/* * axi lite register access driver * Author: Xianjun Jiao, Michael Mehari, Wei Liu * SPDX-FileCopyrightText: 2019 UGent * SPDX-License-Identifier: AGPL-3.0-or-later */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../hw_def.h" static void __iomem *base_addr; // to store driver specific base address needed for mmu to translate virtual address to physical address in our FPGA design /* IO accessors */ static inline u32 reg_read(u32 reg) { return ioread32(base_addr + reg); } static inline void reg_write(u32 reg, u32 value) { iowrite32(value, base_addr + reg); } static inline u32 RX_INTF_REG_MULTI_RST_read(void){ return reg_read(RX_INTF_REG_MULTI_RST_ADDR); } static inline u32 RX_INTF_REG_MIXER_CFG_read(void){ return reg_read(RX_INTF_REG_MIXER_CFG_ADDR); } static inline u32 RX_INTF_REG_IQ_SRC_SEL_read(void){ return reg_read(RX_INTF_REG_IQ_SRC_SEL_ADDR); } static inline u32 RX_INTF_REG_IQ_CTRL_read(void){ return reg_read(RX_INTF_REG_IQ_CTRL_ADDR); } static inline u32 RX_INTF_REG_START_TRANS_TO_PS_MODE_read(void){ return reg_read(RX_INTF_REG_START_TRANS_TO_PS_MODE_ADDR); } static inline u32 RX_INTF_REG_START_TRANS_TO_PS_read(void){ return reg_read(RX_INTF_REG_START_TRANS_TO_PS_ADDR); } static inline u32 RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_read(void){ return reg_read(RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_ADDR); } static inline u32 RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_read(void){ return reg_read(RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_ADDR); } static inline u32 RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read(void){ return reg_read(RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_ADDR); } static inline u32 RX_INTF_REG_CFG_DATA_TO_ANT_read(void){ return reg_read(RX_INTF_REG_CFG_DATA_TO_ANT_ADDR); } static inline u32 RX_INTF_REG_ANT_SEL_read(void){ return reg_read(RX_INTF_REG_ANT_SEL_ADDR); } static inline u32 RX_INTF_REG_INTERRUPT_TEST_read(void) { return reg_read(RX_INTF_REG_INTERRUPT_TEST_ADDR); } static inline void RX_INTF_REG_MULTI_RST_write(u32 value){ reg_write(RX_INTF_REG_MULTI_RST_ADDR, value); } static inline void RX_INTF_REG_M_AXIS_RST_write(u32 value){ u32 reg_val; if (value==0) { reg_val = RX_INTF_REG_MULTI_RST_read(); reg_val = ( reg_val&(~(1<<4)) ); RX_INTF_REG_MULTI_RST_write(reg_val); } else { reg_val = RX_INTF_REG_MULTI_RST_read(); reg_val = ( reg_val|(1<<4) ); RX_INTF_REG_MULTI_RST_write(reg_val); } } static inline void RX_INTF_REG_MIXER_CFG_write(u32 value){ reg_write(RX_INTF_REG_MIXER_CFG_ADDR, value); } static inline void RX_INTF_REG_IQ_SRC_SEL_write(u32 value){ reg_write(RX_INTF_REG_IQ_SRC_SEL_ADDR, value); } static inline void RX_INTF_REG_IQ_CTRL_write(u32 value){ reg_write(RX_INTF_REG_IQ_CTRL_ADDR, value); } static inline void RX_INTF_REG_START_TRANS_TO_PS_MODE_write(u32 value){ reg_write(RX_INTF_REG_START_TRANS_TO_PS_MODE_ADDR, value); } static inline void RX_INTF_REG_START_TRANS_TO_PS_write(u32 value){ reg_write(RX_INTF_REG_START_TRANS_TO_PS_ADDR, value); } static inline void RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write(u32 value){ reg_write(RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_ADDR, value); } static inline void RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(u32 value){ reg_write(RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_ADDR, value); } static inline void RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write(u32 value){ reg_write(RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_ADDR, value); } static inline void RX_INTF_REG_CFG_DATA_TO_ANT_write(u32 value){ reg_write(RX_INTF_REG_CFG_DATA_TO_ANT_ADDR, value); } static inline void RX_INTF_REG_BB_GAIN_write(u32 value) { reg_write(RX_INTF_REG_BB_GAIN_ADDR, value); } static inline void RX_INTF_REG_ANT_SEL_write(u32 value){ reg_write(RX_INTF_REG_ANT_SEL_ADDR, value); } static inline void RX_INTF_REG_INTERRUPT_TEST_write(u32 value) { reg_write(RX_INTF_REG_INTERRUPT_TEST_ADDR, value); } static inline void RX_INTF_REG_S2MM_INTR_DELAY_COUNT_write(u32 value) { reg_write(RX_INTF_REG_S2MM_INTR_DELAY_COUNT_ADDR, value); } static inline void RX_INTF_REG_TLAST_TIMEOUT_TOP_write(u32 value) { reg_write(RX_INTF_REG_TLAST_TIMEOUT_TOP_ADDR, value); } static const struct of_device_id dev_of_ids[] = { { .compatible = "sdr,rx_intf", }, {} }; MODULE_DEVICE_TABLE(of, dev_of_ids); static struct rx_intf_driver_api rx_intf_driver_api_inst; static struct rx_intf_driver_api *rx_intf_api = &rx_intf_driver_api_inst; EXPORT_SYMBOL(rx_intf_api); static inline u32 hw_init(enum rx_intf_mode mode, u32 num_dma_symbol_to_pl, u32 num_dma_symbol_to_ps){ int err=0, i; u32 reg_val, mixer_cfg=0, ant_sel=0; printk("%s hw_init mode %d\n", rx_intf_compatible_str, mode); rx_intf_api->RX_INTF_REG_TLAST_TIMEOUT_TOP_write(7000); //rst for (i=0;i<8;i++) rx_intf_api->RX_INTF_REG_MULTI_RST_write(0); for (i=0;i<32;i++) rx_intf_api->RX_INTF_REG_MULTI_RST_write(0xFFFFFFFF); for (i=0;i<8;i++) rx_intf_api->RX_INTF_REG_MULTI_RST_write(0); rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status. will be released when openwifi_start switch(mode) { case RX_INTF_AXIS_LOOP_BACK: printk("%s hw_init mode RX_INTF_AXIS_LOOP_BACK\n", rx_intf_compatible_str); //setting the path and mode. This must be done before our dma end reset rx_intf_api->RX_INTF_REG_IQ_SRC_SEL_write(0x15); rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write(1); rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write(0x37);// endless mode to support sg DMA loop back, start 1 trans from sw trigger rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(num_dma_symbol_to_pl); rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write(num_dma_symbol_to_ps); // put bb_en to constant 1 reg_val = rx_intf_api->RX_INTF_REG_IQ_CTRL_read(); reg_val = (reg_val|0x8); rx_intf_api->RX_INTF_REG_IQ_CTRL_write(reg_val); // connect axis slave and master directly for loopback rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write(0x1037); // reset dma end point in our design reg_val = rx_intf_api->RX_INTF_REG_MULTI_RST_read(); reg_val = (reg_val&(~0x14) ); rx_intf_api->RX_INTF_REG_MULTI_RST_write(reg_val); reg_val = reg_val|(0x14); rx_intf_api->RX_INTF_REG_MULTI_RST_write(reg_val); reg_val = reg_val&(~0x14); rx_intf_api->RX_INTF_REG_MULTI_RST_write(reg_val); //start 1 trans now from our m_axis to ps dma rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write(0); rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write(1); rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write(0); break; case RX_INTF_BW_20MHZ_AT_0MHZ_ANT0: printk("%s hw_init mode DDC_BW_20MHZ_AT_0MHZ\n", rx_intf_compatible_str); mixer_cfg = 0x300200F4; ant_sel=0; break; case RX_INTF_BW_20MHZ_AT_0MHZ_ANT1: printk("%s hw_init mode DDC_BW_20MHZ_AT_0MHZ\n", rx_intf_compatible_str); mixer_cfg = 0x300200F4; ant_sel=1; break; case RX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0: printk("%s hw_init mode DDC_BW_20MHZ_AT_N_10MHZ\n", rx_intf_compatible_str); mixer_cfg = 0x300202F6; ant_sel=0; break; case RX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1: printk("%s hw_init mode DDC_BW_20MHZ_AT_N_10MHZ\n", rx_intf_compatible_str); mixer_cfg = 0x300202F6; ant_sel=1; break; case RX_INTF_BW_20MHZ_AT_P_10MHZ_ANT0: printk("%s hw_init mode DDC_BW_20MHZ_AT_P_10MHZ\n", rx_intf_compatible_str); mixer_cfg = 0x3001F602; ant_sel=0; break; case RX_INTF_BW_20MHZ_AT_P_10MHZ_ANT1: printk("%s hw_init mode DDC_BW_20MHZ_AT_P_10MHZ\n", rx_intf_compatible_str); mixer_cfg = 0x3001F602; ant_sel=1; break; case RX_INTF_BYPASS: printk("%s hw_init mode DDC_BYPASS\n", rx_intf_compatible_str); mixer_cfg = 0x3001F602; break; default: printk("%s hw_init mode %d is wrong!\n", rx_intf_compatible_str, mode); err=1; } if (mode!=RX_INTF_AXIS_LOOP_BACK) { // rx_intf_api->RX_INTF_REG_MIXER_CFG_write(mixer_cfg); --now rx doesn't have mixer anymore // 0x000202F6 for: wifi ant0: -10MHz; wifi ant1: +10MHz; zigbee 4 ch ant0: -2, -7, -12, -17MHz; zigbee 4 ch ant1: +3, +8, +13, +18MHz // 0x0001F602 for: wifi ant0: +10MHz; wifi ant1: -10MHz; zigbee 4 ch ant0: +3, +8, +13, +18MHz; zigbee 4 ch ant1: -2, -7, -12, -17MHz // 0x0001F206 for: wifi ant0: -10MHz; wifi ant1: +10MHz; zigbee 4 ch ant0: +3, +8, +13, +18MHz; zigbee 4 ch ant1: -2, -7, -12, -17MHz // 0x2101F602 for: wifi gain 4; zigbee gain 2 // 0xFE01F602 for: wifi gain 1/2; zigbee gain 1/4 // bits definitions: // wifi ch selection: ant0 bit1~0; ant1 bit 9~8; ch offset: 0-0MHz; 1-5MHz; 2-10MHz; 3-15MHz(severe distortion) // wifi ch +/- selection: ant0 bit2; ant1 bit 10; 0-positive; 1-negative // zigbee 2M mixer +/- selection: ant0 bit3; ant1 bit 11; 0-positive; 1-negative // zigbee secondary mixer +/- selection: ant0 bit4~7; ant1 bit 12~15; 0-positive; 1-negative // zigbee ch slip offset: ant0 bit16; ant1 bit17; 0-select ch offset 0, 5, 10, 15; 1-select ch offset 5 10 15 20 // wifi gain: bit31~28; number of bits shifted to left in 2'complement code // zigb gain: bit27~24; number of bits shifted to left in 2'complement code // max amplitude calibration info (agc low, ddc w/o gain adj 0x0001F602): 5GHz, max amplitude 1.26e4. According to simulation, schr shrink 1bit should be enough rx_intf_api->RX_INTF_REG_MULTI_RST_write(0); rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status. will be released when openwifi_start //rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); //0x000-normal; 0x100-sig and fcs valid are controlled by bit4 and bit0; //0x111-sig and fcs high; 0x110-sig high fcs low; 0x101-sig low fcs high; 0x100-sig and fcs low rx_intf_api->RX_INTF_REG_S2MM_INTR_DELAY_COUNT_write(30*10); // delayed interrupt, counter clock 10MHz is assumed rx_intf_api->RX_INTF_REG_IQ_CTRL_write(0); rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write(0x10025); //now bit 5 should be 1 to let pl_to_m_axis_intf decide num_dma_symbol_to_ps automatically //rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write(0x00025); //bit16 enable_m_axis_auto_rst //bit2-0: source of M AXIS transfer trigger // -0 fcs_valid_from_acc // -1 sig_valid_from_acc // -2 sig_invalid_from_acc // -3 start_1trans_s_axis_tlast_trigger // -4 start_1trans_s_axis_tready_trigger // -5 internal state machine together with bit5 1. By parsing signal field, num_dma_symbol_to_ps can be decided automatically // -6 start_1trans_monitor_dma_to_ps_start_trigger // -7 start_1trans_ext_trigger //bit3: 1-fcs valid and invalid both connected; 0-only fcs valid connected (fcs_invalid_mode) //bit4: 1-num_dma_symbol_to_pl from monitor; 0-num_dma_symbol_to_pl from slv_reg8 //bit5: 1-num_dma_symbol_to_ps from monitor; 0-num_dma_symbol_to_ps from slv_reg9 //bit6: 1-pl_to_m_axis_intf will try to send both ht and non-ht; 0-only send non-ht //bit8: 1-endless S AXIS; 0-normal //bit9: 1-endless M AXIS; 0-normal //bit12: 1-direct loop back; 0-normal //bit16: 1-auto m_axis rst (sig_valid_from_acc|sig_invalid_from_acc|ht_sig_valid|ht_sig_invalid|ht_unsupported); 0-normal //bit24: 1-disable m_axis fifo_rst_by_fcs_invalid; 0-enable //bit29,28: sig_valid_mode. 0- non-ht sig valid; 1- ht sig valid other- both rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write(OPENWIFI_MAX_SIGNAL_LEN_TH<<16); //bit31~16 max pkt length threshold rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write(0); // 0-wifi_rx packet out; 1-loopback from input of wifi_rx rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(num_dma_symbol_to_pl); rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write(num_dma_symbol_to_ps); rx_intf_api->RX_INTF_REG_CFG_DATA_TO_ANT_write(1<<8); rx_intf_api->RX_INTF_REG_BB_GAIN_write(4); rx_intf_api->RX_INTF_REG_ANT_SEL_write(ant_sel); rx_intf_api->RX_INTF_REG_MULTI_RST_write(0x14);//rst m/s axis rx_intf_api->RX_INTF_REG_MULTI_RST_write(0); rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status. will be released when openwifi_start } if (mode==RX_INTF_BYPASS) { rx_intf_api->RX_INTF_REG_CFG_DATA_TO_ANT_write(0x10); //bit4 bypass enable } printk("%s hw_init err %d\n", rx_intf_compatible_str, err); return(err); } static int dev_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct resource *io; int err=1; printk("\n"); if (np) { const struct of_device_id *match; match = of_match_node(dev_of_ids, np); if (match) { printk("%s dev_probe match!\n", rx_intf_compatible_str); err = 0; } } if (err) return err; rx_intf_api->hw_init=hw_init; rx_intf_api->reg_read=reg_read; rx_intf_api->reg_write=reg_write; rx_intf_api->RX_INTF_REG_MULTI_RST_read=RX_INTF_REG_MULTI_RST_read; rx_intf_api->RX_INTF_REG_MIXER_CFG_read=RX_INTF_REG_MIXER_CFG_read; rx_intf_api->RX_INTF_REG_IQ_SRC_SEL_read=RX_INTF_REG_IQ_SRC_SEL_read; rx_intf_api->RX_INTF_REG_IQ_CTRL_read=RX_INTF_REG_IQ_CTRL_read; rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_read=RX_INTF_REG_START_TRANS_TO_PS_MODE_read; rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_read=RX_INTF_REG_START_TRANS_TO_PS_read; rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_read=RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_read; rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_read=RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_read; rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read=RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_read; rx_intf_api->RX_INTF_REG_CFG_DATA_TO_ANT_read=RX_INTF_REG_CFG_DATA_TO_ANT_read; rx_intf_api->RX_INTF_REG_ANT_SEL_read=RX_INTF_REG_ANT_SEL_read; rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_read=RX_INTF_REG_INTERRUPT_TEST_read; rx_intf_api->RX_INTF_REG_MULTI_RST_write=RX_INTF_REG_MULTI_RST_write; rx_intf_api->RX_INTF_REG_M_AXIS_RST_write=RX_INTF_REG_M_AXIS_RST_write; rx_intf_api->RX_INTF_REG_MIXER_CFG_write=RX_INTF_REG_MIXER_CFG_write; rx_intf_api->RX_INTF_REG_IQ_SRC_SEL_write=RX_INTF_REG_IQ_SRC_SEL_write; rx_intf_api->RX_INTF_REG_IQ_CTRL_write=RX_INTF_REG_IQ_CTRL_write; rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_MODE_write=RX_INTF_REG_START_TRANS_TO_PS_MODE_write; rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_write=RX_INTF_REG_START_TRANS_TO_PS_write; rx_intf_api->RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write=RX_INTF_REG_START_TRANS_TO_PS_SRC_SEL_write; rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write=RX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write; rx_intf_api->RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write=RX_INTF_REG_NUM_DMA_SYMBOL_TO_PS_write; rx_intf_api->RX_INTF_REG_CFG_DATA_TO_ANT_write=RX_INTF_REG_CFG_DATA_TO_ANT_write; rx_intf_api->RX_INTF_REG_BB_GAIN_write=RX_INTF_REG_BB_GAIN_write; rx_intf_api->RX_INTF_REG_ANT_SEL_write=RX_INTF_REG_ANT_SEL_write; rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write=RX_INTF_REG_INTERRUPT_TEST_write; rx_intf_api->RX_INTF_REG_S2MM_INTR_DELAY_COUNT_write=RX_INTF_REG_S2MM_INTR_DELAY_COUNT_write; rx_intf_api->RX_INTF_REG_TLAST_TIMEOUT_TOP_write=RX_INTF_REG_TLAST_TIMEOUT_TOP_write; /* Request and map I/O memory */ io = platform_get_resource(pdev, IORESOURCE_MEM, 0); base_addr = devm_ioremap_resource(&pdev->dev, io); if (IS_ERR(base_addr)) return PTR_ERR(base_addr); rx_intf_api->io_start = io->start; rx_intf_api->base_addr = (u32)base_addr; printk("%s dev_probe io start 0x%08x end 0x%08x name %s flags 0x%08x desc 0x%08x\n", rx_intf_compatible_str,io->start,io->end,io->name,(u32)io->flags,(u32)io->desc); printk("%s dev_probe base_addr 0x%08x\n", rx_intf_compatible_str,(u32)base_addr); printk("%s dev_probe rx_intf_driver_api_inst 0x%08x\n", rx_intf_compatible_str, (u32)(&rx_intf_driver_api_inst) ); printk("%s dev_probe rx_intf_api 0x%08x\n", rx_intf_compatible_str, (u32)rx_intf_api); printk("%s dev_probe succeed!\n", rx_intf_compatible_str); //err = hw_init(DDC_CURRENT_CH_OFFSET_CFG,8,8); err = hw_init(RX_INTF_BW_20MHZ_AT_0MHZ_ANT0,8,8); return err; } static int dev_remove(struct platform_device *pdev) { printk("\n"); printk("%s dev_remove base_addr 0x%08x\n", rx_intf_compatible_str, (u32)base_addr); printk("%s dev_remove rx_intf_driver_api_inst 0x%08x\n", rx_intf_compatible_str, (u32)(&rx_intf_driver_api_inst) ); printk("%s dev_remove rx_intf_api 0x%08x\n", rx_intf_compatible_str, (u32)rx_intf_api); printk("%s dev_remove succeed!\n", rx_intf_compatible_str); return 0; } static struct platform_driver dev_driver = { .driver = { .name = "sdr,rx_intf", .owner = THIS_MODULE, .of_match_table = dev_of_ids, }, .probe = dev_probe, .remove = dev_remove, }; module_platform_driver(dev_driver); MODULE_AUTHOR("Xianjun Jiao"); MODULE_DESCRIPTION("sdr,rx_intf"); MODULE_LICENSE("GPL v2");