rx_ring(priv);
if (ret) {
printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
goto err_free_rings;
}
priv->seqno=0;
for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
if ((ret = openwifi_init_tx_ring(priv, i))) {
printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
goto err_free_rings;
}
}
if ( (ret = rx_dma_setup(dev)) ) {
printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
goto err_free_rings;
}
priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
IRQF_SHARED, "sdr,rx_pkt_intr", dev);
if (ret) {
wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
goto err_free_rings;
} else {
printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
}
priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
IRQF_SHARED, "sdr,tx_itrpt", dev);
if (ret) {
wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
goto err_free_rings;
} else {
printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
}
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
//ieee80211_wake_queue(dev, 0);
normal_out:
printk("%s openwifi_start: normal end\n", sdr_compatible_str);
return 0;
err_free_rings:
openwifi_free_rx_ring(priv);
for (i=0; i<MAX_NUM_SW_QUEUE; i++)
openwifi_free_tx_ring(priv, i);
err_dma:
ret = -1;
printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
return ret;
}
static void openwifi_stop(struct ieee80211_hw *dev)
{
struct openwifi_priv *priv = dev->priv;
u32 reg, reg1;
int i;
if (test_mode==1){
pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
goto normal_out;
}
//turn off radio
#if 1
ad9361_tx_mute(priv->ad9361_phy, 1);
reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
priv->rfkill_off = 0;// 0 off, 1 on
printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
}
else
printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
#endif
//ieee80211_stop_queue(dev, 0);
tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
for (i=0; i<MAX_NUM_VIF; i++) {
priv->vif[i] = NULL;
}
openwifi_free_rx_ring(priv);
for (i=0; i<MAX_NUM_SW_QUEUE; i++)
openwifi_free_tx_ring(priv, i);
pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
dmaengine_terminate_all(priv->rx_chan);
dma_release_channel(priv->rx_chan);
pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
dmaengine_terminate_all(priv->tx_chan);
dma_release_channel(priv->tx_chan);
//priv->rf->stop(dev);
free_irq(priv->irq_rx, dev);
free_irq(priv->irq_tx, dev);
normal_out:
printk("%s openwifi_stop\n", sdr_compatible_str);
}
static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
u32 tsft_low, tsft_high;
tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
}
static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
{
u32 tsft_high = ((tsf >> 32)&0xffffffff);
u32 tsft_low = (tsf&0xffffffff);
xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
}
static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
}
static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
return(0);
}
static void openwifi_beacon_work(struct work_struct *work)
{
struct openwifi_vif *vif_priv =
container_of(work, struct openwifi_vif, beacon_work.work);
struct ieee80211_vif *vif =
container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
struct ieee80211_hw *dev = vif_priv->dev;
struct ieee80211_mgmt *mgmt;
struct sk_buff *skb;
/* don't overflow the tx ring */
if (ieee80211_queue_stopped(dev, 0))
goto resched;
/* grab a fresh beacon */
skb = ieee80211_beacon_get(dev, vif);
if (!skb)
goto resched;
/*
* update beacon timestamp w/ TSF value
* TODO: make hardware update beacon timestamp
*/
mgmt = (struct ieee80211_mgmt *)skb->data;
mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
/* TODO: use actual beacon queue */
skb_set_queue_mapping(skb, 0);
openwifi_tx(dev, NULL, skb);
resched:
/*
* schedule next beacon
* TODO: use hardware support for beacon timing
*/
schedule_delayed_work(&vif_priv->beacon_work,
usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
}
static int openwifi_add_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
int i;
struct openwifi_priv *priv = dev->priv;
struct openwifi_vif *vif_priv;
switch (vif->type) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_MESH_POINT:
break;
default:
return -EOPNOTSUPP;
}
// let's support more than 1 interface
for (i=0; i<MAX_NUM_VIF; i++) {
if (priv->vif[i] == NULL)
break;
}
printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
if (i==MAX_NUM_VIF)
return -EBUSY;
priv->vif[i] = vif;
/* Initialize driver private area */
vif_priv = (struct openwifi_vif *)&vif->drv_priv;
vif_priv->idx = i;
vif_priv->dev = dev;
INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
vif_priv->enable_beacon = false;
printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
return 0;
}
static void openwifi_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct openwifi_vif *vif_priv;
struct openwifi_priv *priv = dev->priv;
vif_priv = (struct openwifi_vif *)&vif->drv_priv;
priv->vif[vif_priv->idx] = NULL;
printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
}
static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
{
struct openwifi_priv *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
priv->rf->set_chan(dev, conf);
else
printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
return 0;
}
static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct openwifi_priv *priv = dev->priv;
struct openwifi_vif *vif_priv;
u32 bssid_low, bssid_high;
vif_priv = (struct openwifi_vif *)&vif->drv_priv;
//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
if (changed & BSS_CHANGED_BSSID) {
printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
// write new bssid to our HW, and do not change bssid filter
//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
bssid_low = ( *( (u32*)(info->bssid) ) );
bssid_high = ( *( (u16*)(info->bssid+4) ) );
//bssid_filter_high = (bssid_filter_high&0x80000000);
//bssid_high = (bssid_high|bssid_filter_high);
xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
}
if (changed & BSS_CHANGED_BEACON_INT) {
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
}
if (changed & BSS_CHANGED_TXPOWER)
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
if (changed & BSS_CHANGED_ERP_CTS_PROT)
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
if (changed & BSS_CHANGED_BASIC_RATES)
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
if (info->use_short_slot && priv->use_short_slot==false) {
priv->use_short_slot=true;
xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
priv->use_short_slot=false;
xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
}
}
if (changed & BSS_CHANGED_BEACON_ENABLED) {
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
vif_priv->enable_beacon = info->enable_beacon;
}
if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
cancel_delayed_work_sync(&vif_priv->beacon_work);
if (vif_priv->enable_beacon)
schedule_work(&vif_priv->beacon_work.work);
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
}
}
// helper function
u32 log2val(u32 val){
u32 ret_val = 0 ;
while(val>1){
val = val >> 1 ;
ret_val ++ ;
}
return ret_val ;
}
static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
u32 reg_val, cw_min_exp, cw_max_exp;
printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
switch(queue){
case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break;
case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break;
case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
}
xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
return(0);
}
static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
struct netdev_hw_addr_list *mc_list)
{
printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
return netdev_hw_addr_list_count(mc_list);
}
static void openwifi_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
u32 filter_flag;
(*total_flags) &= SDR_SUPPORTED_FILTERS;
(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
filter_flag = (*total_flags);
filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
filter_flag = (filter_flag|MONITOR_ALL);
else
filter_flag = (filter_flag&(~MONITOR_ALL));
if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
filter_flag = (filter_flag|MY_BEACON);
filter_flag = (filter_flag|FIF_PSPOLL);
xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
}
static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
{
struct openwifi_priv *priv = hw->priv;
struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
struct sk_buff *skb;
int err;
u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
if (err)
return err;
if (!tb[OPENWIFI_ATTR_CMD])
return -EINVAL;
switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
case OPENWIFI_CMD_SET_GAP:
if (!tb[OPENWIFI_ATTR_GAP])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
return 0;
case OPENWIFI_CMD_GET_GAP:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = xpu_api->XPU_REG_CSMA_CFG_read();
if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_IDX:
if (!tb[OPENWIFI_ATTR_SLICE_IDX])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_IDX]);
printk("%s set openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
if (tmp == MAX_NUM_HW_QUEUE) {
printk("%s set openwifi slice_idx reset all queue counter.\n", sdr_compatible_str);
xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
xpu_api->XPU_REG_MULTI_RST_write(0<<7);
} else {
priv->slice_idx = tmp;
}
return 0;
case OPENWIFI_CMD_GET_SLICE_IDX:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = priv->slice_idx;
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_IDX, tmp))
goto nla_put_failure;
printk("%s get openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_ADDR:
if (!tb[OPENWIFI_ATTR_ADDR])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR]);
if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
printk("%s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
} else {
printk("%s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
priv->dest_mac_addr_queue_map[priv->slice_idx] = reverse32(tmp);
}
return 0;
case OPENWIFI_CMD_GET_ADDR:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
tmp = -1;
} else {
tmp = reverse32(priv->dest_mac_addr_queue_map[priv->slice_idx]);
}
if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR, tmp))
goto nla_put_failure;
printk("%s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_TOTAL:
if (!tb[OPENWIFI_ATTR_SLICE_TOTAL])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL]);
if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
printk("%s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
} else {
printk("%s set SLICE_TOTAL(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((priv->slice_idx<<20)|tmp);
}
return 0;
case OPENWIFI_CMD_GET_SLICE_TOTAL:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL_read());
printk("%s get SLICE_TOTAL(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_START:
if (!tb[OPENWIFI_ATTR_SLICE_START])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START]);
if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
printk("%s set SLICE_START(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
} else {
printk("%s set SLICE_START(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
xpu_api->XPU_REG_SLICE_COUNT_START_write((priv->slice_idx<<20)|tmp);
}
return 0;
case OPENWIFI_CMD_GET_SLICE_START:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_START_read());
printk("%s get SLICE_START(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_END:
if (!tb[OPENWIFI_ATTR_SLICE_END])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END]);
if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
printk("%s set SLICE_END(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
} else {
printk("%s set SLICE_END(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
xpu_api->XPU_REG_SLICE_COUNT_END_write((priv->slice_idx<<20)|tmp);
}
return 0;
case OPENWIFI_CMD_GET_SLICE_END:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_END_read());
printk("%s get SLICE_END(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
// if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
// return -EINVAL;
// tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
// printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
// // xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
// return 0;
// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
// skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
// if (!skb)
// return -ENOMEM;
// // tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
// if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
// goto nla_put_failure;
// return cfg80211_testmode_reply(skb);
// case OPENWIFI_CMD_SET_SLICE_START1:
// if (!tb[OPENWIFI_ATTR_SLICE_START1])
// return -EINVAL;
// tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
// printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
// // xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
// return 0;
// case OPENWIFI_CMD_GET_SLICE_START1:
// skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
// if (!skb)
// return -ENOMEM;
// // tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
// if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
// goto nla_put_failure;
// return cfg80211_testmode_reply(skb);
// case OPENWIFI_CMD_SET_SLICE_END1:
// if (!tb[OPENWIFI_ATTR_SLICE_END1])
// return -EINVAL;
// tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
// printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
// // xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
// return 0;
// case OPENWIFI_CMD_GET_SLICE_END1:
// skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
// if (!skb)
// return -ENOMEM;
// // tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
// if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
// goto nla_put_failure;
// return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_RSSI_TH:
if (!tb[OPENWIFI_ATTR_RSSI_TH])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_LBT_TH_write(tmp);
return 0;
case OPENWIFI_CMD_GET_RSSI_TH:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = xpu_api->XPU_REG_LBT_TH_read();
if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_TSF:
printk("openwifi_set_tsf_1");
if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
return -EINVAL;
printk("openwifi_set_tsf_2");
tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
tsft_low = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
return 0;
case REG_CMD_SET:
if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
return -EINVAL;
reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
reg_val = nla_get_u32(tb[REG_ATTR_VAL]);
reg_cat = ((reg_addr>>16)&0xFFFF);
reg_addr = (reg_addr&0xFFFF);
reg_addr_idx = (reg_addr>>2);
printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
if (reg_cat==1)
printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
else if (reg_cat==2)
rx_intf_api->reg_write(reg_addr,reg_val);
else if (reg_cat==3)
tx_intf_api->reg_write(reg_addr,reg_val);
else if (reg_cat==4)
openofdm_rx_api->reg_write(reg_addr,reg_val);
else if (reg_cat==5)
openofdm_tx_api->reg_write(reg_addr,reg_val);
else if (reg_cat==6)
xpu_api->reg_write(reg_addr,reg_val);
else if (reg_cat==7) {
if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
if (reg_val==0)
priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
else
priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
}
} else
printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
}
else if (reg_cat==8) {
if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
if (reg_val==0) {
priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
} else {
priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
}
//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
}
} else
printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
}
else if (reg_cat==9) {
if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
else
printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
}
else
printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
return 0;
case REG_CMD_GET:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
reg_cat = ((reg_addr>>16)&0xFFFF);
reg_addr = (reg_addr&0xFFFF);
reg_addr_idx = (reg_addr>>2);
printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
if (reg_cat==1) {
printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
tmp = 0xFFFFFFFF;
}
else if (reg_cat==2)
tmp = rx_intf_api->reg_read(reg_addr);
else if (reg_cat==3)
tmp = tx_intf_api->reg_read(reg_addr);
else if (reg_cat==4)
tmp = openofdm_rx_api->reg_read(reg_addr);
else if (reg_cat==5)
tmp = openofdm_tx_api->reg_read(reg_addr);
else if (reg_cat==6)
tmp = xpu_api->reg_read(reg_addr);
else if (reg_cat==7) {
if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
priv->drv_rx_reg_val[reg_addr_idx]=0;
else if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
priv->drv_rx_reg_val[reg_addr_idx]=1;
}
tmp = priv->drv_rx_reg_val[reg_addr_idx];
} else
printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
}
else if (reg_cat==8) {
if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
priv->drv_tx_reg_val[reg_addr_idx]=0;
else if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
priv->drv_tx_reg_val[reg_addr_idx]=1;
}
tmp = priv->drv_tx_reg_val[reg_addr_idx];
} else
printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
}
else if (reg_cat==9) {
if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
tmp = priv->drv_xpu_reg_val[reg_addr_idx];
else
printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
}
else
printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
default:
return -EOPNOTSUPP;
}
nla_put_failure:
dev_kfree_skb(skb);
return -ENOBUFS;
}
static const struct ieee80211_ops openwifi_ops = {
.tx = openwifi_tx,
.start = openwifi_start,
.stop = openwifi_stop,
.add_interface = openwifi_add_interface,
.remove_interface = openwifi_remove_interface,
.config = openwifi_config,
.bss_info_changed = openwifi_bss_info_changed,
.conf_tx = openwifi_conf_tx,
.prepare_multicast = openwifi_prepare_multicast,
.configure_filter = openwifi_configure_filter,
.rfkill_poll = openwifi_rfkill_poll,
.get_tsf = openwifi_get_tsf,
.set_tsf = openwifi_set_tsf,
.reset_tsf = openwifi_reset_tsf,
.set_rts_threshold = openwifi_set_rts_threshold,
.testmode_cmd = openwifi_testmode_cmd,
};
static const struct of_device_id openwifi_dev_of_ids[] = {
{ .compatible = "sdr,sdr", },
{}
};
MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
static int custom_match_spi_dev(struct device *dev, void *data)
{
const char *name = data;
bool ret = sysfs_streq(name, dev->of_node->name);
printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
return ret;
}
static int custom_match_platform_dev(struct device *dev, void *data)
{
struct platform_device *plat_dev = to_platform_device(dev);
const char *name = data;
char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
bool match_flag = (name_in_sys_bus_platform_devices != NULL);
if (match_flag) {
printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
}
return(match_flag);
}
static int openwifi_dev_probe(struct platform_device *pdev)
{
struct ieee80211_hw *dev;
struct openwifi_priv *priv;
int err=1, rand_val;
const char *chip_name, *fpga_model;
u32 reg;//, reg1;
struct device_node *np = pdev->dev.of_node;
struct device *tmp_dev;
struct platform_device *tmp_pdev;
struct iio_dev *tmp_indio_dev;
// struct gpio_leds_priv *tmp_led_priv;
printk("\n");
if (np) {
const struct of_device_id *match;
match = of_match_node(openwifi_dev_of_ids, np);
if (match) {
printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
err = 0;
}
}
if (err)
return err;
dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
if (!dev) {
printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
priv = dev->priv;
priv->pdev = pdev;
err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
if(err < 0) {
printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
priv->fpga_type = SMALL_FPGA;
} else {
// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
priv->fpga_type = LARGE_FPGA;
// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
priv->fpga_type = SMALL_FPGA;
}
// //-------------find ad9361-phy driver for lo/channel control---------------
priv->actual_rx_lo = 0;
tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
if (tmp_dev == NULL) {
printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
if (!(priv->ad9361_phy)) {
printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
priv->ctrl_out.en_mask=0xFF;
priv->ctrl_out.index=0x16;
err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
if (err < 0) {
printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
} else {
printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
}
reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
if (!tmp_dev) {
printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
tmp_pdev = to_platform_device(tmp_dev);
if (!tmp_pdev) {
printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
tmp_indio_dev = platform_get_drvdata(tmp_pdev);
if (!tmp_indio_dev) {
printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
priv->dds_st = iio_priv(tmp_indio_dev);
if (!(priv->dds_st)) {
printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
// turn off radio by muting tx
// ad9361_tx_mute(priv->ad9361_phy, 1);
// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
// priv->rfkill_off = 0;// 0 off, 1 on
// printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
// }
// else
// printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
priv->xpu_cfg = XPU_NORMAL;
priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
if (priv->rf_bw == 20000000) {
priv->rx_intf_cfg = RX_INTF_BYPASS;
priv->tx_intf_cfg = TX_INTF_BYPASS;
//priv->rx_freq_offset_to_lo_MHz = 0;
//priv->tx_freq_offset_to_lo_MHz = 0;
} else if (priv->rf_bw == 40000000) {
//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
// // try another antenna option
//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
#if 0
if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
priv->rx_freq_offset_to_lo_MHz = -10;
} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
priv->rx_freq_offset_to_lo_MHz = 10;
} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
priv->rx_freq_offset_to_lo_MHz = 0;
} else {
printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
}
#endif
} else {
printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
}
priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
//let's by default turn radio on when probing
if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
} else {
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
}
if (reg == AD9361_RADIO_ON_TX_ATT) {
priv->rfkill_off = 1;// 0 off, 1 on
printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
}
else
printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
// //set ad9361 in certain mode
#if 0
err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
#endif
dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
SET_IEEE80211_DEV(dev, &pdev->dev);
platform_set_drvdata(pdev, dev);
BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel()
priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
priv->band_2GHz.band = NL80211_BAND_2GHZ;
priv->band_2GHz.channels = priv->channels_2GHz;
priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
priv->band_2GHz.bitrates = priv->rates_2GHz;
priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
priv->band_2GHz.ht_cap.ht_supported = true;
priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
priv->band_5GHz.band = NL80211_BAND_5GHZ;
priv->band_5GHz.channels = priv->channels_5GHz;
priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
priv->band_5GHz.bitrates = priv->rates_5GHz;
priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
priv->band_5GHz.ht_cap.ht_supported = true;
priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
ieee80211_hw_set(dev, RX_INCLUDES_FCS);
ieee80211_hw_set(dev, BEACON_TX_STATUS);
dev->vif_data_size = sizeof(struct openwifi_vif);
dev->wiphy->interface_modes =
BIT(NL80211_IFTYPE_MONITOR)|
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT) |
BIT(NL80211_IFTYPE_OCB);
dev->wiphy->iface_combinations = &openwifi_if_comb;
dev->wiphy->n_iface_combinations = 1;
dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
chip_name = "ZYNQ";
/* we declare to MAC80211 all the queues except for beacon queue
* that will be eventually handled by DRV.
* TX rings are arranged in such a way that lower is the IDX,
* higher is the priority, in order to achieve direct mapping
* with mac80211, however the beacon queue is an exception and it
* is mapped on the highst tx ring IDX.
*/
dev->queues = MAX_NUM_HW_QUEUE;
//dev->queues = 1;
ieee80211_hw_set(dev, SIGNAL_DBM);
wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
priv->rf = &ad9361_rf_ops;
memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
priv->slice_idx = 0xFFFFFFFF;
sg_init_table(&(priv->tx_sg), 1);
get_random_bytes(&rand_val, sizeof(rand_val));
rand_val%=250;
priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22;
priv->mac_addr[5]=rand_val+1;
//priv->mac_addr[5]=0x11;
if (!is_valid_ether_addr(priv->mac_addr)) {
printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
eth_random_addr(priv->mac_addr);
} else {
printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
}
SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
spin_lock_init(&priv->lock);
err = ieee80211_register_hw(dev);
if (err) {
pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
goto err_free_dev;
} else {
printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
}
// // //--------------------hook leds (not complete yet)--------------------------------
// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
// if (!tmp_dev) {
// printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// tmp_pdev = to_platform_device(tmp_dev);
// if (!tmp_pdev) {
// printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// tmp_led_priv = platform_get_drvdata(tmp_pdev);
// if (!tmp_led_priv) {
// printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
// if (tmp_led_priv->num_leds!=4){
// printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
// err = -ENOMEM;
// goto err_free_dev;
// }
// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
// priv->num_led = tmp_led_priv->num_leds;
// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
priv->mac_addr, chip_name, priv->rf->name);
openwifi_rfkill_init(dev);
return 0;
err_free_dev:
ieee80211_free_hw(dev);
return err;
}
static int openwifi_dev_remove(struct platform_device *pdev)
{
struct ieee80211_hw *dev = platform_get_drvdata(pdev);
if (!dev) {
pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
return(-1);
}
openwifi_rfkill_exit(dev);
ieee80211_unregister_hw(dev);
ieee80211_free_hw(dev);
return(0);
}
static struct platform_driver openwifi_dev_driver = {
.driver = {
.name = "sdr,sdr",
.owner = THIS_MODULE,
.of_match_table = openwifi_dev_of_ids,
},
.probe = openwifi_dev_probe,
.remove = openwifi_dev_remove,
};
module_platform_driver(openwifi_dev_driver);