/* * DMA driver for Xilinx Video DMA Engine * * Copyright (C) 2010-2014 Xilinx, Inc. All rights reserved. * * Based on the Freescale DMA driver. * * Modified by Xianjun Jiao. putaoshu@msn.com; xianjun.jiao@imec.be * * Description: * The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP * core that provides high-bandwidth direct memory access between memory * and AXI4-Stream type video target peripherals. The core provides efficient * two dimensional DMA operations with independent asynchronous read (S2MM) * and write (MM2S) channel operation. It can be configured to have either * one channel or two channels. If configured as two channels, one is to * transmit to the video device (MM2S) and another is to receive from the * video device (S2MM). Initialization, status, interrupt and management * registers are accessed through an AXI4-Lite slave interface. * * The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that * provides high-bandwidth one dimensional direct memory access between memory * and AXI4-Stream target peripherals. It supports one receive and one * transmit channel, both of them optional at synthesis time. * * The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory * Access (DMA) between a memory-mapped source address and a memory-mapped * destination address. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../dmaengine.h" /* Register/Descriptor Offsets */ #define XILINX_DMA_MM2S_CTRL_OFFSET 0x0000 #define XILINX_DMA_S2MM_CTRL_OFFSET 0x0030 #define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050 #define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0 /* Control Registers */ #define XILINX_DMA_REG_DMACR 0x0000 #define XILINX_DMA_DMACR_DELAY_MAX 0xff #define XILINX_DMA_DMACR_DELAY_SHIFT 24 #define XILINX_DMA_DMACR_FRAME_COUNT_MAX 0xff #define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT 16 #define XILINX_DMA_DMACR_ERR_IRQ BIT(14) #define XILINX_DMA_DMACR_DLY_CNT_IRQ BIT(13) #define XILINX_DMA_DMACR_FRM_CNT_IRQ BIT(12) #define XILINX_DMA_DMACR_MASTER_SHIFT 8 #define XILINX_DMA_DMACR_FSYNCSRC_SHIFT 5 #define XILINX_DMA_DMACR_FRAMECNT_EN BIT(4) #define XILINX_DMA_DMACR_GENLOCK_EN BIT(3) #define XILINX_DMA_DMACR_RESET BIT(2) #define XILINX_DMA_DMACR_CIRC_EN BIT(1) #define XILINX_DMA_DMACR_RUNSTOP BIT(0) #define XILINX_DMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5) #define XILINX_DMA_DMACR_DELAY_MASK GENMASK(31, 24) #define XILINX_DMA_DMACR_FRAME_COUNT_MASK GENMASK(23, 16) #define XILINX_DMA_DMACR_MASTER_MASK GENMASK(11, 8) #define XILINX_DMA_REG_DMASR 0x0004 #define XILINX_DMA_DMASR_EOL_LATE_ERR BIT(15) #define XILINX_DMA_DMASR_ERR_IRQ BIT(14) #define XILINX_DMA_DMASR_DLY_CNT_IRQ BIT(13) #define XILINX_DMA_DMASR_FRM_CNT_IRQ BIT(12) #define XILINX_DMA_DMASR_SOF_LATE_ERR BIT(11) #define XILINX_DMA_DMASR_SG_DEC_ERR BIT(10) #define XILINX_DMA_DMASR_SG_SLV_ERR BIT(9) #define XILINX_DMA_DMASR_EOF_EARLY_ERR BIT(8) #define XILINX_DMA_DMASR_SOF_EARLY_ERR BIT(7) #define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6) #define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5) #define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4) #define XILINX_DMA_DMASR_IDLE BIT(1) #define XILINX_DMA_DMASR_HALTED BIT(0) #define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24) #define XILINX_DMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16) #define XILINX_DMA_REG_CURDESC 0x0008 #define XILINX_DMA_REG_TAILDESC 0x0010 #define XILINX_DMA_REG_REG_INDEX 0x0014 #define XILINX_DMA_REG_FRMSTORE 0x0018 #define XILINX_DMA_REG_THRESHOLD 0x001c #define XILINX_DMA_REG_FRMPTR_STS 0x0024 #define XILINX_DMA_REG_PARK_PTR 0x0028 #define XILINX_DMA_PARK_PTR_WR_REF_SHIFT 8 #define XILINX_DMA_PARK_PTR_WR_REF_MASK GENMASK(12, 8) #define XILINX_DMA_PARK_PTR_RD_REF_SHIFT 0 #define XILINX_DMA_PARK_PTR_RD_REF_MASK GENMASK(4, 0) #define XILINX_DMA_REG_VDMA_VERSION 0x002c /* Register Direct Mode Registers */ #define XILINX_DMA_REG_VSIZE 0x0000 #define XILINX_DMA_REG_HSIZE 0x0004 #define XILINX_DMA_REG_FRMDLY_STRIDE 0x0008 #define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24 #define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT 0 #define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n)) #define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n)) #define XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP 0x00ec #define XILINX_VDMA_ENABLE_VERTICAL_FLIP BIT(0) /* HW specific definitions */ #define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x2 #define XILINX_DMA_DMAXR_ALL_IRQ_MASK \ (XILINX_DMA_DMASR_FRM_CNT_IRQ | \ XILINX_DMA_DMASR_DLY_CNT_IRQ | \ XILINX_DMA_DMASR_ERR_IRQ) #define XILINX_DMA_DMASR_ALL_ERR_MASK \ (XILINX_DMA_DMASR_EOL_LATE_ERR | \ XILINX_DMA_DMASR_SOF_LATE_ERR | \ XILINX_DMA_DMASR_SG_DEC_ERR | \ XILINX_DMA_DMASR_SG_SLV_ERR | \ XILINX_DMA_DMASR_EOF_EARLY_ERR | \ XILINX_DMA_DMASR_SOF_EARLY_ERR | \ XILINX_DMA_DMASR_DMA_DEC_ERR | \ XILINX_DMA_DMASR_DMA_SLAVE_ERR | \ XILINX_DMA_DMASR_DMA_INT_ERR) /* * Recoverable errors are DMA Internal error, SOF Early, EOF Early * and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC * is enabled in the h/w system. */ #define XILINX_DMA_DMASR_ERR_RECOVER_MASK \ (XILINX_DMA_DMASR_SOF_LATE_ERR | \ XILINX_DMA_DMASR_EOF_EARLY_ERR | \ XILINX_DMA_DMASR_SOF_EARLY_ERR | \ XILINX_DMA_DMASR_DMA_INT_ERR) /* Axi VDMA Flush on Fsync bits */ #define XILINX_DMA_FLUSH_S2MM 3 #define XILINX_DMA_FLUSH_MM2S 2 #define XILINX_DMA_FLUSH_BOTH 1 /* Delay loop counter to prevent hardware failure */ #define XILINX_DMA_LOOP_COUNT 1000000 /* AXI DMA Specific Registers/Offsets */ #define XILINX_DMA_REG_SRCDSTADDR 0x18 #define XILINX_DMA_REG_BTT 0x28 /* AXI DMA Specific Masks/Bit fields */ #define XILINX_DMA_MAX_TRANS_LEN_MIN 8 #define XILINX_DMA_MAX_TRANS_LEN_MAX 23 #define XILINX_DMA_V2_MAX_TRANS_LEN_MAX 26 #define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16) #define XILINX_DMA_CR_CYCLIC_BD_EN_MASK BIT(4) #define XILINX_DMA_CR_COALESCE_SHIFT 16 #define XILINX_DMA_BD_SOP BIT(27) #define XILINX_DMA_BD_EOP BIT(26) #define XILINX_DMA_COALESCE_MAX 255 #define XILINX_DMA_NUM_DESCS 255 #define XILINX_DMA_NUM_APP_WORDS 5 /* AXI CDMA Specific Registers/Offsets */ #define XILINX_CDMA_REG_SRCADDR 0x18 #define XILINX_CDMA_REG_DSTADDR 0x20 /* AXI CDMA Specific Masks */ #define XILINX_CDMA_CR_SGMODE BIT(3) #define xilinx_prep_dma_addr_t(addr) \ ((dma_addr_t)((u64)addr##_##msb << 32 | (addr))) /** * struct xilinx_vdma_desc_hw - Hardware Descriptor * @next_desc: Next Descriptor Pointer @0x00 * @pad1: Reserved @0x04 * @buf_addr: Buffer address @0x08 * @buf_addr_msb: MSB of Buffer address @0x0C * @vsize: Vertical Size @0x10 * @hsize: Horizontal Size @0x14 * @stride: Number of bytes between the first * pixels of each horizontal line @0x18 */ struct xilinx_vdma_desc_hw { u32 next_desc; u32 pad1; u32 buf_addr; u32 buf_addr_msb; u32 vsize; u32 hsize; u32 stride; } __aligned(64); /** * struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA * @next_desc: Next Descriptor Pointer @0x00 * @next_desc_msb: MSB of Next Descriptor Pointer @0x04 * @buf_addr: Buffer address @0x08 * @buf_addr_msb: MSB of Buffer address @0x0C * @reserved1: Reserved @0x10 * @reserved2: Reserved @0x14 * @control: Control field @0x18 * @status: Status field @0x1C * @app: APP Fields @0x20 - 0x30 */ struct xilinx_axidma_desc_hw { u32 next_desc; u32 next_desc_msb; u32 buf_addr; u32 buf_addr_msb; u32 reserved1; u32 reserved2; u32 control; u32 status; u32 app[XILINX_DMA_NUM_APP_WORDS]; } __aligned(64); /** * struct xilinx_cdma_desc_hw - Hardware Descriptor * @next_desc: Next Descriptor Pointer @0x00 * @next_desc_msb: Next Descriptor Pointer MSB @0x04 * @src_addr: Source address @0x08 * @src_addr_msb: Source address MSB @0x0C * @dest_addr: Destination address @0x10 * @dest_addr_msb: Destination address MSB @0x14 * @control: Control field @0x18 * @status: Status field @0x1C */ struct xilinx_cdma_desc_hw { u32 next_desc; u32 next_desc_msb; u32 src_addr; u32 src_addr_msb; u32 dest_addr; u32 dest_addr_msb; u32 control; u32 status; } __aligned(64); /** * struct xilinx_vdma_tx_segment - Descriptor segment * @hw: Hardware descriptor * @node: Node in the descriptor segments list * @phys: Physical address of segment */ struct xilinx_vdma_tx_segment { struct xilinx_vdma_desc_hw hw; struct list_head node; dma_addr_t phys; } __aligned(64); /** * struct xilinx_axidma_tx_segment - Descriptor segment * @hw: Hardware descriptor * @node: Node in the descriptor segments list * @phys: Physical address of segment */ struct xilinx_axidma_tx_segment { struct xilinx_axidma_desc_hw hw; struct list_head node; dma_addr_t phys; } __aligned(64); /** * struct xilinx_cdma_tx_segment - Descriptor segment * @hw: Hardware descriptor * @node: Node in the descriptor segments list * @phys: Physical address of segment */ struct xilinx_cdma_tx_segment { struct xilinx_cdma_desc_hw hw; struct list_head node; dma_addr_t phys; } __aligned(64); /** * struct xilinx_dma_tx_descriptor - Per Transaction structure * @async_tx: Async transaction descriptor * @segments: TX segments list * @node: Node in the channel descriptors list * @cyclic: Check for cyclic transfers. * @err: Whether the descriptor has an error. * @residue: Residue of the completed descriptor */ struct xilinx_dma_tx_descriptor { struct dma_async_tx_descriptor async_tx; struct list_head segments; struct list_head node; bool cyclic; bool err; u32 residue; }; /** * struct xilinx_dma_chan - Driver specific DMA channel structure * @xdev: Driver specific device structure * @ctrl_offset: Control registers offset * @desc_offset: TX descriptor registers offset * @lock: Descriptor operation lock * @pending_list: Descriptors waiting * @active_list: Descriptors ready to submit * @done_list: Complete descriptors * @free_seg_list: Free descriptors * @common: DMA common channel * @desc_pool: Descriptors pool * @dev: The dma device * @irq: Channel IRQ * @id: Channel ID * @direction: Transfer direction * @num_frms: Number of frames * @has_sg: Support scatter transfers * @cyclic: Check for cyclic transfers. * @genlock: Support genlock mode * @err: Channel has errors * @idle: Check for channel idle * @tasklet: Cleanup work after irq * @config: Device configuration info * @flush_on_fsync: Flush on Frame sync * @desc_pendingcount: Descriptor pending count * @ext_addr: Indicates 64 bit addressing is supported by dma channel * @desc_submitcount: Descriptor h/w submitted count * @seg_v: Statically allocated segments base * @seg_p: Physical allocated segments base * @cyclic_seg_v: Statically allocated segment base for cyclic transfers * @cyclic_seg_p: Physical allocated segments base for cyclic dma * @start_transfer: Differentiate b/w DMA IP's transfer * @stop_transfer: Differentiate b/w DMA IP's quiesce * @has_vflip: S2MM vertical flip */ struct xilinx_dma_chan { struct xilinx_dma_device *xdev; u32 ctrl_offset; u32 desc_offset; spinlock_t lock; struct list_head pending_list; struct list_head active_list; struct list_head done_list; struct list_head free_seg_list; struct dma_chan common; struct dma_pool *desc_pool; struct device *dev; int irq; int id; enum dma_transfer_direction direction; int num_frms; bool has_sg; bool cyclic; bool genlock; bool err; bool idle; struct tasklet_struct tasklet; struct xilinx_vdma_config config; bool flush_on_fsync; u32 desc_pendingcount; bool ext_addr; u32 desc_submitcount; struct xilinx_axidma_tx_segment *seg_v; dma_addr_t seg_p; struct xilinx_axidma_tx_segment *cyclic_seg_v; dma_addr_t cyclic_seg_p; void (*start_transfer)(struct xilinx_dma_chan *chan); int (*stop_transfer)(struct xilinx_dma_chan *chan); bool has_vflip; u32 buf_idx; // each irq this value increase 1. in cyclic mode, we use residue return this idx via device_tx_status/xilinx_dma_tx_status }; /** * enum xdma_ip_type - DMA IP type. * * @XDMA_TYPE_AXIDMA: Axi dma ip. * @XDMA_TYPE_CDMA: Axi cdma ip. * @XDMA_TYPE_VDMA: Axi vdma ip. * */ enum xdma_ip_type { XDMA_TYPE_AXIDMA = 0, XDMA_TYPE_CDMA, XDMA_TYPE_VDMA, }; struct xilinx_dma_config { enum xdma_ip_type dmatype; int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk, struct clk **tx_clk, struct clk **txs_clk, struct clk **rx_clk, struct clk **rxs_clk); }; /** * struct xilinx_dma_device - DMA device structure * @regs: I/O mapped base address * @dev: Device Structure * @common: DMA device structure * @chan: Driver specific DMA channel * @has_sg: Specifies whether Scatter-Gather is present or not * @flush_on_fsync: Flush on frame sync * @ext_addr: Indicates 64 bit addressing is supported by dma device * @pdev: Platform device structure pointer * @dma_config: DMA config structure * @axi_clk: DMA Axi4-lite interace clock * @tx_clk: DMA mm2s clock * @txs_clk: DMA mm2s stream clock * @rx_clk: DMA s2mm clock * @rxs_clk: DMA s2mm stream clock * @nr_channels: Number of channels DMA device supports * @chan_id: DMA channel identifier * @max_buffer_len: Max buffer length */ struct xilinx_dma_device { void __iomem *regs; struct device *dev; struct dma_device common; struct xilinx_dma_chan *chan[XILINX_DMA_MAX_CHANS_PER_DEVICE]; bool has_sg; u32 flush_on_fsync; bool ext_addr; struct platform_device *pdev; const struct xilinx_dma_config *dma_config; struct clk *axi_clk; struct clk *tx_clk; struct clk *txs_clk; struct clk *rx_clk; struct clk *rxs_clk; u32 nr_channels; u32 chan_id; u32 max_buffer_len; }; /* Macros */ #define to_xilinx_chan(chan) \ container_of(chan, struct xilinx_dma_chan, common) #define to_dma_tx_descriptor(tx) \ container_of(tx, struct xilinx_dma_tx_descriptor, async_tx) #define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \ readl_poll_timeout(chan->xdev->regs + chan->ctrl_offset + reg, val, \ cond, delay_us, timeout_us) /* IO accessors */ static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg) { return ioread32(chan->xdev->regs + reg); } static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value) { iowrite32(value, chan->xdev->regs + reg); } static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg, u32 value) { dma_write(chan, chan->desc_offset + reg, value); } static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg) { return dma_read(chan, chan->ctrl_offset + reg); } static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg, u32 value) { dma_write(chan, chan->ctrl_offset + reg, value); } static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg, u32 clr) { dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr); } static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg, u32 set) { dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set); } /** * vdma_desc_write_64 - 64-bit descriptor write * @chan: Driver specific VDMA channel * @reg: Register to write * @value_lsb: lower address of the descriptor. * @value_msb: upper address of the descriptor. * * Since vdma driver is trying to write to a register offset which is not a * multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits * instead of a single 64 bit register write. */ static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg, u32 value_lsb, u32 value_msb) { /* Write the lsb 32 bits*/ writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg); /* Write the msb 32 bits */ writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4); } static inline void dma_writeq(struct xilinx_dma_chan *chan, u32 reg, u64 value) { lo_hi_writeq(value, chan->xdev->regs + chan->ctrl_offset + reg); } static inline void xilinx_write(struct xilinx_dma_chan *chan, u32 reg, dma_addr_t addr) { if (chan->ext_addr) dma_writeq(chan, reg, addr); else dma_ctrl_write(chan, reg, addr); } static inline void xilinx_axidma_buf(struct xilinx_dma_chan *chan, struct xilinx_axidma_desc_hw *hw, dma_addr_t buf_addr, size_t sg_used, size_t period_len) { if (chan->ext_addr) { hw->buf_addr = lower_32_bits(buf_addr + sg_used + period_len); hw->buf_addr_msb = upper_32_bits(buf_addr + sg_used + period_len); } else { hw->buf_addr = buf_addr + sg_used + period_len; } } /* ----------------------------------------------------------------------------- * Descriptors and segments alloc and free */ /** * xilinx_vdma_alloc_tx_segment - Allocate transaction segment * @chan: Driver specific DMA channel * * Return: The allocated segment on success and NULL on failure. */ static struct xilinx_vdma_tx_segment * xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan) { struct xilinx_vdma_tx_segment *segment; dma_addr_t phys; segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys); if (!segment) return NULL; segment->phys = phys; return segment; } /** * xilinx_cdma_alloc_tx_segment - Allocate transaction segment * @chan: Driver specific DMA channel * * Return: The allocated segment on success and NULL on failure. */ static struct xilinx_cdma_tx_segment * xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan) { struct xilinx_cdma_tx_segment *segment; dma_addr_t phys; segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys); if (!segment) return NULL; segment->phys = phys; return segment; } /** * xilinx_axidma_alloc_tx_segment - Allocate transaction segment * @chan: Driver specific DMA channel * * Return: The allocated segment on success and NULL on failure. */ static struct xilinx_axidma_tx_segment * xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan) { struct xilinx_axidma_tx_segment *segment = NULL; unsigned long flags; spin_lock_irqsave(&chan->lock, flags); if (!list_empty(&chan->free_seg_list)) { segment = list_first_entry(&chan->free_seg_list, struct xilinx_axidma_tx_segment, node); list_del(&segment->node); } spin_unlock_irqrestore(&chan->lock, flags); if (!segment) dev_dbg(chan->dev, "Could not find free tx segment\n"); return segment; } static void xilinx_dma_clean_hw_desc(struct xilinx_axidma_desc_hw *hw) { u32 next_desc = hw->next_desc; u32 next_desc_msb = hw->next_desc_msb; memset(hw, 0, sizeof(struct xilinx_axidma_desc_hw)); hw->next_desc = next_desc; hw->next_desc_msb = next_desc_msb; } /** * xilinx_dma_free_tx_segment - Free transaction segment * @chan: Driver specific DMA channel * @segment: DMA transaction segment */ static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan, struct xilinx_axidma_tx_segment *segment) { xilinx_dma_clean_hw_desc(&segment->hw); list_add_tail(&segment->node, &chan->free_seg_list); } /** * xilinx_cdma_free_tx_segment - Free transaction segment * @chan: Driver specific DMA channel * @segment: DMA transaction segment */ static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan, struct xilinx_cdma_tx_segment *segment) { dma_pool_free(chan->desc_pool, segment, segment->phys); } /** * xilinx_vdma_free_tx_segment - Free transaction segment * @chan: Driver specific DMA channel * @segment: DMA transaction segment */ static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan, struct xilinx_vdma_tx_segment *segment) { dma_pool_free(chan->desc_pool, segment, segment->phys); } /** * xilinx_dma_tx_descriptor - Allocate transaction descriptor * @chan: Driver specific DMA channel * * Return: The allocated descriptor on success and NULL on failure. */ static struct xilinx_dma_tx_descriptor * xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan) { struct xilinx_dma_tx_descriptor *desc; desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return NULL; INIT_LIST_HEAD(&desc->segments); return desc; } /** * xilinx_dma_free_tx_descriptor - Free transaction descriptor * @chan: Driver specific DMA channel * @desc: DMA transaction descriptor */ static void xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan, struct xilinx_dma_tx_descriptor *desc) { struct xilinx_vdma_tx_segment *segment, *next; struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next; struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next; if (!desc) return; if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { list_for_each_entry_safe(segment, next, &desc->segments, node) { list_del(&segment->node); xilinx_vdma_free_tx_segment(chan, segment); } } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { list_for_each_entry_safe(cdma_segment, cdma_next, &desc->segments, node) { list_del(&cdma_segment->node); xilinx_cdma_free_tx_segment(chan, cdma_segment); } } else { list_for_each_entry_safe(axidma_segment, axidma_next, &desc->segments, node) { list_del(&axidma_segment->node); xilinx_dma_free_tx_segment(chan, axidma_segment); } } kfree(desc); } /* Required functions */ /** * xilinx_dma_free_desc_list - Free descriptors list * @chan: Driver specific DMA channel * @list: List to parse and delete the descriptor */ static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan, struct list_head *list) { struct xilinx_dma_tx_descriptor *desc, *next; list_for_each_entry_safe(desc, next, list, node) { list_del(&desc->node); xilinx_dma_free_tx_descriptor(chan, desc); } } /** * xilinx_dma_free_descriptors - Free channel descriptors * @chan: Driver specific DMA channel */ static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan) { unsigned long flags; spin_lock_irqsave(&chan->lock, flags); xilinx_dma_free_desc_list(chan, &chan->pending_list); xilinx_dma_free_desc_list(chan, &chan->done_list); xilinx_dma_free_desc_list(chan, &chan->active_list); spin_unlock_irqrestore(&chan->lock, flags); } /** * xilinx_dma_free_chan_resources - Free channel resources * @dchan: DMA channel */ static void xilinx_dma_free_chan_resources(struct dma_chan *dchan) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); unsigned long flags; dev_dbg(chan->dev, "Free all channel resources.\n"); xilinx_dma_free_descriptors(chan); if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { spin_lock_irqsave(&chan->lock, flags); INIT_LIST_HEAD(&chan->free_seg_list); spin_unlock_irqrestore(&chan->lock, flags); /* Free memory that is allocated for BD */ dma_free_coherent(chan->dev, sizeof(*chan->seg_v) * XILINX_DMA_NUM_DESCS, chan->seg_v, chan->seg_p); /* Free Memory that is allocated for cyclic DMA Mode */ dma_free_coherent(chan->dev, sizeof(*chan->cyclic_seg_v), chan->cyclic_seg_v, chan->cyclic_seg_p); } if (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA) { dma_pool_destroy(chan->desc_pool); chan->desc_pool = NULL; } } /** * xilinx_dma_get_residue - Compute residue for a given descriptor * @chan: Driver specific dma channel * @desc: dma transaction descriptor * * Return: The number of residue bytes for the descriptor. */ static u32 xilinx_dma_get_residue(struct xilinx_dma_chan *chan, struct xilinx_dma_tx_descriptor *desc) { struct xilinx_cdma_tx_segment *cdma_seg; struct xilinx_axidma_tx_segment *axidma_seg; struct xilinx_cdma_desc_hw *cdma_hw; struct xilinx_axidma_desc_hw *axidma_hw; struct list_head *entry; u32 residue = 0; /** * VDMA and simple mode do not support residue reporting, so the * residue field will always be 0. */ if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA || !chan->has_sg) return residue; list_for_each(entry, &desc->segments) { if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { cdma_seg = list_entry(entry, struct xilinx_cdma_tx_segment, node); cdma_hw = &cdma_seg->hw; residue += (cdma_hw->control - cdma_hw->status) & chan->xdev->max_buffer_len; } else { axidma_seg = list_entry(entry, struct xilinx_axidma_tx_segment, node); axidma_hw = &axidma_seg->hw; residue += (axidma_hw->control - axidma_hw->status) & chan->xdev->max_buffer_len; } } return residue; } /** * xilinx_dma_chan_handle_cyclic - Cyclic dma callback * @chan: Driver specific dma channel * @desc: dma transaction descriptor * @flags: flags for spin lock */ static void xilinx_dma_chan_handle_cyclic(struct xilinx_dma_chan *chan, struct xilinx_dma_tx_descriptor *desc, unsigned long *flags) { dma_async_tx_callback callback; void *callback_param; callback = desc->async_tx.callback; callback_param = desc->async_tx.callback_param; if (callback) { spin_unlock_irqrestore(&chan->lock, *flags); callback(callback_param); spin_lock_irqsave(&chan->lock, *flags); } } /** * xilinx_dma_chan_desc_cleanup - Clean channel descriptors * @chan: Driver specific DMA channel */ static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan) { struct xilinx_dma_tx_descriptor *desc, *next; unsigned long flags; spin_lock_irqsave(&chan->lock, flags); list_for_each_entry_safe(desc, next, &chan->done_list, node) { struct dmaengine_result result; if (desc->cyclic) { xilinx_dma_chan_handle_cyclic(chan, desc, &flags); break; } /* Remove from the list of running transactions */ list_del(&desc->node); if (unlikely(desc->err)) { if (chan->direction == DMA_DEV_TO_MEM) result.result = DMA_TRANS_READ_FAILED; else result.result = DMA_TRANS_WRITE_FAILED; } else { result.result = DMA_TRANS_NOERROR; } result.residue = desc->residue; /* Run the link descriptor callback function */ spin_unlock_irqrestore(&chan->lock, flags); dmaengine_desc_get_callback_invoke(&desc->async_tx, &result); spin_lock_irqsave(&chan->lock, flags); /* Run any dependencies, then free the descriptor */ dma_run_dependencies(&desc->async_tx); xilinx_dma_free_tx_descriptor(chan, desc); } spin_unlock_irqrestore(&chan->lock, flags); } /** * xilinx_dma_do_tasklet - Schedule completion tasklet * @data: Pointer to the Xilinx DMA channel structure */ static void xilinx_dma_do_tasklet(unsigned long data) { struct xilinx_dma_chan *chan = (struct xilinx_dma_chan *)data; xilinx_dma_chan_desc_cleanup(chan); } /** * xilinx_dma_alloc_chan_resources - Allocate channel resources * @dchan: DMA channel * * Return: '0' on success and failure value on error */ static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); int i; /* Has this channel already been allocated? */ if (chan->desc_pool) return 0; /* * We need the descriptor to be aligned to 64bytes * for meeting Xilinx VDMA specification requirement. */ if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { /* Allocate the buffer descriptors. */ chan->seg_v = dma_zalloc_coherent(chan->dev, sizeof(*chan->seg_v) * XILINX_DMA_NUM_DESCS, &chan->seg_p, GFP_KERNEL); if (!chan->seg_v) { dev_err(chan->dev, "unable to allocate channel %d descriptors\n", chan->id); return -ENOMEM; } /* * For cyclic DMA mode we need to program the tail Descriptor * register with a value which is not a part of the BD chain * so allocating a desc segment during channel allocation for * programming tail descriptor. */ chan->cyclic_seg_v = dma_zalloc_coherent(chan->dev, sizeof(*chan->cyclic_seg_v), &chan->cyclic_seg_p, GFP_KERNEL); if (!chan->cyclic_seg_v) { dev_err(chan->dev, "unable to allocate desc segment for cyclic DMA\n"); dma_free_coherent(chan->dev, sizeof(*chan->seg_v) * XILINX_DMA_NUM_DESCS, chan->seg_v, chan->seg_p); return -ENOMEM; } chan->cyclic_seg_v->phys = chan->cyclic_seg_p; for (i = 0; i < XILINX_DMA_NUM_DESCS; i++) { chan->seg_v[i].hw.next_desc = lower_32_bits(chan->seg_p + sizeof(*chan->seg_v) * ((i + 1) % XILINX_DMA_NUM_DESCS)); chan->seg_v[i].hw.next_desc_msb = upper_32_bits(chan->seg_p + sizeof(*chan->seg_v) * ((i + 1) % XILINX_DMA_NUM_DESCS)); chan->seg_v[i].phys = chan->seg_p + sizeof(*chan->seg_v) * i; list_add_tail(&chan->seg_v[i].node, &chan->free_seg_list); } } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool", chan->dev, sizeof(struct xilinx_cdma_tx_segment), __alignof__(struct xilinx_cdma_tx_segment), 0); } else { chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool", chan->dev, sizeof(struct xilinx_vdma_tx_segment), __alignof__(struct xilinx_vdma_tx_segment), 0); } if (!chan->desc_pool && (chan->xdev->dma_config->dmatype != XDMA_TYPE_AXIDMA)) { dev_err(chan->dev, "unable to allocate channel %d descriptor pool\n", chan->id); return -ENOMEM; } dma_cookie_init(dchan); if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { /* For AXI DMA resetting once channel will reset the * other channel as well so enable the interrupts here. */ dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMAXR_ALL_IRQ_MASK); } if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg) dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_CDMA_CR_SGMODE); return 0; } /** * xilinx_dma_tx_status - Get DMA transaction status * @dchan: DMA channel * @cookie: Transaction identifier * @txstate: Transaction state * * Return: DMA transaction status */ static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_tx_descriptor *desc; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(dchan, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&chan->lock, flags); desc = list_last_entry(&chan->active_list, struct xilinx_dma_tx_descriptor, node); desc->residue = xilinx_dma_get_residue(chan, desc); spin_unlock_irqrestore(&chan->lock, flags); if (chan->cyclic) dma_set_residue(txstate, chan->buf_idx); else dma_set_residue(txstate, desc->residue); return ret; } /** * xilinx_dma_stop_transfer - Halt DMA channel * @chan: Driver specific DMA channel * * Return: '0' on success and failure value on error */ static int xilinx_dma_stop_transfer(struct xilinx_dma_chan *chan) { u32 val; dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP); /* Wait for the hardware to halt */ return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, val | (XILINX_DMA_DMASR_IDLE | XILINX_DMA_DMASR_HALTED), 0, XILINX_DMA_LOOP_COUNT); } /** * xilinx_cdma_stop_transfer - Wait for the current transfer to complete * @chan: Driver specific DMA channel * * Return: '0' on success and failure value on error */ static int xilinx_cdma_stop_transfer(struct xilinx_dma_chan *chan) { u32 val; return xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, val & XILINX_DMA_DMASR_IDLE, 0, XILINX_DMA_LOOP_COUNT); } /** * xilinx_dma_start - Start DMA channel * @chan: Driver specific DMA channel */ static void xilinx_dma_start(struct xilinx_dma_chan *chan) { int err; u32 val; dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP); /* Wait for the hardware to start */ err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val, !(val & XILINX_DMA_DMASR_HALTED), 0, XILINX_DMA_LOOP_COUNT); if (err) { dev_err(chan->dev, "Cannot start channel %p: %x\n", chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); chan->err = true; } } /** * xilinx_vdma_start_transfer - Starts VDMA transfer * @chan: Driver specific channel struct pointer */ static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan) { struct xilinx_vdma_config *config = &chan->config; struct xilinx_dma_tx_descriptor *desc, *tail_desc; u32 reg, j; struct xilinx_vdma_tx_segment *tail_segment; /* This function was invoked with lock held */ if (chan->err) return; if (!chan->idle) return; if (list_empty(&chan->pending_list)) return; desc = list_first_entry(&chan->pending_list, struct xilinx_dma_tx_descriptor, node); tail_desc = list_last_entry(&chan->pending_list, struct xilinx_dma_tx_descriptor, node); tail_segment = list_last_entry(&tail_desc->segments, struct xilinx_vdma_tx_segment, node); /* * If hardware is idle, then all descriptors on the running lists are * done, start new transfers */ if (chan->has_sg) dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC, desc->async_tx.phys); /* Configure the hardware using info in the config structure */ if (chan->has_vflip) { reg = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP); reg &= ~XILINX_VDMA_ENABLE_VERTICAL_FLIP; reg |= config->vflip_en; dma_write(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP, reg); } reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); if (config->frm_cnt_en) reg |= XILINX_DMA_DMACR_FRAMECNT_EN; else reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN; /* * With SG, start with circular mode, so that BDs can be fetched. * In direct register mode, if not parking, enable circular mode */ if (chan->has_sg || !config->park) reg |= XILINX_DMA_DMACR_CIRC_EN; if (config->park) reg &= ~XILINX_DMA_DMACR_CIRC_EN; dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); j = chan->desc_submitcount; reg = dma_read(chan, XILINX_DMA_REG_PARK_PTR); if (chan->direction == DMA_MEM_TO_DEV) { reg &= ~XILINX_DMA_PARK_PTR_RD_REF_MASK; reg |= j << XILINX_DMA_PARK_PTR_RD_REF_SHIFT; } else { reg &= ~XILINX_DMA_PARK_PTR_WR_REF_MASK; reg |= j << XILINX_DMA_PARK_PTR_WR_REF_SHIFT; } dma_write(chan, XILINX_DMA_REG_PARK_PTR, reg); /* Start the hardware */ xilinx_dma_start(chan); if (chan->err) return; /* Start the transfer */ if (chan->has_sg) { dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC, tail_segment->phys); list_splice_tail_init(&chan->pending_list, &chan->active_list); chan->desc_pendingcount = 0; } else { struct xilinx_vdma_tx_segment *segment, *last = NULL; int i = 0; if (chan->desc_submitcount < chan->num_frms) i = chan->desc_submitcount; list_for_each_entry(segment, &desc->segments, node) { if (chan->ext_addr) vdma_desc_write_64(chan, XILINX_VDMA_REG_START_ADDRESS_64(i++), segment->hw.buf_addr, segment->hw.buf_addr_msb); else vdma_desc_write(chan, XILINX_VDMA_REG_START_ADDRESS(i++), segment->hw.buf_addr); last = segment; } if (!last) return; /* HW expects these parameters to be same for one transaction */ vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize); vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE, last->hw.stride); vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize); chan->desc_submitcount++; chan->desc_pendingcount--; list_del(&desc->node); list_add_tail(&desc->node, &chan->active_list); if (chan->desc_submitcount == chan->num_frms) chan->desc_submitcount = 0; } chan->idle = false; } /** * xilinx_cdma_start_transfer - Starts cdma transfer * @chan: Driver specific channel struct pointer */ static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan) { struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; struct xilinx_cdma_tx_segment *tail_segment; u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR); if (chan->err) return; if (!chan->idle) return; if (list_empty(&chan->pending_list)) return; head_desc = list_first_entry(&chan->pending_list, struct xilinx_dma_tx_descriptor, node); tail_desc = list_last_entry(&chan->pending_list, struct xilinx_dma_tx_descriptor, node); tail_segment = list_last_entry(&tail_desc->segments, struct xilinx_cdma_tx_segment, node); if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) { ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX; ctrl_reg |= chan->desc_pendingcount << XILINX_DMA_CR_COALESCE_SHIFT; dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg); } if (chan->has_sg) { dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_CDMA_CR_SGMODE); dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_CDMA_CR_SGMODE); xilinx_write(chan, XILINX_DMA_REG_CURDESC, head_desc->async_tx.phys); /* Update tail ptr register which will start the transfer */ xilinx_write(chan, XILINX_DMA_REG_TAILDESC, tail_segment->phys); } else { /* In simple mode */ struct xilinx_cdma_tx_segment *segment; struct xilinx_cdma_desc_hw *hw; segment = list_first_entry(&head_desc->segments, struct xilinx_cdma_tx_segment, node); hw = &segment->hw; xilinx_write(chan, XILINX_CDMA_REG_SRCADDR, xilinx_prep_dma_addr_t(hw->src_addr)); xilinx_write(chan, XILINX_CDMA_REG_DSTADDR, xilinx_prep_dma_addr_t(hw->dest_addr)); /* Start the transfer */ dma_ctrl_write(chan, XILINX_DMA_REG_BTT, hw->control & chan->xdev->max_buffer_len); } list_splice_tail_init(&chan->pending_list, &chan->active_list); chan->desc_pendingcount = 0; chan->idle = false; } /** * xilinx_dma_start_transfer - Starts DMA transfer * @chan: Driver specific channel struct pointer */ static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan) { struct xilinx_dma_tx_descriptor *head_desc, *tail_desc; struct xilinx_axidma_tx_segment *tail_segment; u32 reg; if (chan->err) return; if (!chan->idle) return; if (list_empty(&chan->pending_list)) return; head_desc = list_first_entry(&chan->pending_list, struct xilinx_dma_tx_descriptor, node); tail_desc = list_last_entry(&chan->pending_list, struct xilinx_dma_tx_descriptor, node); tail_segment = list_last_entry(&tail_desc->segments, struct xilinx_axidma_tx_segment, node); reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) { reg &= ~XILINX_DMA_CR_COALESCE_MAX; reg |= chan->desc_pendingcount << XILINX_DMA_CR_COALESCE_SHIFT; dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); } if (chan->has_sg) xilinx_write(chan, XILINX_DMA_REG_CURDESC, head_desc->async_tx.phys); xilinx_dma_start(chan); if (chan->err) return; /* Start the transfer */ if (chan->has_sg) { if (chan->cyclic) xilinx_write(chan, XILINX_DMA_REG_TAILDESC, chan->cyclic_seg_v->phys); else xilinx_write(chan, XILINX_DMA_REG_TAILDESC, tail_segment->phys); } else { struct xilinx_axidma_tx_segment *segment; struct xilinx_axidma_desc_hw *hw; segment = list_first_entry(&head_desc->segments, struct xilinx_axidma_tx_segment, node); hw = &segment->hw; xilinx_write(chan, XILINX_DMA_REG_SRCDSTADDR, xilinx_prep_dma_addr_t(hw->buf_addr)); /* Start the transfer */ dma_ctrl_write(chan, XILINX_DMA_REG_BTT, hw->control & chan->xdev->max_buffer_len); } list_splice_tail_init(&chan->pending_list, &chan->active_list); chan->desc_pendingcount = 0; chan->idle = false; } /** * xilinx_dma_issue_pending - Issue pending transactions * @dchan: DMA channel */ static void xilinx_dma_issue_pending(struct dma_chan *dchan) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); unsigned long flags; spin_lock_irqsave(&chan->lock, flags); chan->start_transfer(chan); spin_unlock_irqrestore(&chan->lock, flags); } /** * xilinx_dma_complete_descriptor - Mark the active descriptor as complete * @chan : xilinx DMA channel * * CONTEXT: hardirq */ static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan) { struct xilinx_dma_tx_descriptor *desc, *next; /* This function was invoked with lock held */ if (list_empty(&chan->active_list)) return; list_for_each_entry_safe(desc, next, &chan->active_list, node) { desc->residue = xilinx_dma_get_residue(chan, desc); desc->err = chan->err; list_del(&desc->node); if (!desc->cyclic) dma_cookie_complete(&desc->async_tx); list_add_tail(&desc->node, &chan->done_list); } } /** * xilinx_dma_reset - Reset DMA channel * @chan: Driver specific DMA channel * * Return: '0' on success and failure value on error */ static int xilinx_dma_reset(struct xilinx_dma_chan *chan) { int err; u32 tmp; dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET); /* Wait for the hardware to finish reset */ err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp, !(tmp & XILINX_DMA_DMACR_RESET), 0, XILINX_DMA_LOOP_COUNT); if (err) { dev_err(chan->dev, "reset timeout, cr %x, sr %x\n", dma_ctrl_read(chan, XILINX_DMA_REG_DMACR), dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); return -ETIMEDOUT; } chan->err = false; chan->idle = true; chan->desc_pendingcount = 0; chan->desc_submitcount = 0; return err; } /** * xilinx_dma_chan_reset - Reset DMA channel and enable interrupts * @chan: Driver specific DMA channel * * Return: '0' on success and failure value on error */ static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan) { int err; /* Reset VDMA */ err = xilinx_dma_reset(chan); if (err) return err; /* Enable interrupts */ dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMAXR_ALL_IRQ_MASK); return 0; } /** * xilinx_dma_irq_handler - DMA Interrupt handler * @irq: IRQ number * @data: Pointer to the Xilinx DMA channel structure * * Return: IRQ_HANDLED/IRQ_NONE */ static irqreturn_t xilinx_dma_irq_handler(int irq, void *data) { struct xilinx_dma_chan *chan = data; u32 status; /* Read the status and ack the interrupts. */ status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR); if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK)) return IRQ_NONE; dma_ctrl_write(chan, XILINX_DMA_REG_DMASR, status & XILINX_DMA_DMAXR_ALL_IRQ_MASK); if (status & XILINX_DMA_DMASR_ERR_IRQ) { /* * An error occurred. If C_FLUSH_ON_FSYNC is enabled and the * error is recoverable, ignore it. Otherwise flag the error. * * Only recoverable errors can be cleared in the DMASR register, * make sure not to write to other error bits to 1. */ u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK; dma_ctrl_write(chan, XILINX_DMA_REG_DMASR, errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK); if (!chan->flush_on_fsync || (errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) { dev_err(chan->dev, "Channel %p has errors %x, cdr %x tdr %x\n", chan, errors, dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC), dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC)); chan->err = true; } } if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) { /* * Device takes too long to do the transfer when user requires * responsiveness. */ dev_dbg(chan->dev, "Inter-packet latency too long\n"); } if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) { spin_lock(&chan->lock); xilinx_dma_complete_descriptor(chan); chan->idle = true; chan->start_transfer(chan); chan->buf_idx++; spin_unlock(&chan->lock); } tasklet_schedule(&chan->tasklet); return IRQ_HANDLED; } /** * append_desc_queue - Queuing descriptor * @chan: Driver specific dma channel * @desc: dma transaction descriptor */ static void append_desc_queue(struct xilinx_dma_chan *chan, struct xilinx_dma_tx_descriptor *desc) { struct xilinx_vdma_tx_segment *tail_segment; struct xilinx_dma_tx_descriptor *tail_desc; struct xilinx_axidma_tx_segment *axidma_tail_segment; struct xilinx_cdma_tx_segment *cdma_tail_segment; if (list_empty(&chan->pending_list)) goto append; /* * Add the hardware descriptor to the chain of hardware descriptors * that already exists in memory. */ tail_desc = list_last_entry(&chan->pending_list, struct xilinx_dma_tx_descriptor, node); if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { tail_segment = list_last_entry(&tail_desc->segments, struct xilinx_vdma_tx_segment, node); tail_segment->hw.next_desc = (u32)desc->async_tx.phys; } else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { cdma_tail_segment = list_last_entry(&tail_desc->segments, struct xilinx_cdma_tx_segment, node); cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; } else { axidma_tail_segment = list_last_entry(&tail_desc->segments, struct xilinx_axidma_tx_segment, node); axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys; } /* * Add the software descriptor and all children to the list * of pending transactions */ append: list_add_tail(&desc->node, &chan->pending_list); /* * In CDMA each segment is considered as a descriptor, so increment * pending count in prep_slave_* implementation. */ if (chan->xdev->dma_config->dmatype != XDMA_TYPE_CDMA) chan->desc_pendingcount++; if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) && unlikely(chan->desc_pendingcount > chan->num_frms)) { dev_dbg(chan->dev, "desc pendingcount is too high\n"); chan->desc_pendingcount = chan->num_frms; } } /** * xilinx_dma_tx_submit - Submit DMA transaction * @tx: Async transaction descriptor * * Return: cookie value on success and failure value on error */ static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx) { struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx); struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan); dma_cookie_t cookie; unsigned long flags; int err; if (chan->cyclic) { xilinx_dma_free_tx_descriptor(chan, desc); return -EBUSY; } if (chan->err) { /* * If reset fails, need to hard reset the system. * Channel is no longer functional */ err = xilinx_dma_chan_reset(chan); if (err < 0) return err; } spin_lock_irqsave(&chan->lock, flags); cookie = dma_cookie_assign(tx); /* Put this transaction onto the tail of the pending queue */ append_desc_queue(chan, desc); if (desc->cyclic) chan->cyclic = true; spin_unlock_irqrestore(&chan->lock, flags); return cookie; } /** * xilinx_vdma_dma_prep_interleaved - prepare a descriptor for a * DMA_SLAVE transaction * @dchan: DMA channel * @xt: Interleaved template pointer * @flags: transfer ack flags * * Return: Async transaction descriptor on success and NULL on failure */ static struct dma_async_tx_descriptor * xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan, struct dma_interleaved_template *xt, unsigned long flags) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_tx_descriptor *desc; struct xilinx_vdma_tx_segment *segment; struct xilinx_vdma_desc_hw *hw; if (!is_slave_direction(xt->dir)) return NULL; if (!xt->numf || !xt->sgl[0].size) return NULL; if (xt->frame_size != 1) return NULL; /* Allocate a transaction descriptor. */ desc = xilinx_dma_alloc_tx_descriptor(chan); if (!desc) return NULL; dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); desc->async_tx.tx_submit = xilinx_dma_tx_submit; async_tx_ack(&desc->async_tx); /* Allocate the link descriptor from DMA pool */ segment = xilinx_vdma_alloc_tx_segment(chan); if (!segment) goto error; /* Fill in the hardware descriptor */ hw = &segment->hw; hw->vsize = xt->numf; hw->hsize = xt->sgl[0].size; hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) << XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT; hw->stride |= chan->config.frm_dly << XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT; if (xt->dir != DMA_MEM_TO_DEV) { if (chan->ext_addr) { hw->buf_addr = lower_32_bits(xt->dst_start); hw->buf_addr_msb = upper_32_bits(xt->dst_start); } else { hw->buf_addr = xt->dst_start; } } else { if (chan->ext_addr) { hw->buf_addr = lower_32_bits(xt->src_start); hw->buf_addr_msb = upper_32_bits(xt->src_start); } else { hw->buf_addr = xt->src_start; } } /* Insert the segment into the descriptor segments list. */ list_add_tail(&segment->node, &desc->segments); /* Link the last hardware descriptor with the first. */ segment = list_first_entry(&desc->segments, struct xilinx_vdma_tx_segment, node); desc->async_tx.phys = segment->phys; return &desc->async_tx; error: xilinx_dma_free_tx_descriptor(chan, desc); return NULL; } /** * xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction * @dchan: DMA channel * @dma_dst: destination address * @dma_src: source address * @len: transfer length * @flags: transfer ack flags * * Return: Async transaction descriptor on success and NULL on failure */ static struct dma_async_tx_descriptor * xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len, unsigned long flags) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_tx_descriptor *desc; struct xilinx_cdma_tx_segment *segment; struct xilinx_cdma_desc_hw *hw; if (!len || len > chan->xdev->max_buffer_len) return NULL; desc = xilinx_dma_alloc_tx_descriptor(chan); if (!desc) return NULL; dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); desc->async_tx.tx_submit = xilinx_dma_tx_submit; /* Allocate the link descriptor from DMA pool */ segment = xilinx_cdma_alloc_tx_segment(chan); if (!segment) goto error; hw = &segment->hw; hw->control = len; hw->src_addr = dma_src; hw->dest_addr = dma_dst; if (chan->ext_addr) { hw->src_addr_msb = upper_32_bits(dma_src); hw->dest_addr_msb = upper_32_bits(dma_dst); } /* Insert the segment into the descriptor segments list. */ list_add_tail(&segment->node, &desc->segments); chan->desc_pendingcount++; desc->async_tx.phys = segment->phys; hw->next_desc = segment->phys; return &desc->async_tx; error: xilinx_dma_free_tx_descriptor(chan, desc); return NULL; } /** * xilinx_cdma_prep_sg - prepare descriptors for a memory sg transaction * @dchan: DMA channel * @dst_sg: Destination scatter list * @dst_sg_len: Number of entries in destination scatter list * @src_sg: Source scatter list * @src_sg_len: Number of entries in source scatter list * @flags: transfer ack flags * * Return: Async transaction descriptor on success and NULL on failure */ static struct dma_async_tx_descriptor *xilinx_cdma_prep_sg( struct dma_chan *dchan, struct scatterlist *dst_sg, unsigned int dst_sg_len, struct scatterlist *src_sg, unsigned int src_sg_len, unsigned long flags) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_tx_descriptor *desc; struct xilinx_cdma_tx_segment *segment, *prev = NULL; struct xilinx_cdma_desc_hw *hw; size_t len, dst_avail, src_avail; dma_addr_t dma_dst, dma_src; if (unlikely(dst_sg_len == 0 || src_sg_len == 0)) return NULL; if (unlikely(dst_sg == NULL || src_sg == NULL)) return NULL; desc = xilinx_dma_alloc_tx_descriptor(chan); if (!desc) return NULL; dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); desc->async_tx.tx_submit = xilinx_dma_tx_submit; dst_avail = sg_dma_len(dst_sg); src_avail = sg_dma_len(src_sg); /* * loop until there is either no more source or no more destination * scatterlist entry */ while (true) { len = min_t(size_t, src_avail, dst_avail); len = min_t(size_t, len, chan->xdev->max_buffer_len); if (len == 0) goto fetch; /* Allocate the link descriptor from DMA pool */ segment = xilinx_cdma_alloc_tx_segment(chan); if (!segment) goto error; dma_dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail; dma_src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail; hw = &segment->hw; hw->control = len; hw->src_addr = dma_src; hw->dest_addr = dma_dst; if (chan->ext_addr) { hw->src_addr_msb = upper_32_bits(dma_src); hw->dest_addr_msb = upper_32_bits(dma_dst); } if (prev) prev->hw.next_desc = segment->phys; prev = segment; dst_avail -= len; src_avail -= len; list_add_tail(&segment->node, &desc->segments); chan->desc_pendingcount++; fetch: /* Fetch the next dst scatterlist entry */ if (dst_avail == 0) { if (dst_sg_len == 0) break; dst_sg = sg_next(dst_sg); if (dst_sg == NULL) break; dst_sg_len--; dst_avail = sg_dma_len(dst_sg); } /* Fetch the next src scatterlist entry */ if (src_avail == 0) { if (src_sg_len == 0) break; src_sg = sg_next(src_sg); if (src_sg == NULL) break; src_sg_len--; src_avail = sg_dma_len(src_sg); } } /* Link the last hardware descriptor with the first. */ segment = list_first_entry(&desc->segments, struct xilinx_cdma_tx_segment, node); desc->async_tx.phys = segment->phys; prev->hw.next_desc = segment->phys; return &desc->async_tx; error: xilinx_dma_free_tx_descriptor(chan, desc); return NULL; } /** * xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction * @dchan: DMA channel * @sgl: scatterlist to transfer to/from * @sg_len: number of entries in @scatterlist * @direction: DMA direction * @flags: transfer ack flags * @context: APP words of the descriptor * * Return: Async transaction descriptor on success and NULL on failure */ static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg( struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_tx_descriptor *desc; struct xilinx_axidma_tx_segment *segment = NULL; u32 *app_w = (u32 *)context; struct scatterlist *sg; size_t copy; size_t sg_used; unsigned int i; if (!is_slave_direction(direction)) return NULL; /* Allocate a transaction descriptor. */ desc = xilinx_dma_alloc_tx_descriptor(chan); if (!desc) return NULL; dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); desc->async_tx.tx_submit = xilinx_dma_tx_submit; /* Build transactions using information in the scatter gather list */ for_each_sg(sgl, sg, sg_len, i) { sg_used = 0; /* Loop until the entire scatterlist entry is used */ while (sg_used < sg_dma_len(sg)) { struct xilinx_axidma_desc_hw *hw; /* Get a free segment */ segment = xilinx_axidma_alloc_tx_segment(chan); if (!segment) goto error; /* * Calculate the maximum number of bytes to transfer, * making sure it is less than the hw limit */ copy = min_t(size_t, sg_dma_len(sg) - sg_used, chan->xdev->max_buffer_len); hw = &segment->hw; /* Fill in the descriptor */ xilinx_axidma_buf(chan, hw, sg_dma_address(sg), sg_used, 0); hw->control = copy; if (chan->direction == DMA_MEM_TO_DEV) { if (app_w) memcpy(hw->app, app_w, sizeof(u32) * XILINX_DMA_NUM_APP_WORDS); } sg_used += copy; /* * Insert the segment into the descriptor segments * list. */ list_add_tail(&segment->node, &desc->segments); } } segment = list_first_entry(&desc->segments, struct xilinx_axidma_tx_segment, node); desc->async_tx.phys = segment->phys; /* For the last DMA_MEM_TO_DEV transfer, set EOP */ if (chan->direction == DMA_MEM_TO_DEV) { segment->hw.control |= XILINX_DMA_BD_SOP; segment = list_last_entry(&desc->segments, struct xilinx_axidma_tx_segment, node); segment->hw.control |= XILINX_DMA_BD_EOP; } return &desc->async_tx; error: xilinx_dma_free_tx_descriptor(chan, desc); return NULL; } /** * xilinx_dma_prep_dma_cyclic - prepare descriptors for a DMA_SLAVE transaction * @dchan: DMA channel * @buf_addr: Physical address of the buffer * @buf_len: Total length of the cyclic buffers * @period_len: length of individual cyclic buffer * @direction: DMA direction * @flags: transfer ack flags * * Return: Async transaction descriptor on success and NULL on failure */ static struct dma_async_tx_descriptor *xilinx_dma_prep_dma_cyclic( struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_tx_descriptor *desc; struct xilinx_axidma_tx_segment *segment, *head_segment, *prev = NULL; size_t copy, sg_used; unsigned int num_periods; int i; u32 reg; if (!period_len) return NULL; num_periods = buf_len / period_len; if (!num_periods) return NULL; if (!is_slave_direction(direction)) return NULL; /* Allocate a transaction descriptor. */ desc = xilinx_dma_alloc_tx_descriptor(chan); if (!desc) return NULL; chan->direction = direction; dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); desc->async_tx.tx_submit = xilinx_dma_tx_submit; chan->buf_idx = 0; for (i = 0; i < num_periods; ++i) { sg_used = 0; while (sg_used < period_len) { struct xilinx_axidma_desc_hw *hw; /* Get a free segment */ segment = xilinx_axidma_alloc_tx_segment(chan); if (!segment) goto error; /* * Calculate the maximum number of bytes to transfer, * making sure it is less than the hw limit */ copy = min_t(size_t, period_len - sg_used, chan->xdev->max_buffer_len); hw = &segment->hw; xilinx_axidma_buf(chan, hw, buf_addr, sg_used, period_len * i); hw->control = copy; if (prev) prev->hw.next_desc = segment->phys; prev = segment; sg_used += copy; /* * Insert the segment into the descriptor segments * list. */ list_add_tail(&segment->node, &desc->segments); } } head_segment = list_first_entry(&desc->segments, struct xilinx_axidma_tx_segment, node); desc->async_tx.phys = head_segment->phys; desc->cyclic = true; reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); reg |= XILINX_DMA_CR_CYCLIC_BD_EN_MASK; dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); segment = list_last_entry(&desc->segments, struct xilinx_axidma_tx_segment, node); segment->hw.next_desc = (u32) head_segment->phys; /* For the last DMA_MEM_TO_DEV transfer, set EOP */ if (direction == DMA_MEM_TO_DEV) { head_segment->hw.control |= XILINX_DMA_BD_SOP; segment->hw.control |= XILINX_DMA_BD_EOP; } return &desc->async_tx; error: xilinx_dma_free_tx_descriptor(chan, desc); return NULL; } /** * xilinx_dma_terminate_all - Halt the channel and free descriptors * @dchan: Driver specific DMA Channel pointer * * Return: '0' always. */ static int xilinx_dma_terminate_all(struct dma_chan *dchan) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); u32 reg; int err; if (!chan->cyclic) { err = chan->stop_transfer(chan); if (err) { dev_err(chan->dev, "Cannot stop channel %p: %x\n", chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR)); chan->err = true; } } xilinx_dma_chan_reset(chan); /* Remove and free all of the descriptors in the lists */ xilinx_dma_free_descriptors(chan); chan->idle = true; if (chan->cyclic) { reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); reg &= ~XILINX_DMA_CR_CYCLIC_BD_EN_MASK; dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg); chan->cyclic = false; } if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg) dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_CDMA_CR_SGMODE); return 0; } /** * xilinx_dma_channel_set_config - Configure VDMA channel * Run-time configuration for Axi VDMA, supports: * . halt the channel * . configure interrupt coalescing and inter-packet delay threshold * . start/stop parking * . enable genlock * * @dchan: DMA channel * @cfg: VDMA device configuration pointer * * Return: '0' on success and failure value on error */ int xilinx_vdma_channel_set_config(struct dma_chan *dchan, struct xilinx_vdma_config *cfg) { struct xilinx_dma_chan *chan = to_xilinx_chan(dchan); u32 dmacr; if (cfg->reset) return xilinx_dma_chan_reset(chan); dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR); chan->config.frm_dly = cfg->frm_dly; chan->config.park = cfg->park; /* genlock settings */ chan->config.gen_lock = cfg->gen_lock; chan->config.master = cfg->master; dmacr &= ~XILINX_DMA_DMACR_GENLOCK_EN; if (cfg->gen_lock && chan->genlock) { dmacr |= XILINX_DMA_DMACR_GENLOCK_EN; dmacr &= ~XILINX_DMA_DMACR_MASTER_MASK; dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT; } chan->config.frm_cnt_en = cfg->frm_cnt_en; chan->config.vflip_en = cfg->vflip_en; if (cfg->park) chan->config.park_frm = cfg->park_frm; else chan->config.park_frm = -1; chan->config.coalesc = cfg->coalesc; chan->config.delay = cfg->delay; if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) { dmacr &= ~XILINX_DMA_DMACR_FRAME_COUNT_MASK; dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT; chan->config.coalesc = cfg->coalesc; } if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) { dmacr &= ~XILINX_DMA_DMACR_DELAY_MASK; dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT; chan->config.delay = cfg->delay; } /* FSync Source selection */ dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK; dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT; dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr); return 0; } EXPORT_SYMBOL(xilinx_vdma_channel_set_config); /* ----------------------------------------------------------------------------- * Probe and remove */ /** * xilinx_dma_chan_remove - Per Channel remove function * @chan: Driver specific DMA channel */ static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan) { /* Disable all interrupts */ dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMAXR_ALL_IRQ_MASK); if (chan->irq > 0) free_irq(chan->irq, chan); tasklet_kill(&chan->tasklet); list_del(&chan->common.device_node); } static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk, struct clk **tx_clk, struct clk **rx_clk, struct clk **sg_clk, struct clk **tmp_clk) { int err; *tmp_clk = NULL; *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); if (IS_ERR(*axi_clk)) { err = PTR_ERR(*axi_clk); dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err); return err; } *tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk"); if (IS_ERR(*tx_clk)) *tx_clk = NULL; *rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk"); if (IS_ERR(*rx_clk)) *rx_clk = NULL; *sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk"); if (IS_ERR(*sg_clk)) *sg_clk = NULL; err = clk_prepare_enable(*axi_clk); if (err) { dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); return err; } err = clk_prepare_enable(*tx_clk); if (err) { dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); goto err_disable_axiclk; } err = clk_prepare_enable(*rx_clk); if (err) { dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); goto err_disable_txclk; } err = clk_prepare_enable(*sg_clk); if (err) { dev_err(&pdev->dev, "failed to enable sg_clk (%d)\n", err); goto err_disable_rxclk; } return 0; err_disable_rxclk: clk_disable_unprepare(*rx_clk); err_disable_txclk: clk_disable_unprepare(*tx_clk); err_disable_axiclk: clk_disable_unprepare(*axi_clk); return err; } static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk, struct clk **dev_clk, struct clk **tmp_clk, struct clk **tmp1_clk, struct clk **tmp2_clk) { int err; *tmp_clk = NULL; *tmp1_clk = NULL; *tmp2_clk = NULL; *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); if (IS_ERR(*axi_clk)) { err = PTR_ERR(*axi_clk); dev_err(&pdev->dev, "failed to get axi_clk (%d)\n", err); return err; } *dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk"); if (IS_ERR(*dev_clk)) { err = PTR_ERR(*dev_clk); dev_err(&pdev->dev, "failed to get dev_clk (%d)\n", err); return err; } err = clk_prepare_enable(*axi_clk); if (err) { dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); return err; } err = clk_prepare_enable(*dev_clk); if (err) { dev_err(&pdev->dev, "failed to enable dev_clk (%d)\n", err); goto err_disable_axiclk; } return 0; err_disable_axiclk: clk_disable_unprepare(*axi_clk); return err; } static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk, struct clk **tx_clk, struct clk **txs_clk, struct clk **rx_clk, struct clk **rxs_clk) { int err; *axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk"); if (IS_ERR(*axi_clk)) { err = PTR_ERR(*axi_clk); dev_err(&pdev->dev, "failed to get axi_aclk (%d)\n", err); return err; } *tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk"); if (IS_ERR(*tx_clk)) *tx_clk = NULL; *txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk"); if (IS_ERR(*txs_clk)) *txs_clk = NULL; *rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk"); if (IS_ERR(*rx_clk)) *rx_clk = NULL; *rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk"); if (IS_ERR(*rxs_clk)) *rxs_clk = NULL; err = clk_prepare_enable(*axi_clk); if (err) { dev_err(&pdev->dev, "failed to enable axi_clk (%d)\n", err); return err; } err = clk_prepare_enable(*tx_clk); if (err) { dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); goto err_disable_axiclk; } err = clk_prepare_enable(*txs_clk); if (err) { dev_err(&pdev->dev, "failed to enable txs_clk (%d)\n", err); goto err_disable_txclk; } err = clk_prepare_enable(*rx_clk); if (err) { dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); goto err_disable_txsclk; } err = clk_prepare_enable(*rxs_clk); if (err) { dev_err(&pdev->dev, "failed to enable rxs_clk (%d)\n", err); goto err_disable_rxclk; } return 0; err_disable_rxclk: clk_disable_unprepare(*rx_clk); err_disable_txsclk: clk_disable_unprepare(*txs_clk); err_disable_txclk: clk_disable_unprepare(*tx_clk); err_disable_axiclk: clk_disable_unprepare(*axi_clk); return err; } static void xdma_disable_allclks(struct xilinx_dma_device *xdev) { clk_disable_unprepare(xdev->rxs_clk); clk_disable_unprepare(xdev->rx_clk); clk_disable_unprepare(xdev->txs_clk); clk_disable_unprepare(xdev->tx_clk); clk_disable_unprepare(xdev->axi_clk); } /** * xilinx_dma_chan_probe - Per Channel Probing * It get channel features from the device tree entry and * initialize special channel handling routines * * @xdev: Driver specific device structure * @node: Device node * @chan_id: DMA Channel id * * Return: '0' on success and failure value on error */ static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev, struct device_node *node, int chan_id) { struct xilinx_dma_chan *chan; bool has_dre = false; u32 value, width; int err; /* Allocate and initialize the channel structure */ chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; chan->dev = xdev->dev; chan->xdev = xdev; chan->has_sg = xdev->has_sg; chan->desc_pendingcount = 0x0; chan->ext_addr = xdev->ext_addr; /* This variable ensures that descriptors are not * Submitted when dma engine is in progress. This variable is * Added to avoid polling for a bit in the status register to * Know dma state in the driver hot path. */ chan->idle = true; spin_lock_init(&chan->lock); INIT_LIST_HEAD(&chan->pending_list); INIT_LIST_HEAD(&chan->done_list); INIT_LIST_HEAD(&chan->active_list); INIT_LIST_HEAD(&chan->free_seg_list); /* Retrieve the channel properties from the device tree */ has_dre = of_property_read_bool(node, "xlnx,include-dre"); chan->genlock = of_property_read_bool(node, "xlnx,genlock-mode"); err = of_property_read_u32(node, "xlnx,datawidth", &value); if (err) { dev_err(xdev->dev, "missing xlnx,datawidth property\n"); return err; } width = value >> 3; /* Convert bits to bytes */ /* If data width is greater than 8 bytes, DRE is not in hw */ if (width > 8) has_dre = false; if (!has_dre) xdev->common.copy_align = fls(width - 1); if (of_device_is_compatible(node, "xlnx,axi-vdma-mm2s-channel") || of_device_is_compatible(node, "xlnx,axi-dma-mm2s-channel") || of_device_is_compatible(node, "xlnx,axi-cdma-channel")) { chan->direction = DMA_MEM_TO_DEV; chan->id = chan_id; xdev->common.directions = BIT(DMA_MEM_TO_DEV); chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET; if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET; chan->config.park = 1; if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH || xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S) chan->flush_on_fsync = true; } } else if (of_device_is_compatible(node, "xlnx,axi-vdma-s2mm-channel") || of_device_is_compatible(node, "xlnx,axi-dma-s2mm-channel")) { chan->direction = DMA_DEV_TO_MEM; chan->id = chan_id; xdev->common.directions |= BIT(DMA_DEV_TO_MEM); chan->has_vflip = of_property_read_bool(node, "xlnx,enable-vert-flip"); if (chan->has_vflip) { chan->config.vflip_en = dma_read(chan, XILINX_VDMA_REG_ENABLE_VERTICAL_FLIP) & XILINX_VDMA_ENABLE_VERTICAL_FLIP; } chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET; if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET; chan->config.park = 1; if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH || xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM) chan->flush_on_fsync = true; } } else { dev_err(xdev->dev, "Invalid channel compatible node\n"); return -EINVAL; } /* Request the interrupt */ chan->irq = irq_of_parse_and_map(node, 0); err = request_irq(chan->irq, xilinx_dma_irq_handler, IRQF_SHARED, "xilinx-dma-controller", chan); if (err) { dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq); return err; } if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { chan->start_transfer = xilinx_dma_start_transfer; chan->stop_transfer = xilinx_dma_stop_transfer; } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { chan->start_transfer = xilinx_cdma_start_transfer; chan->stop_transfer = xilinx_cdma_stop_transfer; } else { chan->start_transfer = xilinx_vdma_start_transfer; chan->stop_transfer = xilinx_dma_stop_transfer; } /* Initialize the tasklet */ tasklet_init(&chan->tasklet, xilinx_dma_do_tasklet, (unsigned long)chan); /* * Initialize the DMA channel and add it to the DMA engine channels * list. */ chan->common.device = &xdev->common; list_add_tail(&chan->common.device_node, &xdev->common.channels); xdev->chan[chan->id] = chan; /* Reset the channel */ err = xilinx_dma_chan_reset(chan); if (err < 0) { dev_err(xdev->dev, "Reset channel failed\n"); return err; } return 0; } /** * xilinx_dma_child_probe - Per child node probe * It get number of dma-channels per child node from * device-tree and initializes all the channels. * * @xdev: Driver specific device structure * @node: Device node * * Return: 0 always. */ static int xilinx_dma_child_probe(struct xilinx_dma_device *xdev, struct device_node *node) { int i, nr_channels = 1; for (i = 0; i < nr_channels; i++) xilinx_dma_chan_probe(xdev, node, xdev->chan_id++); xdev->nr_channels += nr_channels; return 0; } /** * of_dma_xilinx_xlate - Translation function * @dma_spec: Pointer to DMA specifier as found in the device tree * @ofdma: Pointer to DMA controller data * * Return: DMA channel pointer on success and NULL on error */ static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct xilinx_dma_device *xdev = ofdma->of_dma_data; int chan_id = dma_spec->args[0]; if (chan_id >= xdev->nr_channels || !xdev->chan[chan_id]) return NULL; return dma_get_slave_channel(&xdev->chan[chan_id]->common); } static const struct xilinx_dma_config axidma_config = { .dmatype = XDMA_TYPE_AXIDMA, .clk_init = axidma_clk_init, }; static const struct xilinx_dma_config axicdma_config = { .dmatype = XDMA_TYPE_CDMA, .clk_init = axicdma_clk_init, }; static const struct xilinx_dma_config axivdma_config = { .dmatype = XDMA_TYPE_VDMA, .clk_init = axivdma_clk_init, }; static const struct of_device_id xilinx_dma_of_ids[] = { { .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config }, { .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config }, { .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config }, {} }; MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids); /** * xilinx_dma_probe - Driver probe function * @pdev: Pointer to the platform_device structure * * Return: '0' on success and failure value on error */ static int xilinx_dma_probe(struct platform_device *pdev) { int (*clk_init)(struct platform_device *, struct clk **, struct clk **, struct clk **, struct clk **, struct clk **) = axivdma_clk_init; struct device_node *node = pdev->dev.of_node; struct xilinx_dma_device *xdev; struct device_node *child, *np = pdev->dev.of_node; struct resource *io; u32 num_frames, addr_width, len_width; int i, err; /* Allocate and initialize the DMA engine structure */ xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); if (!xdev) return -ENOMEM; xdev->dev = &pdev->dev; if (np) { const struct of_device_id *match; match = of_match_node(xilinx_dma_of_ids, np); if (match && match->data) { xdev->dma_config = match->data; clk_init = xdev->dma_config->clk_init; } } err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk, &xdev->rx_clk, &xdev->rxs_clk); if (err) return err; /* Request and map I/O memory */ io = platform_get_resource(pdev, IORESOURCE_MEM, 0); xdev->regs = devm_ioremap_resource(&pdev->dev, io); if (IS_ERR(xdev->regs)) return PTR_ERR(xdev->regs); /* Retrieve the DMA engine properties from the device tree */ xdev->has_sg = of_property_read_bool(node, "xlnx,include-sg"); xdev->max_buffer_len = GENMASK(XILINX_DMA_MAX_TRANS_LEN_MAX - 1, 0); if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { if (!of_property_read_u32(node, "xlnx,sg-length-width", &len_width)) { if (len_width < XILINX_DMA_MAX_TRANS_LEN_MIN || len_width > XILINX_DMA_V2_MAX_TRANS_LEN_MAX) { dev_warn(xdev->dev, "invalid xlnx,sg-length-width property value using default width\n"); } else { if (len_width > XILINX_DMA_MAX_TRANS_LEN_MAX) dev_warn(xdev->dev, "Please ensure that IP supports buffer length > 23 bits\n"); xdev->max_buffer_len = GENMASK(len_width - 1, 0); } } } if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { err = of_property_read_u32(node, "xlnx,num-fstores", &num_frames); if (err < 0) { dev_err(xdev->dev, "missing xlnx,num-fstores property\n"); return err; } err = of_property_read_u32(node, "xlnx,flush-fsync", &xdev->flush_on_fsync); if (err < 0) dev_warn(xdev->dev, "missing xlnx,flush-fsync property\n"); } err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width); if (err < 0) dev_warn(xdev->dev, "missing xlnx,addrwidth property\n"); if (addr_width > 32) xdev->ext_addr = true; else xdev->ext_addr = false; /* Set the dma mask bits */ dma_set_mask(xdev->dev, DMA_BIT_MASK(addr_width)); /* Initialize the DMA engine */ xdev->common.dev = &pdev->dev; INIT_LIST_HEAD(&xdev->common.channels); if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) { dma_cap_set(DMA_SLAVE, xdev->common.cap_mask); dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask); } xdev->common.dst_addr_widths = BIT(addr_width / 8); xdev->common.src_addr_widths = BIT(addr_width / 8); xdev->common.device_alloc_chan_resources = xilinx_dma_alloc_chan_resources; xdev->common.device_free_chan_resources = xilinx_dma_free_chan_resources; xdev->common.device_terminate_all = xilinx_dma_terminate_all; xdev->common.device_tx_status = xilinx_dma_tx_status; xdev->common.device_issue_pending = xilinx_dma_issue_pending; if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) { dma_cap_set(DMA_CYCLIC, xdev->common.cap_mask); xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg; xdev->common.device_prep_dma_cyclic = xilinx_dma_prep_dma_cyclic; /* Residue calculation is supported by only AXI DMA and CDMA */ xdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; } else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) { dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask); dma_cap_set(DMA_SG, xdev->common.cap_mask); xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy; xdev->common.device_prep_dma_sg = xilinx_cdma_prep_sg; /* Residue calculation is supported by only AXI DMA and CDMA */ xdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; } else { xdev->common.device_prep_interleaved_dma = xilinx_vdma_dma_prep_interleaved; } platform_set_drvdata(pdev, xdev); /* Initialize the channels */ for_each_child_of_node(node, child) { err = xilinx_dma_child_probe(xdev, child); if (err < 0) goto disable_clks; } if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) { for (i = 0; i < xdev->nr_channels; i++) if (xdev->chan[i]) xdev->chan[i]->num_frms = num_frames; } /* Register the DMA engine with the core */ dma_async_device_register(&xdev->common); err = of_dma_controller_register(node, of_dma_xilinx_xlate, xdev); if (err < 0) { dev_err(&pdev->dev, "Unable to register DMA to DT\n"); dma_async_device_unregister(&xdev->common); goto error; } if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) dev_info(&pdev->dev, "Xilinx AXI DMA Engine Driver Probed!!\n"); else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) dev_info(&pdev->dev, "Xilinx AXI CDMA Engine Driver Probed!!\n"); else dev_info(&pdev->dev, "Xilinx AXI VDMA Engine Driver Probed!!\n"); return 0; disable_clks: xdma_disable_allclks(xdev); error: for (i = 0; i < xdev->nr_channels; i++) if (xdev->chan[i]) xilinx_dma_chan_remove(xdev->chan[i]); return err; } /** * xilinx_dma_remove - Driver remove function * @pdev: Pointer to the platform_device structure * * Return: Always '0' */ static int xilinx_dma_remove(struct platform_device *pdev) { struct xilinx_dma_device *xdev = platform_get_drvdata(pdev); int i; of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&xdev->common); for (i = 0; i < xdev->nr_channels; i++) if (xdev->chan[i]) xilinx_dma_chan_remove(xdev->chan[i]); xdma_disable_allclks(xdev); return 0; } static struct platform_driver xilinx_vdma_driver = { .driver = { .name = "xilinx-vdma", .of_match_table = xilinx_dma_of_ids, }, .probe = xilinx_dma_probe, .remove = xilinx_dma_remove, }; module_platform_driver(xilinx_vdma_driver); MODULE_AUTHOR("Xilinx and Xianjun Jiao"); MODULE_DESCRIPTION("Xilinx VDMA driver"); MODULE_LICENSE("GPL v2");