// Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos // SPDX-FileCopyrightText: 2022 UGent // SPDX-License-Identifier: AGPL-3.0-or-later #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IIO_AD9361_USE_PRIVATE_H_ #include <../../drivers/iio/adc/ad9361_regs.h> #include <../../drivers/iio/adc/ad9361.h> #include <../../drivers/iio/adc/ad9361_private.h> #include <../../drivers/iio/frequency/cf_axi_dds.h> extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, bool tx1, bool tx2, bool immed); extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, struct ctrl_outs_control *ctrl); extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg); #include "../user_space/sdrctl_src/nl80211_testmode_def.h" #include "hw_def.h" #include "sdr.h" #include "git_rev.h" // driver API of component driver extern struct tx_intf_driver_api *tx_intf_api; extern struct rx_intf_driver_api *rx_intf_api; extern struct openofdm_tx_driver_api *openofdm_tx_api; extern struct openofdm_rx_driver_api *openofdm_rx_api; extern struct xpu_driver_api *xpu_api; u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); u8 gen_mpdu_delim_crc(u16 m); u32 reverse32(u32 d); static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant); static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant); int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction); int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction); int rssi_correction_lookup_table(u32 freq_MHz); #include "sdrctl_intf.c" #include "sysfs_intf.c" static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1) // Internal indication variables after parsing test_mode static bool AGGR_ENABLE = false; static bool TX_OFFSET_TUNING_ENABLE = false; static int init_tx_att = 0; MODULE_AUTHOR("Xianjun Jiao"); MODULE_DESCRIPTION("SDR driver"); MODULE_LICENSE("GPL v2"); module_param(test_mode, int, 0); MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)"); module_param(init_tx_att, int, 0); MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation"); // ---------------rfkill--------------------------------------- static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) { int reg; if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH) reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); else reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) return true;// 0 off, 1 on return false; } void openwifi_rfkill_init(struct ieee80211_hw *hw) { struct openwifi_priv *priv = hw->priv; priv->rfkill_off = openwifi_is_radio_enabled(priv); printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); wiphy_rfkill_start_polling(hw->wiphy); } void openwifi_rfkill_poll(struct ieee80211_hw *hw) { bool enabled; struct openwifi_priv *priv = hw->priv; enabled = openwifi_is_radio_enabled(priv); // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); if (unlikely(enabled != priv->rfkill_off)) { priv->rfkill_off = enabled; printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); } } void openwifi_rfkill_exit(struct ieee80211_hw *hw) { printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); wiphy_rfkill_stop_polling(hw->wiphy); } //----------------rfkill end----------------------------------- inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction) { return ((rssi_correction+rssi_dbm)<<1); } inline int rssi_correction_lookup_table(u32 freq_MHz) { int rssi_correction; if (freq_MHz<2412) { rssi_correction = 153; } else if (freq_MHz<=2484) { rssi_correction = 153; } else if (freq_MHz<5160) { rssi_correction = 153; } else if (freq_MHz<=5240) { rssi_correction = 145; } else if (freq_MHz<=5320) { rssi_correction = 148; } else { rssi_correction = 148; } return rssi_correction; } static void ad9361_rf_set_channel(struct ieee80211_hw *dev, struct ieee80211_conf *conf) { struct openwifi_priv *priv = dev->priv; u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz; u32 actual_tx_lo; u32 spi_disable; u32 diff_tx_lo; bool change_flag = (actual_rx_lo != priv->actual_rx_lo); int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th; struct timeval tv; unsigned long time_before = 0; unsigned long time_after = 0; if (change_flag) { actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo; // -------------------Tx Lo tuning------------------- clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) ); priv->actual_tx_lo = actual_tx_lo; // -------------------Rx Lo tuning------------------- clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) ); priv->actual_rx_lo = actual_rx_lo; // call Tx Quadrature calibration if frequency change is more than 100MHz if (diff_tx_lo > 100) { priv->last_tx_quad_cal_lo = actual_tx_lo; do_gettimeofday(&tv); time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // disable FPGA SPI module xpu_api->XPU_REG_SPI_DISABLE_write(1); ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase); // restore original SPI disable state xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); do_gettimeofday(&tv); time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); } // get rssi correction value from lookup table priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo); // set appropriate lbt threshold // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44 // auto_lbt_th = ((priv->rssi_correction-62-16)<<1); auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1) static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction); fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th); xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); priv->last_auto_fpga_lbt_th = auto_lbt_th; // Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h) receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH])); openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction)); if (actual_rx_lo < 2500) { if (priv->band != BAND_2_4GHZ) { priv->band = BAND_2_4GHZ; xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); } } else { if (priv->band != BAND_5_8GHZ) { priv->band = BAND_5_8GHZ; xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); } } printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d) tx_quad_cal duration %lu us\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th, time_after-time_before); } } const struct openwifi_rf_ops ad9361_rf_ops = { .name = "ad9361", // .init = ad9361_rf_init, // .stop = ad9361_rf_stop, .set_chan = ad9361_rf_set_channel, // .calc_rssi = ad9361_rf_calc_rssi, }; u16 reverse16(u16 d) { union u16_byte2 tmp0, tmp1; tmp0.a = d; tmp1.c[0] = tmp0.c[1]; tmp1.c[1] = tmp0.c[0]; return(tmp1.a); } u32 reverse32(u32 d) { union u32_byte4 tmp0, tmp1; tmp0.a = d; tmp1.c[0] = tmp0.c[3]; tmp1.c[1] = tmp0.c[2]; tmp1.c[2] = tmp0.c[1]; tmp1.c[3] = tmp0.c[0]; return(tmp1.a); } static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) { struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); int i; ring->stop_flag = 0; ring->bd_wr_idx = 0; ring->bd_rd_idx = 0; ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); if (ring->bds==NULL) { printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); return -ENOMEM; } for (i = 0; i < NUM_TX_BD; i++) { ring->bds[i].skb_linked=0; // for tx, skb is from upper layer //at first right after skb allocated, head, data, tail are the same. ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine ring->bds[i].seq_no = 0; } return 0; } static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) { struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); int i; ring->stop_flag = 0; ring->bd_wr_idx = 0; ring->bd_rd_idx = 0; for (i = 0; i < NUM_TX_BD; i++) { if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) continue; if (ring->bds[i].dma_mapping_addr != 0) dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); // if (ring->bds[i].skb_linked!=NULL) // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); ring->bds[i].skb_linked=0; ring->bds[i].dma_mapping_addr = 0; ring->bds[i].seq_no = 0; } if (ring->bds) kfree(ring->bds); ring->bds = NULL; } static int openwifi_init_rx_ring(struct openwifi_priv *priv) { int i; u8 *pdata_tmp; priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); if (!priv->rx_cyclic_buf) { printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); return(-1); } // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA for (i=0; irx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning (*((u32*)(pdata_tmp+0 ))) = 0; (*((u32*)(pdata_tmp+4 ))) = 0; } printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str); return 0; } static void openwifi_free_rx_ring(struct openwifi_priv *priv) { if (priv->rx_cyclic_buf) dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); priv->rx_cyclic_buf_dma_mapping_addr = 0; priv->rx_cyclic_buf = 0; } static int rx_dma_setup(struct ieee80211_hw *dev){ struct openwifi_priv *priv = dev->priv; struct dma_device *rx_dev = priv->rx_chan->device; priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); if (!(priv->rxd)) { openwifi_free_rx_ring(priv); printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); return(-1); } priv->rxd->callback = 0; priv->rxd->callback_param = 0; priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); if (dma_submit_error(priv->rx_cookie)) { printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); return(-1); } dma_async_issue_pending(priv->rx_chan); return(0); } inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction) { int rssi_db, rssi_dbm; rssi_db = (rssi_half_db>>1); rssi_dbm = rssi_db - rssi_correction; rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm); return rssi_dbm; } static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) { struct ieee80211_hw *dev = dev_id; struct openwifi_priv *priv = dev->priv; struct ieee80211_rx_status rx_status = {0}; struct sk_buff *skb; struct ieee80211_hdr *hdr; u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; bool ht_flag, short_gi, ht_aggr, ht_aggr_last; // u32 dma_driver_buf_idx_mod; u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; s8 signal; u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0; bool content_ok = false, len_overflow = false; #ifdef USE_NEW_RX_INTERRUPT int i; spin_lock(&priv->lock); for (i=0; irx_cyclic_buf + i*RX_BD_BUF_SIZE; agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer continue; #else static u8 target_buf_idx_old = 0; spin_lock(&priv->lock); while(1) { // loop all rx buffers that have new rx packets pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer break; #endif tsft_low = (*((u32*)(pdata_tmp+0 ))); tsft_high = (*((u32*)(pdata_tmp+4 ))); rssi_val = (*((u16*)(pdata_tmp+8 ))); len = (*((u16*)(pdata_tmp+12))); len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); rate_idx = (*((u16*)(pdata_tmp+14))); ht_flag = ((rate_idx&0x10)!=0); short_gi = ((rate_idx&0x20)!=0); ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); rate_idx = (rate_idx&0x1F); fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation // dma_driver_buf_idx_mod = (state.residue&0x7f); fcs_ok = ((fcs_ok&0x80)!=0); if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { // printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); // } content_ok = true; } else { printk("%s openwifi_rx: WARNING content!\n", sdr_compatible_str); content_ok = false; } rssi_val = (rssi_val>>1); if ( (rssi_val+128)rssi_correction ) signal = -128; else signal = rssi_val - priv->rssi_correction; // fc_di = (*((u32*)(pdata_tmp+16))); // addr1_high16 = (*((u16*)(pdata_tmp+16+4))); // addr1_low32 = (*((u32*)(pdata_tmp+16+4+2))); // addr2_high16 = (*((u16*)(pdata_tmp+16+6+4))); // addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2))); // addr3_high16 = (*((u16*)(pdata_tmp+16+12+4))); // addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2))); if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) { hdr = (struct ieee80211_hdr *)(pdata_tmp+16); addr1_low32 = *((u32*)(hdr->addr1+2)); addr1_high16 = *((u16*)(hdr->addr1)); if (len>=20) { addr2_low32 = *((u32*)(hdr->addr2+2)); addr2_high16 = *((u16*)(hdr->addr2)); } if (len>=26) { addr3_low32 = *((u32*)(hdr->addr3+2)); addr3_high16 = *((u16*)(hdr->addr3)); } if (len>=28) sc = hdr->seq_ctrl; if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) ) printk("%s openwifi_rx:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), #ifdef USE_NEW_RX_INTERRUPT sc, fcs_ok, i, signal); #else sc, fcs_ok, target_buf_idx_old, signal); #endif } // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; if (content_ok) { skb = dev_alloc_skb(len); if (skb) { skb_put_data(skb,pdata_tmp+16,len); rx_status.antenna = priv->runtime_rx_ant_cfg; // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; rx_status.signal = signal; rx_status.freq = dev->conf.chandef.chan->center_freq; rx_status.band = dev->conf.chandef.chan->band; rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); rx_status.flag |= RX_FLAG_MACTIME_START; if (!fcs_ok) rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; if (rate_idx <= 15) rx_status.encoding = RX_ENC_LEGACY; else rx_status.encoding = RX_ENC_HT; rx_status.bw = RATE_INFO_BW_20; if (short_gi) rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; if(ht_aggr) { rx_status.ampdu_reference = priv->ampdu_reference; rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; if (ht_aggr_last) rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; } memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. ieee80211_rx_irqsafe(dev, skb); // call mac80211 function } else printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); if(ht_aggr_last) priv->ampdu_reference++; } (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed loop_count++; #ifndef USE_NEW_RX_INTERRUPT target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); #endif } if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) ) printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count); // openwifi_rx_out: spin_unlock(&priv->lock); return IRQ_HANDLED; } static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) { struct ieee80211_hw *dev = dev_id; struct openwifi_priv *priv = dev->priv; struct openwifi_ring *ring; struct sk_buff *skb; struct ieee80211_tx_info *info; u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0; u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; u8 nof_retx=-1, last_bd_rd_idx, i; u64 blk_ack_bitmap; // u16 prio_rd_idx_store[64]={0}; bool tx_fail=false; spin_lock(&priv->lock); while(1) { // loop all packets that have been sent by FPGA reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); if (reg_val1!=0xFFFFFFFF) { nof_retx = (reg_val1&0xF); last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); prio = ((reg_val1>>17)&0x3); num_slot_random = ((reg_val1>>19)&0x1FF); //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); cw = ((reg_val1>>28)&0xF); //cw = ((0xF0000000 & reg_val1) >> 28); if(cw > 10) { cw = 10 ; num_slot_random += 512 ; } pkt_cnt = (reg_val2&0x3F); blk_ack_ssn = ((reg_val2>>6)&0xFFF); ring = &(priv->tx_ring[prio]); if ( ring->stop_flag == 1) { // Wake up Linux queue if FPGA and driver ring have room queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) { // printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter); printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx); ieee80211_wake_queue(dev, prio); ring->stop_flag = 0; } } for(i = 1; i <= pkt_cnt; i++) { ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; seq_no = ring->bds[ring->bd_rd_idx].seq_no; skb = ring->bds[ring->bd_rd_idx].skb_linked; dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, skb->len, DMA_MEM_TO_DEV); info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); // Aggregation packet if(pkt_cnt > 1) { start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); info->flags |= IEEE80211_TX_STAT_AMPDU; info->status.ampdu_len = 1; info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; skb_pull(skb, LEN_MPDU_DELIM); //skb_trim(skb, num_byte_pad_skb); } // Normal packet else { tx_fail = ((blk_ack_bitmap&0x1)==0); info->flags &= (~IEEE80211_TX_CTL_AMPDU); } if (tx_fail == false) info->flags |= IEEE80211_TX_STAT_ACK; info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate info->status.rates[1].idx = -1; info->status.rates[2].idx = -1; info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 info->status.antenna = priv->runtime_tx_ant_cfg; if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx); if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) ) printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw); ieee80211_tx_status_irqsafe(dev, skb); } loop_count++; // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); } else break; } if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); spin_unlock(&priv->lock); return IRQ_HANDLED; } u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) { u32 i, crc = 0; u8 idx; for( i = 0; i < num_bytes; i++) { idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); crc = (crc >> 4) ^ crc_table[idx]; idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); crc = (crc >> 4) ^ crc_table[idx]; } return crc; } u8 gen_mpdu_delim_crc(u16 m) { u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; for (i = 0; i < 16; i++) { temp = c[7] ^ ((m >> i) & 0x01); c[7] = c[6]; c[6] = c[5]; c[5] = c[4]; c[4] = c[3]; c[3] = c[2]; c[2] = c[1] ^ temp; c[1] = c[0] ^ temp; c[0] = temp; } mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); return mpdu_delim_crc; } static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c cdev_to_gpio_led_data(struct led_classdev *led_cdev) { return container_of(led_cdev, struct gpio_led_data, cdev); } inline int calc_n_ofdm(int num_octet, int n_dbps) { int num_bit, num_ofdm_sym; num_bit = 22+num_octet*8; num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0); return (num_ofdm_sym); } inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs) { // COTS wifi ht QoS data duration field analysis (lots of capture): // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps // ack ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps // ack ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44 // ht aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps // ack ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36 // ht aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps // ack ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate // modulate coding ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps // BPSK 1/2 0 26 4 24 // QPSK 1/2 1 52 6 48 // QPSK 3/4 2 78 7 72 // 16QAM 1/2 3 104 8 96 // 16QAM 3/4 4 156 9 144 // 64QAM 2/3 5 208 10 192 // 64QAM 3/4 6 234 11 216 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS // other observation: ht always use QoS data, not data (sub-type) // other observation: management/control frame always in non-ht __le16 dur = 0; u16 n_dbps; int num_octet, num_ofdm_sym; if (ieee80211_is_pspoll(frame_control)) { dur = (aid|0xc000); } else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) { rate_hw_value = (rate_hw_value>6?6:rate_hw_value); n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]); num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps); dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble // printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str, // num_octet, n_dbps, num_ofdm_sym, dur); } else { printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str); } return dur; } static void openwifi_tx(struct ieee80211_hw *dev, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct openwifi_priv *priv = dev->priv; unsigned long flags; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct openwifi_ring *ring = NULL; struct sk_buff *skb_new; // temp skb for internal use dma_addr_t dma_mapping_addr; unsigned int i; u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad; u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps; u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx; bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false; __le16 frame_control,duration_id; u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0; enum dma_status status; static u32 addr1_low32_prev = -1; static u16 rate_hw_value_prev = -1; static u8 pkt_need_ack_prev = -1; static u16 addr1_high16_prev = -1; static __le16 duration_id_prev = -1; static u8 prio_prev = -1; static u8 retry_limit_raw_prev = -1; static u8 use_short_gi_prev = -1; // static bool led_status=0; // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); // if ( (priv->phy_tx_sn&7) ==0 ) { // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); // if (openofdm_state_history!=openofdm_state_history_old){ // led_status = (~led_status); // openofdm_state_history_old = openofdm_state_history; // gpiod_set_value(led_dat->gpiod, led_status); // } // } if (skb->data_len>0) {// more data are not in linear data area skb->data printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); goto openwifi_tx_early_out; } len_mpdu = skb->len; // get Linux priority/queue setting info and target mac address prio = skb_get_queue_mapping(skb); if (prio >= MAX_NUM_HW_QUEUE) { printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio); goto openwifi_tx_early_out; } addr1_low32 = *((u32*)(hdr->addr1+2)); ring = &(priv->tx_ring[prio]); // -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" ----------- if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config queue_idx = prio; } else {// customized prio to queue_idx mapping //if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only // check current packet belonging to which slice/hw-queue for (i=0; idest_mac_addr_queue_map[i] == addr1_low32 ) { break; } } //} queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest. } // -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------ // get other info from packet header addr1_high16 = *((u16*)(hdr->addr1)); if (len_mpdu>=20) { addr2_low32 = *((u32*)(hdr->addr2+2)); addr2_high16 = *((u16*)(hdr->addr2)); } if (len_mpdu>=26) { addr3_low32 = *((u32*)(hdr->addr3+2)); addr3_high16 = *((u16*)(hdr->addr3)); } frame_control=hdr->frame_control; pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK)); retry_limit_raw = info->control.rates[0].count; rc_flags = info->control.rates[0].flags; use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); qos_hdr = (*(ieee80211_get_qos_ctl(hdr))); // get Linux rate (MCS) setting rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; // drv_tx_reg_val[DRV_TX_REG_IDX_RATE] // override rate legacy: 4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M // drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT] // override rate ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) { rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4; use_short_gi = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10); } else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0) rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF); // TODO: need to map rate_hw_value back to info->control.rates[0].idx!!! } // Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC! if (use_ht_aggr && rate_hw_value==0) rate_hw_value = 1; sifs = (priv->actual_rx_lo<2500?10:16); if (use_ht_rate) { // printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs); hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later } duration_id = hdr->duration_id; if (use_rts_cts) printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); if (use_cts_protect) { cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); } else if (force_use_cts_protect) { // could override mac80211 setting here. cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) if (pkt_need_ack) ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]); traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps); cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); } // this is 11b stuff // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); if (len_mpdu>=28) { if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) { priv->seqno += 0x10; drv_seqno = true; } hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(priv->seqno); } sc = hdr->seq_ctrl; seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; } // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); // -----------end of preprocess some info from header and skb---------------- // /* HW will perform RTS-CTS when only RTS flags is set. // * HW will perform CTS-to-self when both RTS and CTS flags are set. // * RTS rate and RTS duration will be used also for CTS-to-self. // */ // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config // len_mpdu, info); // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config // len_mpdu, info); // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); // } if(use_ht_aggr) { if(ieee80211_is_data_qos(frame_control) == false) { printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str); goto openwifi_tx_early_out; } // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) { addr1_low32_prev = addr1_low32; addr1_high16_prev = addr1_high16; duration_id_prev = duration_id; rate_hw_value_prev = rate_hw_value; use_short_gi_prev = use_short_gi; prio_prev = prio; retry_limit_raw_prev = retry_limit_raw; pkt_need_ack_prev = pkt_need_ack; ht_aggr_start = true; } } else { // psdu = [ MPDU ] len_psdu = len_mpdu; // // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason: // // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2. // // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2). // // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship. // // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately. // addr1_low32_prev = -1; // addr1_high16_prev = -1; // duration_id_prev = -1; // use_short_gi_prev = -1; // rate_hw_value_prev = -1; // prio_prev = -1; // retry_limit_raw_prev = -1; // pkt_need_ack_prev = -1; } num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); if ( ( (!pkt_need_ack)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) ) printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), seq_no, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx, // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, ring->bd_wr_idx,ring->bd_rd_idx); // check whether the packet is bigger than DMA buffer size num_dma_byte = (num_dma_symbol< TX_BD_BUF_SIZE) { printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); goto openwifi_tx_early_out; } // Copy MPDU delimiter and padding into sk_buff if(use_ht_aggr) { // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary if (skb_headroom(skb)bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM); if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); goto openwifi_tx_early_out; } if (skb->sk != NULL) skb_set_owner_w(skb_new, skb->sk); dev_kfree_skb(skb); skb = skb_new; } skb_push( skb, LEN_MPDU_DELIM ); dma_buf = skb->data; // fill in MPDU delimiter *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); *((u8 *)(dma_buf+3)) = 0x4e; // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); if (skb_tailroom(skb)bd_wr_idx, skb_tailroom(skb), num_byte_pad); if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); goto openwifi_tx_early_out; } if (skb->sk != NULL) skb_set_owner_w(skb_new, skb->sk); dev_kfree_skb(skb); skb = skb_new; } skb_put( skb, num_byte_pad ); // fill in MPDU CRC *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); // fill in MPDU delimiter padding memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. // If they have different lengths, add "empty MPDU delimiter" for alignment if(num_dma_byte == len_psdu + 4) { *((u32*)(dma_buf+len_psdu)) = 0x4e140000; len_psdu = num_dma_byte; } } else { // Extend sk_buff to hold padding num_byte_pad = num_dma_byte - len_mpdu; if (skb_tailroom(skb)bd_wr_idx, skb_tailroom(skb), num_byte_pad); if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); goto openwifi_tx_early_out; } if (skb->sk != NULL) skb_set_owner_w(skb_new, skb->sk); dev_kfree_skb(skb); skb = skb_new; } skb_put( skb, num_byte_pad ); dma_buf = skb->data; } // for(i = 0; i <= num_dma_symbol; i++) // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol ); phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); /* We must be sure that tx_flags is written last because the HW * looks at it to check if the rest of data is valid or not */ //wmb(); // entry->flags = cpu_to_le32(tx_flags); /* We must be sure this has been written before following HW * register write, because this write will make the HW attempts * to DMA the just-written data */ //wmb(); spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))stop_flag==1 ) { ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); ring->stop_flag = 1; goto openwifi_tx_early_out_after_lock; } // --------end of check whether FPGA fifo (queue_idx) has enough room------------ status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); while(delay_count<100 && status!=DMA_COMPLETE) { status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); delay_count++; udelay(4); // udelay(priv->stat.dbg_ch1); } if (status!=DMA_COMPLETE) { printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); goto openwifi_tx_early_out_after_lock; } //-------------------------fire skb DMA to hardware---------------------------------- dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, num_dma_byte, DMA_MEM_TO_DEV); if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); goto openwifi_tx_early_out_after_lock; } sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); if (!(priv->txd)) { printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); goto openwifi_tx_after_dma_mapping; } priv->tx_cookie = priv->txd->tx_submit(priv->txd); if (dma_submit_error(priv->tx_cookie)) { printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); goto openwifi_tx_after_dma_mapping; } // seems everything is ok. let's mark this pkt in bd descriptor ring ring->bds[ring->bd_wr_idx].seq_no = seq_no; ring->bds[ring->bd_wr_idx].skb_linked = skb; ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); dma_async_issue_pending(priv->tx_chan); spin_unlock_irqrestore(&priv->lock, flags); return; openwifi_tx_after_dma_mapping: dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); openwifi_tx_early_out_after_lock: dev_kfree_skb(skb); spin_unlock_irqrestore(&priv->lock, flags); // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); return; openwifi_tx_early_out: //dev_kfree_skb(skb); // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); } static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) { struct openwifi_priv *priv = dev->priv; u8 fpga_tx_ant_setting, target_rx_ant; u32 atten_mdb_tx0, atten_mdb_tx1; struct ctrl_outs_control ctrl_out; int ret; printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); if (tx_ant >= 4 || tx_ant == 0) { return -EINVAL; } else if (rx_ant >= 3 || rx_ant == 0) { return -EINVAL; } fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); target_rx_ant = ((rx_ant&1)?0:1); // try rf chip setting firstly, only update internal state variable when rf chip succeed atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); if (ret < 0) { printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); return -EINVAL; } else { printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); } ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); if (ret < 0) { printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); return -EINVAL; } else { printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); } ctrl_out.en_mask = priv->ctrl_out.en_mask; ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); if (ret < 0) { printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); return -EINVAL; } else { printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); } tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); if (ret != fpga_tx_ant_setting) { printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); return -EINVAL; } else { printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); } rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); if (ret != target_rx_ant) { printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); return -EINVAL; } else { printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); } // update internal state variable priv->runtime_tx_ant_cfg = tx_ant; priv->runtime_rx_ant_cfg = rx_ant; if (TX_OFFSET_TUNING_ENABLE) priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE else { if (tx_ant == 3) priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; else priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); } priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); priv->ctrl_out.index=ctrl_out.index; priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; return 0; } static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) { struct openwifi_priv *priv = dev->priv; *tx_ant = priv->runtime_tx_ant_cfg; *rx_ant = priv->runtime_rx_ant_cfg; printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); return 0; } static int openwifi_start(struct ieee80211_hw *dev) { struct openwifi_priv *priv = dev->priv; int ret, i; u32 reg; for (i=0; ivif[i] = NULL; } // //keep software registers persistent between NIC down and up for multiple times /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/ //turn on radio openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { priv->rfkill_off = 1;// 0 off, 1 on printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); } else printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); xpu_api->hw_init(priv->xpu_cfg); xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { ret = PTR_ERR(priv->rx_chan); pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); goto err_dma; } priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { ret = PTR_ERR(priv->tx_chan); pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); goto err_dma; } printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); ret = openwifi_init_rx_ring(priv); if (ret) { printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); goto err_free_rings; } priv->seqno=0; for (i=0; iirq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, IRQF_SHARED, "sdr,rx_pkt_intr", dev); if (ret) { wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); goto err_free_rings; } else { printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); } priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, IRQF_SHARED, "sdr,tx_itrpt", dev); if (ret) { wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); goto err_free_rings; } else { printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); } rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer // disable ad9361 auto calibration and enable openwifi fpga spi control priv->ad9361_phy->state->auto_cal_en = false; // turn off auto Tx quadrature calib. priv->ad9361_phy->state->manual_tx_quad_cal_en = true; // turn on manual Tx quadrature calib. xpu_api->XPU_REG_SPI_DISABLE_write(0); // normal_out: printk("%s openwifi_start: normal end\n", sdr_compatible_str); return 0; err_free_rings: openwifi_free_rx_ring(priv); for (i=0; ipriv; u32 reg, reg1; int i; // enable ad9361 auto calibration and disable openwifi fpga spi control priv->ad9361_phy->state->auto_cal_en = true; // turn on auto Tx quadrature calib. priv->ad9361_phy->state->manual_tx_quad_cal_en = false; // turn off manual Tx quadrature calib. xpu_api->XPU_REG_SPI_DISABLE_write(1); //turn off radio #if 1 ad9361_tx_mute(priv->ad9361_phy, 1); reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { priv->rfkill_off = 0;// 0 off, 1 on printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); } else printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); #endif //ieee80211_stop_queue(dev, 0); tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status for (i=0; ivif[i] = NULL; } openwifi_free_rx_ring(priv); for (i=0; irx_chan)); dmaengine_terminate_all(priv->rx_chan); dma_release_channel(priv->rx_chan); pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); dmaengine_terminate_all(priv->tx_chan); dma_release_channel(priv->tx_chan); //priv->rf->stop(dev); free_irq(priv->irq_rx, dev); free_irq(priv->irq_tx, dev); // normal_out: printk("%s openwifi_stop\n", sdr_compatible_str); } static u64 openwifi_get_tsf(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { u32 tsft_low, tsft_high; tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); } static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) { u32 tsft_high = ((tsf >> 32)&0xffffffff); u32 tsft_low = (tsf&0xffffffff); xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); } static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); printk("%s openwifi_reset_tsf\n", sdr_compatible_str); } static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); return(0); } static void openwifi_beacon_work(struct work_struct *work) { struct openwifi_vif *vif_priv = container_of(work, struct openwifi_vif, beacon_work.work); struct ieee80211_vif *vif = container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); struct ieee80211_hw *dev = vif_priv->dev; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; /* don't overflow the tx ring */ if (ieee80211_queue_stopped(dev, 0)) goto resched; /* grab a fresh beacon */ skb = ieee80211_beacon_get(dev, vif); if (!skb) goto resched; /* * update beacon timestamp w/ TSF value * TODO: make hardware update beacon timestamp */ mgmt = (struct ieee80211_mgmt *)skb->data; mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); /* TODO: use actual beacon queue */ skb_set_queue_mapping(skb, 0); openwifi_tx(dev, NULL, skb); resched: /* * schedule next beacon * TODO: use hardware support for beacon timing */ schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int); } static int openwifi_add_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { int i; struct openwifi_priv *priv = dev->priv; struct openwifi_vif *vif_priv; switch (vif->type) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_MESH_POINT: break; default: return -EOPNOTSUPP; } // let's support more than 1 interface for (i=0; ivif[i] == NULL) break; } printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); if (i==MAX_NUM_VIF) return -EBUSY; priv->vif[i] = vif; /* Initialize driver private area */ vif_priv = (struct openwifi_vif *)&vif->drv_priv; vif_priv->idx = i; vif_priv->dev = dev; INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); vif_priv->enable_beacon = false; priv->mac_addr[0] = vif->addr[0]; priv->mac_addr[1] = vif->addr[1]; priv->mac_addr[2] = vif->addr[2]; priv->mac_addr[3] = vif->addr[3]; priv->mac_addr[4] = vif->addr[4]; priv->mac_addr[5] = vif->addr[5]; xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx, vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]); return 0; } static void openwifi_remove_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct openwifi_vif *vif_priv; struct openwifi_priv *priv = dev->priv; vif_priv = (struct openwifi_vif *)&vif->drv_priv; priv->vif[vif_priv->idx] = NULL; printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); } static int openwifi_config(struct ieee80211_hw *dev, u32 changed) { struct openwifi_priv *priv = dev->priv; struct ieee80211_conf *conf = &dev->conf; if (changed & IEEE80211_CONF_CHANGE_CHANNEL) priv->rf->set_chan(dev, conf); else printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); return 0; } static void openwifi_bss_info_changed(struct ieee80211_hw *dev, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { struct openwifi_priv *priv = dev->priv; struct openwifi_vif *vif_priv; u32 bssid_low, bssid_high; vif_priv = (struct openwifi_vif *)&vif->drv_priv; //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); if (changed & BSS_CHANGED_BSSID) { printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); // write new bssid to our HW, and do not change bssid filter //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); bssid_low = ( *( (u32*)(info->bssid) ) ); bssid_high = ( *( (u16*)(info->bssid+4) ) ); //bssid_filter_high = (bssid_filter_high&0x80000000); //bssid_high = (bssid_high|bssid_filter_high); xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); } if (changed & BSS_CHANGED_BEACON_INT) { printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); } if (changed & BSS_CHANGED_TXPOWER) printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); if (changed & BSS_CHANGED_ERP_CTS_PROT) printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); if (changed & BSS_CHANGED_BASIC_RATES) printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); if (info->use_short_slot && priv->use_short_slot==false) { priv->use_short_slot=true; xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); } else if ((!info->use_short_slot) && priv->use_short_slot==true) { priv->use_short_slot=false; xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); } } if (changed & BSS_CHANGED_BEACON_ENABLED) { printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); vif_priv->enable_beacon = info->enable_beacon; } if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { cancel_delayed_work_sync(&vif_priv->beacon_work); if (vif_priv->enable_beacon) { schedule_work(&vif_priv->beacon_work.work); printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str); } printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); } } // helper function u32 log2val(u32 val){ u32 ret_val = 0 ; while(val>1){ val = val >> 1 ; ret_val ++ ; } return ret_val ; } static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, const struct ieee80211_tx_queue_params *params) { u32 reg_val, cw_min_exp, cw_max_exp; printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); switch(queue){ case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); } xpu_api->XPU_REG_CSMA_CFG_write(reg_val); return(0); } static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, struct netdev_hw_addr_list *mc_list) { printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); return netdev_hw_addr_list_count(mc_list); } static void openwifi_configure_filter(struct ieee80211_hw *dev, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { u32 filter_flag; (*total_flags) &= SDR_SUPPORTED_FILTERS; (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer filter_flag = (*total_flags); filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode filter_flag = (filter_flag|MONITOR_ALL); else filter_flag = (filter_flag&(~MONITOR_ALL)); if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) filter_flag = (filter_flag|MY_BEACON); filter_flag = (filter_flag|FIF_PSPOLL); xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); } static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { struct ieee80211_sta *sta = params->sta; enum ieee80211_ampdu_mlme_action action = params->action; // struct openwifi_priv *priv = hw->priv; u16 max_tx_bytes, buf_size; u32 ampdu_action_config; if (!AGGR_ENABLE) { return -EOPNOTSUPP; } switch (action) { case IEEE80211_AMPDU_TX_START: ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid); break; case IEEE80211_AMPDU_TX_STOP_CONT: case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: buf_size = 4; // buf_size = (params->buf_size) - 1; max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n", sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size); break; case IEEE80211_AMPDU_RX_START: printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); break; case IEEE80211_AMPDU_RX_STOP: printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); break; default: return -EOPNOTSUPP; } return 0; } static const struct ieee80211_ops openwifi_ops = { .tx = openwifi_tx, .start = openwifi_start, .stop = openwifi_stop, .add_interface = openwifi_add_interface, .remove_interface = openwifi_remove_interface, .config = openwifi_config, .set_antenna = openwifi_set_antenna, .get_antenna = openwifi_get_antenna, .bss_info_changed = openwifi_bss_info_changed, .conf_tx = openwifi_conf_tx, .prepare_multicast = openwifi_prepare_multicast, .configure_filter = openwifi_configure_filter, .rfkill_poll = openwifi_rfkill_poll, .get_tsf = openwifi_get_tsf, .set_tsf = openwifi_set_tsf, .reset_tsf = openwifi_reset_tsf, .set_rts_threshold = openwifi_set_rts_threshold, .ampdu_action = openwifi_ampdu_action, .testmode_cmd = openwifi_testmode_cmd, }; static const struct of_device_id openwifi_dev_of_ids[] = { { .compatible = "sdr,sdr", }, {} }; MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); static int custom_match_spi_dev(struct device *dev, void *data) { const char *name = data; bool ret = sysfs_streq(name, dev->of_node->name); printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); return ret; } static int custom_match_platform_dev(struct device *dev, void *data) { struct platform_device *plat_dev = to_platform_device(dev); const char *name = data; char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); bool match_flag = (name_in_sys_bus_platform_devices != NULL); if (match_flag) { printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); } return(match_flag); } static int openwifi_dev_probe(struct platform_device *pdev) { struct ieee80211_hw *dev; struct openwifi_priv *priv; int err=1, rand_val; const char *chip_name, *fpga_model; u32 reg, i;//, reg1; struct device_node *np = pdev->dev.of_node; struct device *tmp_dev; struct platform_device *tmp_pdev; struct iio_dev *tmp_indio_dev; // struct gpio_leds_priv *tmp_led_priv; printk("\n"); if (np) { const struct of_device_id *match; match = of_match_node(openwifi_dev_of_ids, np); if (match) { printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); err = 0; } } if (err) return err; dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); if (!dev) { printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); err = -ENOMEM; goto err_free_dev; } priv = dev->priv; priv->pdev = pdev; err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); if(err < 0) { printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); priv->fpga_type = SMALL_FPGA; } else { // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) priv->fpga_type = LARGE_FPGA; // SMALL FPGA: (i.e. ZED, ZC702, Z7020) else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) priv->fpga_type = SMALL_FPGA; } // //-------------find ad9361-phy driver for lo/channel control--------------- priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux priv->last_tx_quad_cal_lo = 1000; tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); if (tmp_dev == NULL) { printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); err = -ENODEV; goto err_free_dev; } printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); err = -ENODEV; goto err_free_dev; } priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); if (!(priv->ad9361_phy)) { printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); err = -ENODEV; goto err_free_dev; } printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); if (!tmp_dev) { printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); err = -ENODEV; goto err_free_dev; } tmp_pdev = to_platform_device(tmp_dev); if (!tmp_pdev) { printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); err = -ENODEV; goto err_free_dev; } tmp_indio_dev = platform_get_drvdata(tmp_pdev); if (!tmp_indio_dev) { printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); err = -ENODEV; goto err_free_dev; } priv->dds_st = iio_priv(tmp_indio_dev); if (!(priv->dds_st)) { printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); err = -ENODEV; goto err_free_dev; } printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- // turn off radio by muting tx // ad9361_tx_mute(priv->ad9361_phy, 1); // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { // priv->rfkill_off = 0;// 0 off, 1 on // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); // } // else // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); // //-----------------------------parse the test_mode input-------------------------------- if (test_mode&1) AGGR_ENABLE = true; // if (test_mode&2) // TX_OFFSET_TUNING_ENABLE = false; priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel() priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode priv->xpu_cfg = XPU_NORMAL; priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time. priv->rx_intf_cfg = RX_INTF_BYPASS; priv->tx_intf_cfg = TX_INTF_BYPASS; //priv->rx_freq_offset_to_lo_MHz = 0; //priv->tx_freq_offset_to_lo_MHz = 0; } else if (priv->rf_bw == 40000000) { //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; if (TX_OFFSET_TUNING_ENABLE) priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 else priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0; // // try another antenna option //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; #if 0 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { priv->rx_freq_offset_to_lo_MHz = -10; } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { priv->rx_freq_offset_to_lo_MHz = 10; } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { priv->rx_freq_offset_to_lo_MHz = 0; } else { printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); } #endif } else { printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); err = -EBADRQC; goto err_free_dev; } printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att); priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att; //let's by default turn radio on when probing err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); if (err) { printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); err = -EIO; goto err_free_dev; } reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { priv->rfkill_off = 1;// 0 off, 1 on printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); } else printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; // //set ad9361 in certain mode #if 0 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); #endif dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. SET_IEEE80211_DEV(dev, &pdev->dev); platform_set_drvdata(pdev, dev); BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT priv->ampdu_reference = 0; priv->band_2GHz.band = NL80211_BAND_2GHZ; priv->band_2GHz.channels = priv->channels_2GHz; priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); priv->band_2GHz.bitrates = priv->rates_2GHz; priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); priv->band_2GHz.ht_cap.ht_supported = true; // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue if (AGGR_ENABLE) { priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; } memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); priv->band_5GHz.band = NL80211_BAND_5GHZ; priv->band_5GHz.channels = priv->channels_5GHz; priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); priv->band_5GHz.bitrates = priv->rates_5GHz; priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); priv->band_5GHz.ht_cap.ht_supported = true; // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue if (AGGR_ENABLE) { priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; } memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc() ieee80211_hw_set(dev, RX_INCLUDES_FCS); ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons. ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device // * autonomously manages the PS status of connected stations. When // * this flag is set mac80211 will not trigger PS mode for connected // * stations based on the PM bit of incoming frames. // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure // * the PS mode of connected stations. ieee80211_hw_set(dev, AP_LINK_PS); if (AGGR_ENABLE) { ieee80211_hw_set(dev, AMPDU_AGGREGATION); } dev->extra_tx_headroom = LEN_MPDU_DELIM; dev->vif_data_size = sizeof(struct openwifi_vif); dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_MONITOR)| BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT) | BIT(NL80211_IFTYPE_OCB); dev->wiphy->iface_combinations = &openwifi_if_comb; dev->wiphy->n_iface_combinations = 1; dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); chip_name = "ZYNQ"; /* we declare to MAC80211 all the queues except for beacon queue * that will be eventually handled by DRV. * TX rings are arranged in such a way that lower is the IDX, * higher is the priority, in order to achieve direct mapping * with mac80211, however the beacon queue is an exception and it * is mapped on the highst tx ring IDX. */ dev->queues = MAX_NUM_HW_QUEUE; //dev->queues = 1; ieee80211_hw_set(dev, SIGNAL_DBM); wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); priv->rf = &ad9361_rf_ops; memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); priv->slice_idx = 0xFFFFFFFF; sg_init_table(&(priv->tx_sg), 1); get_random_bytes(&rand_val, sizeof(rand_val)); rand_val%=250; priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; priv->mac_addr[5]=rand_val+1; //priv->mac_addr[5]=0x11; if (!is_valid_ether_addr(priv->mac_addr)) { printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); eth_random_addr(priv->mac_addr); } printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); spin_lock_init(&priv->lock); err = ieee80211_register_hw(dev); if (err) { pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); err = -EIO; goto err_free_dev; } else { printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); } // // //--------------------hook leds (not complete yet)-------------------------------- // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field // if (!tmp_dev) { // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); // err = -ENOMEM; // goto err_free_dev; // } // tmp_pdev = to_platform_device(tmp_dev); // if (!tmp_pdev) { // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); // err = -ENOMEM; // goto err_free_dev; // } // tmp_led_priv = platform_get_drvdata(tmp_pdev); // if (!tmp_led_priv) { // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); // err = -ENOMEM; // goto err_free_dev; // } // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); // if (tmp_led_priv->num_leds!=4){ // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); // err = -ENOMEM; // goto err_free_dev; // } // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it // priv->num_led = tmp_led_priv->num_leds; // priv->led[0] = &(tmp_led_priv->leds[0].cdev); // priv->led[1] = &(tmp_led_priv->leds[1].cdev); // priv->led[2] = &(tmp_led_priv->leds[2].cdev); // priv->led[3] = &(tmp_led_priv->leds[3].cdev); // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", priv->mac_addr, chip_name, priv->rf->name); openwifi_rfkill_init(dev); return 0; err_free_dev: ieee80211_free_hw(dev); return err; } static int openwifi_dev_remove(struct platform_device *pdev) { struct ieee80211_hw *dev = platform_get_drvdata(pdev); if (!dev) { pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); return(-1); } openwifi_rfkill_exit(dev); ieee80211_unregister_hw(dev); ieee80211_free_hw(dev); return(0); } static struct platform_driver openwifi_dev_driver = { .driver = { .name = "sdr,sdr", .owner = THIS_MODULE, .of_match_table = openwifi_dev_of_ids, }, .probe = openwifi_dev_probe, .remove = openwifi_dev_remove, }; module_platform_driver(openwifi_dev_driver);