//Author: Xianjun Jiao. putaoshu@msn.com; xianjun.jiao@imec.be #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IIO_AD9361_USE_PRIVATE_H_ #include "ad9361/ad9361_regs.h" #include "ad9361/ad9361.h" #include "ad9361/ad9361_private.h" #include <../../drivers/iio/frequency/cf_axi_dds.h> #include "../user_space/sdrctl_src/nl80211_testmode_def.h" #include "hw_def.h" #include "sdr.h" // driver API of component driver extern struct tx_intf_driver_api *tx_intf_api; extern struct rx_intf_driver_api *rx_intf_api; extern struct openofdm_tx_driver_api *openofdm_tx_api; extern struct openofdm_rx_driver_api *openofdm_rx_api; extern struct xpu_driver_api *xpu_api; static int test_mode = 0; // 0 normal; 1 rx test MODULE_AUTHOR("Xianjun Jiao"); MODULE_DESCRIPTION("SDR driver"); MODULE_LICENSE("GPL v2"); module_param(test_mode, int, 0); MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test"); // ---------------rfkill--------------------------------------- static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) { int reg; if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); else reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); if (reg == AD9361_RADIO_ON_TX_ATT) return true;// 0 off, 1 on return false; } void openwifi_rfkill_init(struct ieee80211_hw *hw) { struct openwifi_priv *priv = hw->priv; priv->rfkill_off = openwifi_is_radio_enabled(priv); printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); wiphy_rfkill_start_polling(hw->wiphy); } void openwifi_rfkill_poll(struct ieee80211_hw *hw) { bool enabled; struct openwifi_priv *priv = hw->priv; enabled = openwifi_is_radio_enabled(priv); printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); if (unlikely(enabled != priv->rfkill_off)) { priv->rfkill_off = enabled; printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); } } void openwifi_rfkill_exit(struct ieee80211_hw *hw) { printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); wiphy_rfkill_stop_polling(hw->wiphy); } //----------------rfkill end----------------------------------- //static void ad9361_rf_init(void); //static void ad9361_rf_stop(void); //static void ad9361_rf_calc_rssi(void); static void ad9361_rf_set_channel(struct ieee80211_hw *dev, struct ieee80211_conf *conf) { struct openwifi_priv *priv = dev->priv; u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz; u32 actual_tx_lo; bool change_flag = (actual_rx_lo != priv->actual_rx_lo); if (change_flag) { priv->actual_rx_lo = actual_rx_lo; actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; ad9361_clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) ); ad9361_clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) ); if (actual_rx_lo<2412) { priv->rssi_correction = 153; } else if (actual_rx_lo<=2484) { priv->rssi_correction = 153; } else if (actual_rx_lo<5160) { priv->rssi_correction = 153; } else if (actual_rx_lo<=5240) { priv->rssi_correction = 145; } else if (actual_rx_lo<=5320) { priv->rssi_correction = 148; } else { priv->rssi_correction = 148; } xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); if (actual_rx_lo < 2500) { //priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9. //xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16); if (priv->band != BAND_2_4GHZ) { priv->band = BAND_2_4GHZ; xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); } // //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*200)<<16) | 200 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time. let's add 2us for those device that is really "slow"! // xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*200)<<16) | 200 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this // xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 ); // tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*200)<<16); } else { //priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz) // xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16); if (priv->band != BAND_5_8GHZ) { priv->band = BAND_5_8GHZ; xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); } // //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*200)<<16) | 200 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting. let's add 2us for those device that is really "slow"! // xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*200)<<16) | 200 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this // //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 1200 ); // xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 1000 );// for longer fir we need this delay 1us shorter // tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*200)<<16); } //printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction); // //-- use less //clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]); //printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq); //ad9361_set_trx_clock_chain_default(priv->ad9361_phy); //printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq); } printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag); } const struct openwifi_rf_ops ad9361_rf_ops = { .name = "ad9361", // .init = ad9361_rf_init, // .stop = ad9361_rf_stop, .set_chan = ad9361_rf_set_channel, // .calc_rssi = ad9361_rf_calc_rssi, }; u16 reverse16(u16 d) { union u16_byte2 tmp0, tmp1; tmp0.a = d; tmp1.c[0] = tmp0.c[1]; tmp1.c[1] = tmp0.c[0]; return(tmp1.a); } u32 reverse32(u32 d) { union u32_byte4 tmp0, tmp1; tmp0.a = d; tmp1.c[0] = tmp0.c[3]; tmp1.c[1] = tmp0.c[2]; tmp1.c[2] = tmp0.c[1]; tmp1.c[3] = tmp0.c[0]; return(tmp1.a); } static int openwifi_init_tx_ring(struct openwifi_priv *priv) { struct openwifi_ring *ring = &(priv->tx_ring); int i; priv->tx_queue_stopped = false; ring->bd_wr_idx = 0; ring->bd_rd_idx = 0; ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); if (ring->bds==NULL) { printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); return -ENOMEM; } for (i = 0; i < NUM_TX_BD; i++) { ring->bds[i].num_dma_byte=0; ring->bds[i].sn=0; ring->bds[i].hw_queue_idx=0; ring->bds[i].retry_limit=0; ring->bds[i].need_ack=0; ring->bds[i].skb_linked=0; // for tx, skb is from upper layer //at frist right after skb allocated, head, data, tail are the same. ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from uppler layer in tx routine } return 0; } static void openwifi_free_tx_ring(struct openwifi_priv *priv) { struct openwifi_ring *ring = &(priv->tx_ring); int i; ring->bd_wr_idx = 0; ring->bd_rd_idx = 0; for (i = 0; i < NUM_TX_BD; i++) { ring->bds[i].num_dma_byte=0; ring->bds[i].sn=0; ring->bds[i].hw_queue_idx=0; ring->bds[i].retry_limit=0; ring->bds[i].need_ack=0; if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) continue; if (ring->bds[i].dma_mapping_addr != 0) dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].num_dma_byte, DMA_MEM_TO_DEV); // if (ring->bds[i].skb_linked!=NULL) // dev_kfree_skb(ring->bds[i].skb_linked); if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) printk("%s openwifi_free_tx_ring: WARNING %d skb_linked %08x dma_mapping_addr %08x\n", sdr_compatible_str, i, (u32)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr); ring->bds[i].skb_linked=0; ring->bds[i].dma_mapping_addr = 0; } if (ring->bds) kfree(ring->bds); ring->bds = NULL; } static int openwifi_init_rx_ring(struct openwifi_priv *priv) { priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); if (!priv->rx_cyclic_buf) { printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); return(-1); } return 0; } static void openwifi_free_rx_ring(struct openwifi_priv *priv) { if (priv->rx_cyclic_buf) dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); priv->rx_cyclic_buf_dma_mapping_addr = 0; priv->rx_cyclic_buf = 0; } static int rx_dma_setup(struct ieee80211_hw *dev){ struct openwifi_priv *priv = dev->priv; struct dma_device *rx_dev = priv->rx_chan->device; priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); if (!(priv->rxd)) { openwifi_free_rx_ring(priv); printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %d\n", sdr_compatible_str, (u32)(priv->rxd)); return(-1); } priv->rxd->callback = 0; priv->rxd->callback_param = 0; priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); if (dma_submit_error(priv->rx_cookie)) { printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); return(-1); } dma_async_issue_pending(priv->rx_chan); return(0); } static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) { struct ieee80211_hw *dev = dev_id; struct openwifi_priv *priv = dev->priv; struct ieee80211_rx_status rx_status = {0}; struct sk_buff *skb; struct ieee80211_hdr *hdr; u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, ht_flag, tsft_low, tsft_high;//, fc_di; u32 dma_driver_buf_idx_mod; u8 *pdata_tmp, fcs_ok, phy_rx_sn_hw, target_buf_idx; s8 signal; u16 rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0; bool content_ok = false; struct dma_tx_state state; static u8 target_buf_idx_old = 0xFF; spin_lock(&priv->lock); priv->rx_chan->device->device_tx_status(priv->rx_chan,priv->rx_cookie,&state); target_buf_idx = ((state.residue-1)&(NUM_RX_BD-1)); if (target_buf_idx==target_buf_idx_old) { //printk("%s openwifi_rx_interrupt: WARNING same idx %d\n", sdr_compatible_str,target_buf_idx); goto openwifi_rx_interrupt_out; } if ( ((target_buf_idx-target_buf_idx_old)&(NUM_RX_BD-1))!=1 ) printk("%s openwifi_rx_interrupt: WARNING jump idx target %d old %d diff %02x\n", sdr_compatible_str,target_buf_idx,target_buf_idx_old,((target_buf_idx-target_buf_idx_old)&(NUM_RX_BD-1))); target_buf_idx_old = target_buf_idx; pdata_tmp = priv->rx_cyclic_buf + target_buf_idx*RX_BD_BUF_SIZE; // our header insertion is at the beginning tsft_low = (*((u32*)(pdata_tmp+0 ))); tsft_high = (*((u32*)(pdata_tmp+4 ))); rssi_val = (*((u16*)(pdata_tmp+8 ))); len = (*((u16*)(pdata_tmp+12))); //len_new = (((len>>3) + ((len&0x7)!=0))<<3); rate_idx = (*((u16*)(pdata_tmp+14))); // fc_di = (*((u32*)(pdata_tmp+16))); // addr1_high16 = (*((u16*)(pdata_tmp+16+4))); // addr1_low32 = (*((u32*)(pdata_tmp+16+4+2))); // addr2_high16 = (*((u16*)(pdata_tmp+16+6+4))); // addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2))); // addr3_high16 = (*((u16*)(pdata_tmp+16+12+4))); // addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2))); hdr = (struct ieee80211_hdr *)(pdata_tmp+16); addr1_low32 = *((u32*)(hdr->addr1+2)); addr1_high16 = *((u16*)(hdr->addr1)); if (len>=20) { addr2_low32 = *((u32*)(hdr->addr2+2)); addr2_high16 = *((u16*)(hdr->addr2)); } if (len>=26) { addr3_low32 = *((u32*)(hdr->addr3+2)); addr3_high16 = *((u16*)(hdr->addr3)); } if (len>=28) sc = hdr->seq_ctrl; fcs_ok = (*(( u8*)(pdata_tmp+16+len-1))); phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation dma_driver_buf_idx_mod = (state.residue&0x7f); //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); fcs_ok = ((fcs_ok&0x80)!=0); ht_flag = ((rate_idx&0x10)!=0); rate_idx = (rate_idx&0xF); if ( (len>=14 && len<=8191) && (rate_idx>=8 && rate_idx<=15)) { // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { // printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); // } content_ok = true; } else { printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str); content_ok = false; } rssi_val = (rssi_val>>1); if ( (rssi_val+128)rssi_correction ) signal = -128; else signal = rssi_val - priv->rssi_correction; if (addr1_low32!=0xffffffff && addr1_high16!=0xffff) printk("%s openwifi_rx_interrupt:%4dbytes ht%d %2dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d sn%d i%d %ddBm\n", sdr_compatible_str, len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control,hdr->duration_id, reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), sc,fcs_ok, phy_rx_sn_hw,dma_driver_buf_idx_mod,signal); // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; if (content_ok) { skb = dev_alloc_skb(len); if (skb) { skb_put_data(skb,pdata_tmp+16,len); rx_status.antenna = 0; // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; rx_status.signal = signal; rx_status.freq = dev->conf.chandef.chan->center_freq; rx_status.band = dev->conf.chandef.chan->band; rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); rx_status.flag |= RX_FLAG_MACTIME_START; if (!fcs_ok) rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; rx_status.encoding = RX_ENC_LEGACY; rx_status.bw = RATE_INFO_BW_20; memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. ieee80211_rx_irqsafe(dev, skb); // call mac80211 function } else printk("%s openwifi_rx_interrupt: WARNING skb!\n", sdr_compatible_str); } openwifi_rx_interrupt_out: spin_unlock(&priv->lock); return IRQ_HANDLED; } static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) { struct ieee80211_hw *dev = dev_id; struct openwifi_priv *priv = dev->priv; struct openwifi_ring *ring = &(priv->tx_ring); struct sk_buff *skb; struct ieee80211_tx_info *info; u32 reg_val,ring_len, ring_room_left, just_wr_idx, current_rd_idx; //queue_idx_hw, ; u32 num_dma_byte_hw; u32 phy_tx_sn_hw; u8 tx_result; spin_lock(&priv->lock); tx_result = xpu_api->XPU_REG_TX_RESULT_read(); reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();// current interrupt is the end of phy_tx_sn_hw pkt transmitting. num_dma_byte_hw = (reg_val&0xFFFF); phy_tx_sn_hw = ((reg_val>>16)&MAX_PHY_TX_SN); //queue_idx_hw = (reg_val&(MAX_NUM_HW_QUEUE-1)); //just_wr_idx = (ring->bd_wr_idx==0?(NUM_TX_BD-1):(ring->bd_wr_idx-1)); just_wr_idx = ((ring->bd_wr_idx-1)&(NUM_TX_BD-1)); while(1) { current_rd_idx = ring->bd_rd_idx; dma_unmap_single(priv->tx_chan->device->dev,ring->bds[current_rd_idx].dma_mapping_addr, ring->bds[current_rd_idx].num_dma_byte, DMA_MEM_TO_DEV); if (phy_tx_sn_hw != ring->bds[current_rd_idx].sn) { ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1)); if (current_rd_idx == just_wr_idx) { printk("%s openwifi_tx_interrupt: WARNING can not find hw sn %d in driver! curr rd %d just wr %d\n", sdr_compatible_str,phy_tx_sn_hw,current_rd_idx,just_wr_idx); break; } else continue; } // a know bd has just been sent to the air if (num_dma_byte_hw!=ring->bds[current_rd_idx].num_dma_byte) { ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1)); printk("%s openwifi_tx_interrupt: WARNING num_dma_byte is different %d VS %d at sn %d curr rd %d just wr %d\n", sdr_compatible_str,num_dma_byte_hw,ring->bds[current_rd_idx].num_dma_byte,phy_tx_sn_hw,current_rd_idx,just_wr_idx); if (current_rd_idx == just_wr_idx) break; else continue; } // num_dma_byte_hw is correct skb = ring->bds[current_rd_idx].skb_linked; // dma_buf = skb->data; //phy_tx_sn_skb = (*((u16*)(dma_buf+6))); //num_dma_byte_skb = (*((u32*)(dma_buf+8))); //num_byte_pad_skb = (*((u32*)(dma_buf+12))); //if ( phy_tx_sn_hw!=phy_tx_sn_entry || phy_tx_sn_hw!=phy_tx_sn_skb || phy_tx_sn_entry!=phy_tx_sn_skb ) // printk("%s openwifi_tx_interrupt: WARNING hw/entry/skb num byte %d/%d/%d pkt sn %d/%d/%d pad %d\n", sdr_compatible_str, // num_dma_byte_hw, num_dma_byte_entry, num_dma_byte_skb, phy_tx_sn_hw, phy_tx_sn_entry, phy_tx_sn_skb, num_byte_pad_skb); skb_pull(skb, LEN_PHY_HEADER); //skb_trim(skb, num_byte_pad_skb); info = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(info); if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) { if ((tx_result&0x10)==0) info->flags |= IEEE80211_TX_STAT_ACK; // printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); } info->status.rates[0].count = (tx_result&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate info->status.rates[1].idx = -1; info->status.rates[2].idx = -1; info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 if (tx_result&0x10) printk("%s openwifi_tx_interrupt: WARNING tx_result %02x phy_tx_sn_hw %d. curr rd %d just wr %d\n", sdr_compatible_str,tx_result,phy_tx_sn_hw,current_rd_idx,just_wr_idx); ieee80211_tx_status_irqsafe(dev, skb); //ring_len = (just_wr_idx>=current_rd_idx)?(just_wr_idx-current_rd_idx):(just_wr_idx+NUM_TX_BD-current_rd_idx); ring_len = ((just_wr_idx-current_rd_idx)&(NUM_TX_BD-1)); ring_room_left = NUM_TX_BD - ring_len; if (ring_room_left > 2 && priv->tx_queue_stopped) { unsigned int prio = skb_get_queue_mapping(skb); ieee80211_wake_queue(dev, prio); printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue. ring_room_left %d prio %d curr rd %d just wr %d\n", sdr_compatible_str,ring_room_left,prio,current_rd_idx,just_wr_idx); priv->tx_queue_stopped = false; } ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1)); //if (current_rd_idx == just_wr_idx) break; // we have hit the sn, we should break } spin_unlock(&priv->lock); return IRQ_HANDLED; } u32 gen_parity(u32 v){ v ^= v >> 1; v ^= v >> 2; v = (v & 0x11111111U) * 0x11111111U; return (v >> 28) & 1; } u32 calc_phy_header(u8 rate_hw_value, u32 len, u8 *bytes){ //u32 signal_word = 0 ; u8 SIG_RATE = 0 ; u8 len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ; // rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4)); // SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value]; SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value]; len_2to0 = len & 0x07 ; len_10to3 = (len >> 3 ) & 0xFF ; len_msb = (len >> 11) & 0x01 ; b0=SIG_RATE | (len_2to0 << 5) ; b1 = len_10to3 ; header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ; b2 = ( len_msb | (header_parity << 1) ) ; memset(bytes,0,16); bytes[0] = b0 ; bytes[1] = b1 ; bytes[2] = b2; //signal_word = b0+(b1<<8)+(b2<<16) ; //return signal_word; return(SIG_RATE); } static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c cdev_to_gpio_led_data(struct led_classdev *led_cdev) { return container_of(led_cdev, struct gpio_led_data, cdev); } static void openwifi_tx(struct ieee80211_hw *dev, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct openwifi_priv *priv = dev->priv; struct openwifi_ring *ring = &(priv->tx_ring); dma_addr_t dma_mapping_addr; unsigned long flags; unsigned int prio, i; u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad; u32 rate_signal_value,rate_hw_value,ack_flag; u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, ring_len, ring_room_left, dma_reg, cts_reg;//, openofdm_state_history; u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration; u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags; bool use_rts_cts, use_cts_protect, force_use_cts_protect=false, addr_flag, cts_use_traffic_rate; __le16 frame_control,duration_id; // static u32 openofdm_state_history_old=0; // static bool led_status=0; // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); // if ( (priv->phy_tx_sn&7) ==0 ) { // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); // if (openofdm_state_history!=openofdm_state_history_old){ // led_status = (~led_status); // openofdm_state_history_old = openofdm_state_history; // gpiod_set_value(led_dat->gpiod, led_status); // } // } if (test_mode==1){ printk("%s openwifi_tx: test_mode==1\n", sdr_compatible_str); goto openwifi_tx_early_out; } if (skb->data_len>0)// more data are not in linear data area skb->data goto openwifi_tx_early_out; len_mac_pdu = skb->len; len_phy_packet = len_mac_pdu + LEN_PHY_HEADER; num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); num_dma_byte = (num_dma_symbol< TX_BD_BUF_SIZE) { dev_err(priv->tx_chan->device->dev, "WARNING num_dma_byte > TX_BD_BUF_SIZE\n"); goto openwifi_tx_early_out; } num_byte_pad = num_dma_byte-len_phy_packet; // -----------preprocess some info from header and skb---------------- prio = skb_get_queue_mapping(skb); if (prio) { printk("%s openwifi_tx: WARNING prio %d\n", sdr_compatible_str, prio); } rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; addr1_low32 = *((u32*)(hdr->addr1+2)); addr1_high16 = *((u16*)(hdr->addr1)); if (len_mac_pdu>=20) { addr2_low32 = *((u32*)(hdr->addr2+2)); addr2_high16 = *((u16*)(hdr->addr2)); } if (len_mac_pdu>=26) { addr3_low32 = *((u32*)(hdr->addr3+2)); addr3_high16 = *((u16*)(hdr->addr3)); } if (len_mac_pdu>=28) sc = hdr->seq_ctrl; duration_id = hdr->duration_id; frame_control=hdr->frame_control; ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK); fc_type = ((frame_control)>>2)&3; fc_subtype = ((frame_control)>>4)&0xf; fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) ); //if it is broadcasting or multicasting addr addr_flag = ( (addr1_low32==0 && addr1_high16==0) || (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) || (addr1_high16==0x3333) || (addr1_high16==0x0001 && hdr->addr1[2]==0x5E) ); if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent } else { pkt_need_ack = 0; } //rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M if (priv->drv_tx_reg_val[0]>0 && fc_type==2 && (!addr_flag)) rate_hw_value = priv->drv_tx_reg_val[0]; // check current packet belonging to which slice/hw-queue for (i=0; idest_mac_addr_queue_map[i] == addr1_low32 && ( !addr_flag ) ) { break; } } queue_idx = i; if (i>=MAX_NUM_HW_QUEUE) queue_idx = 0; retry_limit_raw = info->control.rates[0].count; rc_flags = info->control.rates[0].flags; use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); if (use_rts_cts) printk("%s openwifi_tx: WARNING use_rts_cts is not supported!\n", sdr_compatible_str); cts_use_traffic_rate = false; force_use_cts_protect = false; if (use_cts_protect) { cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info)); } else if (force_use_cts_protect) { // could override mac80211 setting here. cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) sifs = (priv->actual_rx_lo<2500?10:16); if (pkt_need_ack) ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1); cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); } //if (addr1_low32!=0xffffffff && addr1_high16!=0xffff) if ( !addr_flag ) { printk("%s openwifi_tx: %4dbytes %2dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retry%d ack%d q%d sn%04d R/CTS %d%d %dM %dus wr/rd %d/%d\n", sdr_compatible_str, len_mac_pdu, wifi_rate_all[rate_hw_value],frame_control,duration_id, reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), sc,info->flags,retry_limit_raw,pkt_need_ack,queue_idx,priv->phy_tx_sn, use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, ring->bd_wr_idx,ring->bd_rd_idx); // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); } // this is 11b stuff // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) priv->seqno += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(priv->seqno); } // -----------end of preprocess some info from header and skb---------------- // /* HW will perform RTS-CTS when only RTS flags is set. // * HW will perform CTS-to-self when both RTS and CTS flags are set. // * RTS rate and RTS duration will be used also for CTS-to-self. // */ // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config // len_mac_pdu, info); // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config // len_mac_pdu, info); // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); // } // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary if (skb_headroom(skb)sk != NULL) skb_set_owner_w(skb_new, skb->sk); dev_kfree_skb(skb); skb = skb_new; } skb_push( skb, LEN_PHY_HEADER ); rate_signal_value = calc_phy_header(rate_hw_value, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header //make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL if (skb_tailroom(skb)data; //(*((u16*)(dma_buf+6))) = priv->phy_tx_sn; //(*((u32*)(dma_buf+8))) = num_dma_byte; //(*((u32*)(dma_buf+12))) = num_byte_pad; cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value); dma_reg = ( (( ((priv->phy_tx_sn<lock, flags); // from now on, we'd better avoid interrupt because wr/rd idx will matter //ring_len = (ring->bd_wr_idx>=ring->bd_rd_idx)?(ring->bd_wr_idx-ring->bd_rd_idx):(ring->bd_wr_idx+NUM_TX_BD-ring->bd_rd_idx); ring_len = ((ring->bd_wr_idx-ring->bd_rd_idx)&(NUM_TX_BD-1)); ring_room_left = NUM_TX_BD - ring_len; if (ring_len>12) printk("%s openwifi_tx: WARNING ring len %d\n", sdr_compatible_str,ring_len); // printk("%s openwifi_tx: WARNING ring len %d HW fifo %d q %d\n", sdr_compatible_str,ring_len,tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_DATA_COUNT_read()&0xFFFF, ((tx_intf_api->TX_INTF_REG_PHY_QUEUE_TX_SN_read())>>16)&0xFF ); if (ring_room_left <= 2 && priv->tx_queue_stopped == false) { ieee80211_stop_queue(dev, prio); printk("%s openwifi_tx: WARNING ieee80211_stop_queue. ring_room_left %d!\n", sdr_compatible_str,ring_room_left); priv->tx_queue_stopped = true; spin_unlock_irqrestore(&priv->lock, flags); goto openwifi_tx_early_out; } /* We must be sure that tx_flags is written last because the HW * looks at it to check if the rest of data is valid or not */ //wmb(); // entry->flags = cpu_to_le32(tx_flags); /* We must be sure this has been written before followings HW * register write, because this write will made the HW attempts * to DMA the just-written data */ //wmb(); //__skb_queue_tail(&ring->queue, skb); //-------------------------fire skb DMA to hardware---------------------------------- dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, num_dma_byte, DMA_MEM_TO_DEV); if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { dev_err(priv->tx_chan->device->dev, "WARNING TX DMA mapping error\n"); goto openwifi_tx_skb_drop_out; } sg_init_table(&(priv->tx_sg), 1); sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg); priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); if (!(priv->txd)) { printk("%s openwifi_tx: WARNING device_prep_slave_sg %d\n", sdr_compatible_str, (u32)(priv->txd)); goto openwifi_tx_after_dma_mapping; } //we use interrupt instead of dma callback priv->txd->callback = 0; priv->txd->callback_param = 0; priv->tx_cookie = priv->txd->tx_submit(priv->txd); if (dma_submit_error(priv->tx_cookie)) { printk("%s openwifi_tx: WARNING dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, (u32)(priv->tx_cookie)); goto openwifi_tx_after_dma_mapping; } // seems everything ok. let's mark this pkt in bd descriptor ring ring->bds[ring->bd_wr_idx].num_dma_byte=num_dma_byte; ring->bds[ring->bd_wr_idx].sn=priv->phy_tx_sn; // ring->bds[ring->bd_wr_idx].hw_queue_idx=queue_idx; // ring->bds[ring->bd_wr_idx].retry_limit=retry_limit_hw_value; // ring->bds[ring->bd_wr_idx].need_ack=pkt_need_ack; ring->bds[ring->bd_wr_idx].skb_linked = skb; ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); priv->phy_tx_sn = ( (priv->phy_tx_sn+1)&MAX_PHY_TX_SN ); dma_async_issue_pending(priv->tx_chan); spin_unlock_irqrestore(&priv->lock, flags); return; openwifi_tx_after_dma_mapping: printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); spin_unlock_irqrestore(&priv->lock, flags); openwifi_tx_skb_drop_out: printk("%s openwifi_tx: WARNING openwifi_tx_skb_drop_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); spin_unlock_irqrestore(&priv->lock, flags); openwifi_tx_early_out: dev_kfree_skb(skb); printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); } static int openwifi_start(struct ieee80211_hw *dev) { struct openwifi_priv *priv = dev->priv; int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th, u32 reg; for (i=0; ivif[i] = NULL; } //turn on radio if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) { ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); } else { ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); } if (reg == AD9361_RADIO_ON_TX_ATT) { priv->rfkill_off = 1;// 0 off, 1 on printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); } else printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT); if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0) priv->ctrl_out.index=0x16; else priv->ctrl_out.index=0x17; ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out)); if (ret < 0) { printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret); } else { printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index); } priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); tx_intf_api->hw_init(priv->tx_intf_cfg,8,8); openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); xpu_api->hw_init(priv->xpu_cfg); agc_gain_delay = 50; //samples rssi_half_db_offset = 150; xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) ); xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) ); openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0); // rssi_half_db_th = 87<<1; // -62dBm // will settup in runtime in _rf_set_channel // xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it // // xpu_api->XPU_REG_CSMA_CFG_write(3); // cw_min // xpu_api->XPU_REG_CSMA_CFG_write(3); //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( (1200<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((1030-238)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!) //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (((45+2+2)*200)<<16) | 400 );//2.4GHz //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (((51+2+2)*200)<<16) | 400 );//5GHz // // value from openwifi-pre0 csma_test branch xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (((45+2+2)*200)<<16) | 200 );//2.4GHz xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (((51+2+2)*200)<<16) | 200 );//5GHz tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*200)<<16)|(10*200) );//high 16bit 5GHz; low 16 bit 2.4GHz //xpu_api->XPU_REG_BB_RF_DELAY_write(1020); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*200=810 xpu_api->XPU_REG_BB_RF_DELAY_write(975);//add .5us for slightly longer fir xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_write(50000-1); // total 50ms. xpu_api->XPU_REG_SLICE_COUNT_START0_write(0); //start 0ms xpu_api->XPU_REG_SLICE_COUNT_END0_write(50000-1); //end 50ms xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(50000-1); // total 50ms xpu_api->XPU_REG_SLICE_COUNT_START1_write(49000); //start 49ms xpu_api->XPU_REG_SLICE_COUNT_END1_write(50000-1); //end 50ms //xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) ); printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30040); //disable tx interrupt rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status if (test_mode==1) { printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str); goto normal_out; } priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); if (IS_ERR(priv->rx_chan)) { ret = PTR_ERR(priv->rx_chan); pr_err("%s openwifi_start: No Rx channel %d\n",sdr_compatible_str,ret); goto err_dma; //goto err_free_reg; //goto err_free_dev; } priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); if (IS_ERR(priv->tx_chan)) { ret = PTR_ERR(priv->tx_chan); pr_err("%s openwifi_start: No Tx channel %d\n",sdr_compatible_str,ret); goto err_dma; //goto err_free_reg; //goto err_free_dev; } printk("%s openwifi_start: DMA channel setup successfully.\n",sdr_compatible_str); ret = openwifi_init_rx_ring(priv); if (ret) { printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); goto err_free_rings; } priv->seqno=0; priv->phy_tx_sn=0; if ((ret = openwifi_init_tx_ring(priv))) { printk("%s openwifi_start: openwifi_init_tx_ring ret %d\n", sdr_compatible_str,ret); goto err_free_rings; } if ( (ret = rx_dma_setup(dev)) ) { printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); goto err_free_rings; } priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, IRQF_SHARED, "sdr,rx_pkt_intr", dev); if (ret) { wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); goto err_free_rings; } else { printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); } priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, IRQF_SHARED, "sdr,tx_itrpt1", dev); if (ret) { wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); goto err_free_rings; } else { printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); } rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x40); //enable tx interrupt rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer //ieee80211_wake_queue(dev, 0); normal_out: printk("%s openwifi_start: normal end\n", sdr_compatible_str); return 0; err_free_rings: openwifi_free_rx_ring(priv); openwifi_free_tx_ring(priv); err_dma: ret = -1; printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); return ret; } static void openwifi_stop(struct ieee80211_hw *dev) { struct openwifi_priv *priv = dev->priv; u32 reg, reg1; int i; if (test_mode==1){ pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str); goto normal_out; } //turn off radio #if 1 ad9361_tx_mute(priv->ad9361_phy, 1); reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { priv->rfkill_off = 0;// 0 off, 1 on printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); } else printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); #endif //ieee80211_stop_queue(dev, 0); tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30040); //disable tx interrupt rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status for (i=0; ivif[i] = NULL; } openwifi_free_rx_ring(priv); openwifi_free_tx_ring(priv); pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); dmaengine_terminate_all(priv->rx_chan); dma_release_channel(priv->rx_chan); pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); dmaengine_terminate_all(priv->tx_chan); dma_release_channel(priv->tx_chan); //priv->rf->stop(dev); free_irq(priv->irq_rx, dev); free_irq(priv->irq_tx, dev); normal_out: printk("%s openwifi_stop\n", sdr_compatible_str); } static u64 openwifi_get_tsf(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { u32 tsft_low, tsft_high; tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); } static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) { u32 tsft_high = ((tsf >> 32)&0xffffffff); u32 tsft_low = (tsf&0xffffffff); xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); } static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); printk("%s openwifi_reset_tsf\n", sdr_compatible_str); } static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); return(0); } static void openwifi_beacon_work(struct work_struct *work) { struct openwifi_vif *vif_priv = container_of(work, struct openwifi_vif, beacon_work.work); struct ieee80211_vif *vif = container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); struct ieee80211_hw *dev = vif_priv->dev; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; /* don't overflow the tx ring */ if (ieee80211_queue_stopped(dev, 0)) goto resched; /* grab a fresh beacon */ skb = ieee80211_beacon_get(dev, vif); if (!skb) goto resched; /* * update beacon timestamp w/ TSF value * TODO: make hardware update beacon timestamp */ mgmt = (struct ieee80211_mgmt *)skb->data; mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); /* TODO: use actual beacon queue */ skb_set_queue_mapping(skb, 0); openwifi_tx(dev, NULL, skb); resched: /* * schedule next beacon * TODO: use hardware support for beacon timing */ schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); } static int openwifi_add_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { int i; struct openwifi_priv *priv = dev->priv; struct openwifi_vif *vif_priv; switch (vif->type) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_MESH_POINT: break; default: return -EOPNOTSUPP; } // let's support more than 1 interface for (i=0; ivif[i] == NULL) break; } printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); if (i==MAX_NUM_VIF) return -EBUSY; priv->vif[i] = vif; /* Initialize driver private area */ vif_priv = (struct openwifi_vif *)&vif->drv_priv; vif_priv->idx = i; vif_priv->dev = dev; INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); vif_priv->enable_beacon = false; printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx); return 0; } static void openwifi_remove_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif) { struct openwifi_vif *vif_priv; struct openwifi_priv *priv = dev->priv; vif_priv = (struct openwifi_vif *)&vif->drv_priv; priv->vif[vif_priv->idx] = NULL; printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); } static int openwifi_config(struct ieee80211_hw *dev, u32 changed) { struct openwifi_priv *priv = dev->priv; struct ieee80211_conf *conf = &dev->conf; if (changed & IEEE80211_CONF_CHANGE_CHANNEL) priv->rf->set_chan(dev, conf); else printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); return 0; } static void openwifi_bss_info_changed(struct ieee80211_hw *dev, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { struct openwifi_priv *priv = dev->priv; struct openwifi_vif *vif_priv; u32 bssid_low, bssid_high; vif_priv = (struct openwifi_vif *)&vif->drv_priv; //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); if (changed & BSS_CHANGED_BSSID) { printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); // write new bssid to our HW, and do not change bssid filter //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); bssid_low = ( *( (u32*)(info->bssid) ) ); bssid_high = ( *( (u16*)(info->bssid+4) ) ); //bssid_filter_high = (bssid_filter_high&0x80000000); //bssid_high = (bssid_high|bssid_filter_high); xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); } if (changed & BSS_CHANGED_BEACON_INT) { printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); } if (changed & BSS_CHANGED_TXPOWER) printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); if (changed & BSS_CHANGED_ERP_CTS_PROT) printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); if (changed & BSS_CHANGED_BASIC_RATES) printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); if (info->use_short_slot && priv->use_short_slot==false) { priv->use_short_slot=true; xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); } else if ((!info->use_short_slot) && priv->use_short_slot==true) { priv->use_short_slot=false; xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); } } if (changed & BSS_CHANGED_BEACON_ENABLED) { printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); vif_priv->enable_beacon = info->enable_beacon; } if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { cancel_delayed_work_sync(&vif_priv->beacon_work); if (vif_priv->enable_beacon) schedule_work(&vif_priv->beacon_work.work); printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); } } static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, const struct ieee80211_tx_queue_params *params) { printk("%s openwifi_conf_tx: WARNING [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n", sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); return(0); } static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, struct netdev_hw_addr_list *mc_list) { printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); return netdev_hw_addr_list_count(mc_list); } static void openwifi_configure_filter(struct ieee80211_hw *dev, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct openwifi_priv *priv = dev->priv; u32 filter_flag; (*total_flags) &= SDR_SUPPORTED_FILTERS; // (*total_flags) |= FIF_ALLMULTI; //because we always pass all multicast (no matter it is for us or not) to upper layer filter_flag = (*total_flags); filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) filter_flag = (filter_flag|MONITOR_ALL); if ( (priv->vif[0]->type == NL80211_IFTYPE_STATION) && !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) filter_flag = (filter_flag|MY_BEACON); if (priv->vif[0]->type == NL80211_IFTYPE_AP) filter_flag = (filter_flag|FIF_PSPOLL); xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); } static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len) { struct openwifi_priv *priv = hw->priv; struct nlattr *tb[OPENWIFI_ATTR_MAX + 1]; struct sk_buff *skb; int err; u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx; err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL); if (err) return err; if (!tb[OPENWIFI_ATTR_CMD]) return -EINVAL; switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) { case OPENWIFI_CMD_SET_GAP: if (!tb[OPENWIFI_ATTR_GAP]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]); printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp); xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us return 0; case OPENWIFI_CMD_GET_GAP: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = xpu_api->XPU_REG_CSMA_CFG_read(); if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_ADDR0: if (!tb[OPENWIFI_ATTR_ADDR0]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR0]); printk("%s set openwifi slice0_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp); priv->dest_mac_addr_queue_map[0] = reverse32(tmp); return 0; case OPENWIFI_CMD_GET_ADDR0: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = reverse32(priv->dest_mac_addr_queue_map[0]); if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR0, tmp)) goto nla_put_failure; printk("%s get openwifi slice0_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp); return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_ADDR1: if (!tb[OPENWIFI_ATTR_ADDR1]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR1]); printk("%s set openwifi slice1_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp); priv->dest_mac_addr_queue_map[1] = reverse32(tmp); return 0; case OPENWIFI_CMD_GET_ADDR1: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = reverse32(priv->dest_mac_addr_queue_map[1]); if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR1, tmp)) goto nla_put_failure; printk("%s get openwifi slice1_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp); return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_SLICE_TOTAL0: if (!tb[OPENWIFI_ATTR_SLICE_TOTAL0]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL0]); printk("%s set SLICE_TOTAL0(duration) to %d usec\n", sdr_compatible_str, tmp); xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_write(tmp); return 0; case OPENWIFI_CMD_GET_SLICE_TOTAL0: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_read()); if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL0, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_SLICE_START0: if (!tb[OPENWIFI_ATTR_SLICE_START0]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START0]); printk("%s set SLICE_START0(duration) to %d usec\n", sdr_compatible_str, tmp); xpu_api->XPU_REG_SLICE_COUNT_START0_write(tmp); return 0; case OPENWIFI_CMD_GET_SLICE_START0: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = (xpu_api->XPU_REG_SLICE_COUNT_START0_read()); if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START0, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_SLICE_END0: if (!tb[OPENWIFI_ATTR_SLICE_END0]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END0]); printk("%s set SLICE_END0(duration) to %d usec\n", sdr_compatible_str, tmp); xpu_api->XPU_REG_SLICE_COUNT_END0_write(tmp); return 0; case OPENWIFI_CMD_GET_SLICE_END0: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = (xpu_api->XPU_REG_SLICE_COUNT_END0_read()); if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END0, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_SLICE_TOTAL1: if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]); printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp); xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp); return 0; case OPENWIFI_CMD_GET_SLICE_TOTAL1: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read()); if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_SLICE_START1: if (!tb[OPENWIFI_ATTR_SLICE_START1]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]); printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp); xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp); return 0; case OPENWIFI_CMD_GET_SLICE_START1: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read()); if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_SLICE_END1: if (!tb[OPENWIFI_ATTR_SLICE_END1]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]); printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp); xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp); return 0; case OPENWIFI_CMD_GET_SLICE_END1: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read()); if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case OPENWIFI_CMD_SET_RSSI_TH: if (!tb[OPENWIFI_ATTR_RSSI_TH]) return -EINVAL; tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]); printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp); xpu_api->XPU_REG_LBT_TH_write(tmp); return 0; case OPENWIFI_CMD_GET_RSSI_TH: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; tmp = xpu_api->XPU_REG_LBT_TH_read(); if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); case REG_CMD_SET: if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) ) return -EINVAL; reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]); reg_val = nla_get_u32(tb[REG_ATTR_VAL]); reg_cat = ((reg_addr>>16)&0xFFFF); reg_addr = (reg_addr&0xFFFF); reg_addr_idx = (reg_addr>>2); printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx); if (reg_cat==1) printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str); else if (reg_cat==2) rx_intf_api->reg_write(reg_addr,reg_val); else if (reg_cat==3) tx_intf_api->reg_write(reg_addr,reg_val); else if (reg_cat==4) openofdm_rx_api->reg_write(reg_addr,reg_val); else if (reg_cat==5) openofdm_tx_api->reg_write(reg_addr,reg_val); else if (reg_cat==6) xpu_api->reg_write(reg_addr,reg_val); else if (reg_cat==7) { priv->drv_rx_reg_val[reg_addr_idx]=reg_val; if (reg_addr_idx==1) { if (reg_val==0) priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; else priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; //priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; } } else if (reg_cat==8) { priv->drv_tx_reg_val[reg_addr_idx]=reg_val; if (reg_addr_idx==1) { if (reg_val==0) { priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); } else { priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); } //priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; } } else if (reg_cat==9) { priv->drv_xpu_reg_val[reg_addr_idx]=reg_val; } else printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat); return 0; case REG_CMD_GET: skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32))); if (!skb) return -ENOMEM; reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]); reg_cat = ((reg_addr>>16)&0xFFFF); reg_addr = (reg_addr&0xFFFF); reg_addr_idx = (reg_addr>>2); printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx); if (reg_cat==1) { printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str); tmp = 0xFFFFFFFF; } else if (reg_cat==2) tmp = rx_intf_api->reg_read(reg_addr); else if (reg_cat==3) tmp = tx_intf_api->reg_read(reg_addr); else if (reg_cat==4) tmp = openofdm_rx_api->reg_read(reg_addr); else if (reg_cat==5) tmp = openofdm_tx_api->reg_read(reg_addr); else if (reg_cat==6) tmp = xpu_api->reg_read(reg_addr); else if (reg_cat==7) { if (reg_addr_idx==1) { priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; //priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0) priv->drv_rx_reg_val[reg_addr_idx]=0; else if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1) priv->drv_rx_reg_val[reg_addr_idx]=1; } tmp = priv->drv_rx_reg_val[reg_addr_idx]; } else if (reg_cat==8) { if (reg_addr_idx==1) { //priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0) priv->drv_tx_reg_val[reg_addr_idx]=0; else if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) priv->drv_tx_reg_val[reg_addr_idx]=1; } tmp = priv->drv_tx_reg_val[reg_addr_idx]; } else if (reg_cat==9) { tmp = priv->drv_xpu_reg_val[reg_addr_idx]; } else printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat); if (nla_put_u32(skb, REG_ATTR_VAL, tmp)) goto nla_put_failure; return cfg80211_testmode_reply(skb); default: return -EOPNOTSUPP; } nla_put_failure: dev_kfree_skb(skb); return -ENOBUFS; } static const struct ieee80211_ops openwifi_ops = { .tx = openwifi_tx, .start = openwifi_start, .stop = openwifi_stop, .add_interface = openwifi_add_interface, .remove_interface = openwifi_remove_interface, .config = openwifi_config, .bss_info_changed = openwifi_bss_info_changed, .conf_tx = openwifi_conf_tx, .prepare_multicast = openwifi_prepare_multicast, .configure_filter = openwifi_configure_filter, .rfkill_poll = openwifi_rfkill_poll, .get_tsf = openwifi_get_tsf, .set_tsf = openwifi_set_tsf, .reset_tsf = openwifi_reset_tsf, .set_rts_threshold = openwifi_set_rts_threshold, .testmode_cmd = openwifi_testmode_cmd, }; static const struct of_device_id openwifi_dev_of_ids[] = { { .compatible = "sdr,sdr", }, {} }; MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); static int custom_match_spi_dev(struct device *dev, void *data) { const char *name = data; bool ret = sysfs_streq(name, dev->of_node->name); printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); return ret; } static int custom_match_platform_dev(struct device *dev, void *data) { struct platform_device *plat_dev = to_platform_device(dev); const char *name = data; char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); bool match_flag = (name_in_sys_bus_platform_devices != NULL); if (match_flag) { printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); } return(match_flag); } static int openwifi_dev_probe(struct platform_device *pdev) { struct ieee80211_hw *dev; struct openwifi_priv *priv; int err=1, rand_val; const char *chip_name; u32 reg;//, reg1; struct device_node *np = pdev->dev.of_node; struct device *tmp_dev; struct platform_device *tmp_pdev; struct iio_dev *tmp_indio_dev; // struct gpio_leds_priv *tmp_led_priv; printk("\n"); if (np) { const struct of_device_id *match; match = of_match_node(openwifi_dev_of_ids, np); if (match) { printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); err = 0; } } if (err) return err; dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); if (!dev) { printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); err = -ENOMEM; goto err_free_dev; } priv = dev->priv; priv->pdev = pdev; // //-------------find ad9361-phy driver for lo/channel control--------------- priv->actual_rx_lo = 0; tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); if (!tmp_dev) { printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); err = -ENOMEM; goto err_free_dev; } priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); if (!(priv->ad9361_phy)) { printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); err = -ENOMEM; goto err_free_dev; } priv->ctrl_out.en_mask=0xFF; priv->ctrl_out.index=0x16; err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out)); if (err < 0) { printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err); } else { printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index); } reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); if (!tmp_dev) { printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); err = -ENOMEM; goto err_free_dev; } tmp_pdev = to_platform_device(tmp_dev); if (!tmp_pdev) { printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); err = -ENOMEM; goto err_free_dev; } tmp_indio_dev = platform_get_drvdata(tmp_pdev); if (!tmp_indio_dev) { printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); err = -ENOMEM; goto err_free_dev; } priv->dds_st = iio_priv(tmp_indio_dev); if (!(priv->dds_st)) { printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); err = -ENOMEM; goto err_free_dev; } printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- // turn off radio by muting tx // ad9361_tx_mute(priv->ad9361_phy, 1); // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { // priv->rfkill_off = 0;// 0 off, 1 on // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); // } // else // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel() //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode priv->xpu_cfg = XPU_NORMAL; priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); if (priv->rf_bw == 20000000) { priv->rx_intf_cfg = RX_INTF_BYPASS; priv->tx_intf_cfg = TX_INTF_BYPASS; //priv->rx_freq_offset_to_lo_MHz = 0; //priv->tx_freq_offset_to_lo_MHz = 0; } else if (priv->rf_bw == 40000000) { //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; // // try another antenna option //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; #if 0 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { priv->rx_freq_offset_to_lo_MHz = -10; } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { priv->rx_freq_offset_to_lo_MHz = 10; } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { priv->rx_freq_offset_to_lo_MHz = 0; } else { printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); } #endif } else { printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); } priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode); //let's by default turn radio on when probing if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) { ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); } else { ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); } if (reg == AD9361_RADIO_ON_TX_ATT) { priv->rfkill_off = 1;// 0 off, 1 on printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); } else printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT); memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); // //set ad9361 in certain mode #if 0 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); tx_intf_api->hw_init(priv->tx_intf_cfg,8,8); openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); #endif dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. SET_IEEE80211_DEV(dev, &pdev->dev); platform_set_drvdata(pdev, dev); BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT priv->band_2GHz.band = NL80211_BAND_2GHZ; priv->band_2GHz.channels = priv->channels_2GHz; priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); priv->band_2GHz.bitrates = priv->rates_2GHz; priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); priv->band_5GHz.band = NL80211_BAND_5GHZ; priv->band_5GHz.channels = priv->channels_5GHz; priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); priv->band_5GHz.bitrates = priv->rates_5GHz; priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); ieee80211_hw_set(dev, RX_INCLUDES_FCS); ieee80211_hw_set(dev, BEACON_TX_STATUS); dev->vif_data_size = sizeof(struct openwifi_vif); dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_MONITOR)| BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT) | BIT(NL80211_IFTYPE_OCB); dev->wiphy->iface_combinations = &openwifi_if_comb; dev->wiphy->n_iface_combinations = 1; dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); chip_name = "ZYNQ"; /* we declare to MAC80211 all the queues except for beacon queue * that will be eventually handled by DRV. * TX rings are arranged in such a way that lower is the IDX, * higher is the priority, in order to achieve direct mapping * with mac80211, however the beacon queue is an exception and it * is mapped on the highst tx ring IDX. */ dev->queues = 1; ieee80211_hw_set(dev, SIGNAL_DBM); wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); priv->rf = &ad9361_rf_ops; memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); get_random_bytes(&rand_val, sizeof(rand_val)); rand_val%=250; priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; priv->mac_addr[5]=rand_val+1; //priv->mac_addr[5]=0x11; if (!is_valid_ether_addr(priv->mac_addr)) { printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); eth_random_addr(priv->mac_addr); } else { printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); } SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); spin_lock_init(&priv->lock); err = ieee80211_register_hw(dev); if (err) { pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); goto err_free_dev; } else { printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); } // // //--------------------hook leds (not complete yet)-------------------------------- // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatiable" field // if (!tmp_dev) { // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); // err = -ENOMEM; // goto err_free_dev; // } // tmp_pdev = to_platform_device(tmp_dev); // if (!tmp_pdev) { // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); // err = -ENOMEM; // goto err_free_dev; // } // tmp_led_priv = platform_get_drvdata(tmp_pdev); // if (!tmp_led_priv) { // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); // err = -ENOMEM; // goto err_free_dev; // } // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); // if (tmp_led_priv->num_leds!=4){ // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); // err = -ENOMEM; // goto err_free_dev; // } // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it // priv->num_led = tmp_led_priv->num_leds; // priv->led[0] = &(tmp_led_priv->leds[0].cdev); // priv->led[1] = &(tmp_led_priv->leds[1].cdev); // priv->led[2] = &(tmp_led_priv->leds[2].cdev); // priv->led[3] = &(tmp_led_priv->leds[3].cdev); // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", priv->mac_addr, chip_name, priv->rf->name); openwifi_rfkill_init(dev); return 0; err_free_dev: ieee80211_free_hw(dev); return err; } static int openwifi_dev_remove(struct platform_device *pdev) { struct ieee80211_hw *dev = platform_get_drvdata(pdev); if (!dev) { pr_info("%s openwifi_dev_remove: dev %d\n", sdr_compatible_str, (u32)dev); return(-1); } openwifi_rfkill_exit(dev); ieee80211_unregister_hw(dev); ieee80211_free_hw(dev); return(0); } static struct platform_driver openwifi_dev_driver = { .driver = { .name = "sdr,sdr", .owner = THIS_MODULE, .of_match_table = openwifi_dev_of_ids, }, .probe = openwifi_dev_probe, .remove = openwifi_dev_remove, }; module_platform_driver(openwifi_dev_driver);