/* * axi lite register access driver * Author: Xianjun Jiao, Michael Mehari, Wei Liu * SPDX-FileCopyrightText: 2019 UGent * SPDX-License-Identifier: AGPL-3.0-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../hw_def.h" static void __iomem *base_addr; // to store driver specific base address needed for mmu to translate virtual address to physical address in our FPGA design /* IO accessors */ static inline u32 reg_read(u32 reg) { return ioread32(base_addr + reg); } static inline void reg_write(u32 reg, u32 value) { iowrite32(value, base_addr + reg); } static inline u32 TX_INTF_REG_MULTI_RST_read(void){ return reg_read(TX_INTF_REG_MULTI_RST_ADDR); } static inline u32 TX_INTF_REG_ARBITRARY_IQ_read(void){ return reg_read(TX_INTF_REG_ARBITRARY_IQ_ADDR); } static inline u32 TX_INTF_REG_WIFI_TX_MODE_read(void){ return reg_read(TX_INTF_REG_WIFI_TX_MODE_ADDR); } static inline u32 TX_INTF_REG_CTS_TOSELF_CONFIG_read(void){ return reg_read(TX_INTF_REG_CTS_TOSELF_CONFIG_ADDR); } static inline u32 TX_INTF_REG_CSI_FUZZER_read(void){ return reg_read(TX_INTF_REG_CSI_FUZZER_ADDR); } static inline u32 TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_read(void){ return reg_read(TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_ADDR); } static inline u32 TX_INTF_REG_ARBITRARY_IQ_CTL_read(void){ return reg_read(TX_INTF_REG_ARBITRARY_IQ_CTL_ADDR); } static inline u32 TX_INTF_REG_TX_CONFIG_read(void){ return reg_read(TX_INTF_REG_TX_CONFIG_ADDR); } static inline u32 TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read(void){ return reg_read(TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_ADDR); } static inline u32 TX_INTF_REG_CFG_DATA_TO_ANT_read(void){ return reg_read(TX_INTF_REG_CFG_DATA_TO_ANT_ADDR); } static inline u32 TX_INTF_REG_S_AXIS_FIFO_TH_read(void){ return reg_read(TX_INTF_REG_S_AXIS_FIFO_TH_ADDR); } static inline u32 TX_INTF_REG_TX_HOLD_THRESHOLD_read(void){ return reg_read(TX_INTF_REG_TX_HOLD_THRESHOLD_ADDR); } static inline u32 TX_INTF_REG_INTERRUPT_SEL_read(void){ return reg_read(TX_INTF_REG_INTERRUPT_SEL_ADDR); } static inline u32 TX_INTF_REG_AMPDU_ACTION_CONFIG_read(void){ return reg_read(TX_INTF_REG_AMPDU_ACTION_CONFIG_ADDR); } static inline u32 TX_INTF_REG_BB_GAIN_read(void){ return reg_read(TX_INTF_REG_BB_GAIN_ADDR); } static inline u32 TX_INTF_REG_ANT_SEL_read(void){ return reg_read(TX_INTF_REG_ANT_SEL_ADDR); } static inline u32 TX_INTF_REG_PHY_HDR_CONFIG_read(void){ return reg_read(TX_INTF_REG_PHY_HDR_CONFIG_ADDR); } static inline u32 TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(void){ return reg_read(TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_ADDR); } static inline u32 TX_INTF_REG_PKT_INFO1_read(void){ return reg_read(TX_INTF_REG_PKT_INFO1_ADDR); } static inline u32 TX_INTF_REG_PKT_INFO2_read(void){ return reg_read(TX_INTF_REG_PKT_INFO2_ADDR); } static inline u32 TX_INTF_REG_PKT_INFO3_read(void){ return reg_read(TX_INTF_REG_PKT_INFO3_ADDR); } static inline u32 TX_INTF_REG_PKT_INFO4_read(void){ return reg_read(TX_INTF_REG_PKT_INFO4_ADDR); } static inline u32 TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(void){ return reg_read(TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_ADDR); } //-------------------------------------------------------- static inline void TX_INTF_REG_MULTI_RST_write(u32 value){ reg_write(TX_INTF_REG_MULTI_RST_ADDR, value); } static inline void TX_INTF_REG_ARBITRARY_IQ_write(u32 value){ reg_write(TX_INTF_REG_ARBITRARY_IQ_ADDR, value); } static inline void TX_INTF_REG_WIFI_TX_MODE_write(u32 value){ reg_write(TX_INTF_REG_WIFI_TX_MODE_ADDR, value); } static inline void TX_INTF_REG_CTS_TOSELF_CONFIG_write(u32 value){ reg_write(TX_INTF_REG_CTS_TOSELF_CONFIG_ADDR, value); } static inline void TX_INTF_REG_CSI_FUZZER_write(u32 value){ reg_write(TX_INTF_REG_CSI_FUZZER_ADDR, value); } static inline void TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(u32 value){ reg_write(TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_ADDR, value); } static inline void TX_INTF_REG_ARBITRARY_IQ_CTL_write(u32 value){ reg_write(TX_INTF_REG_ARBITRARY_IQ_CTL_ADDR, value); } static inline void TX_INTF_REG_TX_CONFIG_write(u32 value){ reg_write(TX_INTF_REG_TX_CONFIG_ADDR, value); } static inline void TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write(u32 value){ reg_write(TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_ADDR, value); } static inline void TX_INTF_REG_CFG_DATA_TO_ANT_write(u32 value){ reg_write(TX_INTF_REG_CFG_DATA_TO_ANT_ADDR, value); } static inline void TX_INTF_REG_S_AXIS_FIFO_TH_write(u32 value){ reg_write(TX_INTF_REG_S_AXIS_FIFO_TH_ADDR, value); } static inline void TX_INTF_REG_TX_HOLD_THRESHOLD_write(u32 value){ reg_write(TX_INTF_REG_TX_HOLD_THRESHOLD_ADDR, value); } static inline void TX_INTF_REG_INTERRUPT_SEL_write(u32 value){ reg_write(TX_INTF_REG_INTERRUPT_SEL_ADDR, value); } static inline void TX_INTF_REG_AMPDU_ACTION_CONFIG_write(u32 value){ reg_write(TX_INTF_REG_AMPDU_ACTION_CONFIG_ADDR, value); } static inline void TX_INTF_REG_BB_GAIN_write(u32 value){ reg_write(TX_INTF_REG_BB_GAIN_ADDR, value); } static inline void TX_INTF_REG_ANT_SEL_write(u32 value){ reg_write(TX_INTF_REG_ANT_SEL_ADDR, value); } static inline void TX_INTF_REG_PHY_HDR_CONFIG_write(u32 value){ reg_write(TX_INTF_REG_PHY_HDR_CONFIG_ADDR, value); } static inline void TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_write(u32 value){ reg_write(TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_ADDR, value); } static inline void TX_INTF_REG_PKT_INFO1_write(u32 value){ reg_write(TX_INTF_REG_PKT_INFO1_ADDR,value); } static inline void TX_INTF_REG_PKT_INFO2_write(u32 value){ reg_write(TX_INTF_REG_PKT_INFO2_ADDR,value); } static inline void TX_INTF_REG_PKT_INFO3_write(u32 value){ reg_write(TX_INTF_REG_PKT_INFO3_ADDR,value); } static inline void TX_INTF_REG_PKT_INFO4_write(u32 value){ reg_write(TX_INTF_REG_PKT_INFO4_ADDR,value); } static const struct of_device_id dev_of_ids[] = { { .compatible = "sdr,tx_intf", }, {} }; MODULE_DEVICE_TABLE(of, dev_of_ids); static struct tx_intf_driver_api tx_intf_driver_api_inst; static struct tx_intf_driver_api *tx_intf_api = &tx_intf_driver_api_inst; EXPORT_SYMBOL(tx_intf_api); static inline u32 hw_init(enum tx_intf_mode mode, u32 tx_config, u32 num_dma_symbol_to_ps, enum openwifi_fpga_type fpga_type){ int err=0, i; u32 mixer_cfg=0, ant_sel=0; printk("%s hw_init mode %d\n", tx_intf_compatible_str, mode); //rst for (i=0;i<8;i++) tx_intf_api->TX_INTF_REG_MULTI_RST_write(0); for (i=0;i<32;i++) tx_intf_api->TX_INTF_REG_MULTI_RST_write(0xFFFFFFFF); for (i=0;i<8;i++) tx_intf_api->TX_INTF_REG_MULTI_RST_write(0); if(fpga_type == LARGE_FPGA) // LARGE FPGA: MAX_NUM_DMA_SYMBOL = 8192 // tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_TH_write(8192-(210*5)); // threshold is for room to hold the last 4 packets from 4 queue before stop tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_TH_write(8192-(210*2)); else if(fpga_type == SMALL_FPGA) // SMALL FPGA: MAX_NUM_DMA_SYMBOL = 4096 // tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_TH_write(4096-(210*5)); // threshold is for room to hold the last 4 packets from 4 queue before stop tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_TH_write(4096-(210*2)); switch(mode) { case TX_INTF_AXIS_LOOP_BACK: printk("%s hw_init mode TX_INTF_AXIS_LOOP_BACK\n", tx_intf_compatible_str); break; case TX_INTF_BW_20MHZ_AT_0MHZ_ANT0: printk("%s hw_init mode TX_INTF_BW_20MHZ_AT_0MHZ_ANT0\n", tx_intf_compatible_str); mixer_cfg = 0x2001F400; ant_sel=1; break; case TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH: printk("%s hw_init mode TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH\n", tx_intf_compatible_str); mixer_cfg = 0x2001F400; ant_sel=0x11; break; case TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0: printk("%s hw_init mode TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0\n", tx_intf_compatible_str); mixer_cfg = 0x2001F602; ant_sel=1; break; case TX_INTF_BW_20MHZ_AT_P_10MHZ_ANT0: printk("%s hw_init mode TX_INTF_BW_20MHZ_AT_P_10MHZ_ANT0\n", tx_intf_compatible_str); mixer_cfg = 0x200202F6; ant_sel=1; break; case TX_INTF_BW_20MHZ_AT_0MHZ_ANT1: printk("%s hw_init mode TX_INTF_BW_20MHZ_AT_0MHZ_ANT1\n", tx_intf_compatible_str); mixer_cfg = 0x2001F400; ant_sel=2; break; case TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1: printk("%s hw_init mode TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1\n", tx_intf_compatible_str); mixer_cfg = 0x2001F602; ant_sel=2; break; case TX_INTF_BW_20MHZ_AT_P_10MHZ_ANT1: printk("%s hw_init mode TX_INTF_BW_20MHZ_AT_P_10MHZ_ANT1\n", tx_intf_compatible_str); mixer_cfg = 0x200202F6; ant_sel=2; break; case TX_INTF_BYPASS: printk("%s hw_init mode TX_INTF_BYPASS\n", tx_intf_compatible_str); mixer_cfg = 0x200202F6; ant_sel=2; break; default: printk("%s hw_init mode %d is wrong!\n", tx_intf_compatible_str, mode); err=1; } if (mode!=TX_INTF_AXIS_LOOP_BACK) { tx_intf_api->TX_INTF_REG_MULTI_RST_write(0); tx_intf_api->TX_INTF_REG_CSI_FUZZER_write(0); tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(16*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write(num_dma_symbol_to_ps); tx_intf_api->TX_INTF_REG_CFG_DATA_TO_ANT_write(0); tx_intf_api->TX_INTF_REG_TX_HOLD_THRESHOLD_write(420); tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //.src_sel(slv_reg14[2:0]), 0-s00_axis_tlast,1-ap_start,2-tx_start_from_acc,3-tx_end_from_acc,4-tx_try_complete from xpu tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable interrupt // tx_intf_api->TX_INTF_REG_BB_GAIN_write(100); // value for old design with DUC (FIR + MIXER) -- obsolete due to DUC removal // New test on new design (unified RF BB clock; No DUC) // 5220MHz bb_gain power EVM // 400 -6dBm -34/35 // 350 -7.2dBm -34/35/36 // 300 -8.5dBm -35/36/37 EVM // 2437MHz bb_gain power EVM // 400 -3.2dBm -36/37 // 350 -4.4dBm -37/38/39 // 300 -5.7dBm -39/40 // less less -40/41/42! // According to above and more detailed test: // Need to be 290. Otherwise some ofdm symbol's EVM jump high, when there are lots of ofdm symbols in one WiFi packet // 2022-03-04 detailed test result: // bb_gain 290 work for 11a/g all mcs // bb_gain 290 work for 11n mcs 1~7 (aggr and non aggr) // bb_gain 290 destroy 11n mcs 0 long (MTU 1500) tx pkt due to high PAPR (Peak to Average Power Ratio)! // bb_gain 250 work for 11n mcs 0 // So, a conservative bb_gain 250 should be used tx_intf_api->TX_INTF_REG_BB_GAIN_write(250); tx_intf_api->TX_INTF_REG_ANT_SEL_write(ant_sel); tx_intf_api->TX_INTF_REG_WIFI_TX_MODE_write((1<<3)|(2<<4)); tx_intf_api->TX_INTF_REG_MULTI_RST_write(0x434); tx_intf_api->TX_INTF_REG_MULTI_RST_write(0); } // if (mode == TX_INTF_BYPASS) { // tx_intf_api->TX_INTF_REG_CFG_DATA_TO_ANT_write(0x100); //slv_reg10[8] -- bit 8 not used anymore. only bit0/1 are still reserved. // } printk("%s hw_init err %d\n", tx_intf_compatible_str, err); return(err); } static int dev_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct resource *io; int err=1; printk("\n"); if (np) { const struct of_device_id *match; match = of_match_node(dev_of_ids, np); if (match) { printk("%s dev_probe match!\n", tx_intf_compatible_str); err = 0; } } if (err) return err; tx_intf_api->hw_init=hw_init; tx_intf_api->reg_read=reg_read; tx_intf_api->reg_write=reg_write; tx_intf_api->TX_INTF_REG_MULTI_RST_read=TX_INTF_REG_MULTI_RST_read; tx_intf_api->TX_INTF_REG_ARBITRARY_IQ_read=TX_INTF_REG_ARBITRARY_IQ_read; tx_intf_api->TX_INTF_REG_WIFI_TX_MODE_read=TX_INTF_REG_WIFI_TX_MODE_read; tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_read=TX_INTF_REG_CTS_TOSELF_CONFIG_read; tx_intf_api->TX_INTF_REG_CSI_FUZZER_read=TX_INTF_REG_CSI_FUZZER_read; tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_read=TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_read; tx_intf_api->TX_INTF_REG_ARBITRARY_IQ_CTL_read=TX_INTF_REG_ARBITRARY_IQ_CTL_read; tx_intf_api->TX_INTF_REG_TX_CONFIG_read=TX_INTF_REG_TX_CONFIG_read; tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read=TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read; tx_intf_api->TX_INTF_REG_CFG_DATA_TO_ANT_read=TX_INTF_REG_CFG_DATA_TO_ANT_read; tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_TH_read=TX_INTF_REG_S_AXIS_FIFO_TH_read; tx_intf_api->TX_INTF_REG_TX_HOLD_THRESHOLD_read=TX_INTF_REG_TX_HOLD_THRESHOLD_read; tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_read=TX_INTF_REG_INTERRUPT_SEL_read; tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_read=TX_INTF_REG_AMPDU_ACTION_CONFIG_read; tx_intf_api->TX_INTF_REG_BB_GAIN_read=TX_INTF_REG_BB_GAIN_read; tx_intf_api->TX_INTF_REG_ANT_SEL_read=TX_INTF_REG_ANT_SEL_read; tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_read=TX_INTF_REG_PHY_HDR_CONFIG_read; tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read=TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read; tx_intf_api->TX_INTF_REG_PKT_INFO1_read=TX_INTF_REG_PKT_INFO1_read; tx_intf_api->TX_INTF_REG_PKT_INFO2_read=TX_INTF_REG_PKT_INFO2_read; tx_intf_api->TX_INTF_REG_PKT_INFO3_read=TX_INTF_REG_PKT_INFO3_read; tx_intf_api->TX_INTF_REG_PKT_INFO4_read=TX_INTF_REG_PKT_INFO4_read; tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read=TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read; tx_intf_api->TX_INTF_REG_MULTI_RST_write=TX_INTF_REG_MULTI_RST_write; tx_intf_api->TX_INTF_REG_ARBITRARY_IQ_write=TX_INTF_REG_ARBITRARY_IQ_write; tx_intf_api->TX_INTF_REG_WIFI_TX_MODE_write=TX_INTF_REG_WIFI_TX_MODE_write; tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write=TX_INTF_REG_CTS_TOSELF_CONFIG_write; tx_intf_api->TX_INTF_REG_CSI_FUZZER_write=TX_INTF_REG_CSI_FUZZER_write; tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write=TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write; tx_intf_api->TX_INTF_REG_ARBITRARY_IQ_CTL_write=TX_INTF_REG_ARBITRARY_IQ_CTL_write; tx_intf_api->TX_INTF_REG_TX_CONFIG_write=TX_INTF_REG_TX_CONFIG_write; tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write=TX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write; tx_intf_api->TX_INTF_REG_CFG_DATA_TO_ANT_write=TX_INTF_REG_CFG_DATA_TO_ANT_write; tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_TH_write=TX_INTF_REG_S_AXIS_FIFO_TH_write; tx_intf_api->TX_INTF_REG_TX_HOLD_THRESHOLD_write=TX_INTF_REG_TX_HOLD_THRESHOLD_write; tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write=TX_INTF_REG_INTERRUPT_SEL_write; tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write=TX_INTF_REG_AMPDU_ACTION_CONFIG_write; tx_intf_api->TX_INTF_REG_BB_GAIN_write=TX_INTF_REG_BB_GAIN_write; tx_intf_api->TX_INTF_REG_ANT_SEL_write=TX_INTF_REG_ANT_SEL_write; tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write=TX_INTF_REG_PHY_HDR_CONFIG_write; tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_write=TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_write; tx_intf_api->TX_INTF_REG_PKT_INFO1_write=TX_INTF_REG_PKT_INFO1_write; tx_intf_api->TX_INTF_REG_PKT_INFO2_write=TX_INTF_REG_PKT_INFO2_write; tx_intf_api->TX_INTF_REG_PKT_INFO3_write=TX_INTF_REG_PKT_INFO3_write; tx_intf_api->TX_INTF_REG_PKT_INFO4_write=TX_INTF_REG_PKT_INFO4_write; /* Request and map I/O memory */ io = platform_get_resource(pdev, IORESOURCE_MEM, 0); base_addr = devm_ioremap_resource(&pdev->dev, io); if (IS_ERR(base_addr)) return PTR_ERR(base_addr); printk("%s dev_probe io start 0x%08llx end 0x%08llx name %s flags 0x%08x desc 0x%08x\n", tx_intf_compatible_str,io->start,io->end,io->name,(u32)io->flags,(u32)io->desc); printk("%s dev_probe base_addr 0x%p\n", tx_intf_compatible_str,(void*)base_addr); printk("%s dev_probe tx_intf_driver_api_inst 0x%p\n", tx_intf_compatible_str, (void*)(&tx_intf_driver_api_inst) ); printk("%s dev_probe tx_intf_api 0x%p\n", tx_intf_compatible_str, (void*)tx_intf_api); printk("%s dev_probe succeed!\n", tx_intf_compatible_str); //err = hw_init(TX_INTF_BW_20MHZ_AT_P_10MHZ_ANT1, 8, 8, SMALL_FPGA); //err = hw_init(TX_INTF_BYPASS, 8, 8, SMALL_FPGA); err = hw_init(TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1, 8, 8, SMALL_FPGA); // make sure dac is connected to original ad9361 dma return err; } static int dev_remove(struct platform_device *pdev) { printk("\n"); printk("%s dev_remove base_addr 0x%p\n", tx_intf_compatible_str,(void*)base_addr); printk("%s dev_remove tx_intf_driver_api_inst 0x%p\n", tx_intf_compatible_str, (void*)(&tx_intf_driver_api_inst) ); printk("%s dev_remove tx_intf_api 0x%p\n", tx_intf_compatible_str, (void*)tx_intf_api); printk("%s dev_remove succeed!\n", tx_intf_compatible_str); return 0; } static struct platform_driver dev_driver = { .driver = { .name = "sdr,tx_intf", .owner = THIS_MODULE, .of_match_table = dev_of_ids, }, .probe = dev_probe, .remove = dev_remove, }; module_platform_driver(dev_driver); MODULE_AUTHOR("Xianjun Jiao"); MODULE_DESCRIPTION("sdr,tx_intf"); MODULE_LICENSE("GPL v2");