One super power of the openwifi platform is "**Full Duplex**" which means that openwifi baseband can receive its own TX signal.
This makes the IQ sample and WiFi packet self loopback test possible. Reading the normal IQ sample capture [app note](iq.md) will help if you have issue or
want to understand openwifi side channel (for IQ and CSI) deeper.
[[Check the packet loopback on board](#Check-the-packet-loopback-on-board)]
[[Self loopback config](#Self-loopback-config)]
## IQ self loopback quick start
(Please replace the IQ length **8187** by **4095** if you use low end FPGA board: zedboard/adrv9464z7020/antsdr/zc702)
- Power on the SDR board.
- Put the Tx and Rx antenna as close as possible.
- Connect a computer to the SDR board via Ethernet cable. The computer should have static IP 192.168.10.1. Open a terminal on the computer, and then in the terminal:
```
ssh root@192.168.10.122
(password: openwifi)
cd openwifi
./wgd.sh
(Bring up the openwifi NIC sdr0)
./monitor_ch.sh sdr0 44
(Setup monitor mode in WiFi channel 44. You should find a channel as clean as possible in your location)
insmod side_ch.ko iq_len_init=8187
./side_ch_ctl wh11d0
(Set 0 to register 11. It means the pre trigger length is 0, so we only capture IQ after trigger condition is met)
./side_ch_ctl wh8d16
(Set 16 to register 8 -- set trigger condition to phy_tx_started signal from openofdm tx core)
./sdrctl dev sdr0 set reg xpu 1 1
(Unmute the baseband self-receiving to receive openwifi own TX signal/packet -- important for self loopback!)
Now the count is always 0, because we haven't instructed openwifi to send packet for loopback test.
- Leave above ssh session untouched. Open a new ssh session to the board from your computer. Then run on board:
```
cd openwifi/inject_80211/
make
(Build our example packet injection program)
./inject_80211 -m n -r 5 -n 1 sdr0
(Inject one packet to openwifi sdr0 NIC)
```
Normally in the previous ssh session, the count becomes 1. It means one packet (of IQ sample) is sent and captured via loopback over the air.
- On your computer (NOT ssh onboard!), run:
```
cd openwifi/user_space/side_ch_ctl_src
python3 iq_capture.py 8187
```
You might need to install beforehand: "sudo apt install python3-numpy", and "sudo apt install python3-matplotlib".
- Leave the above host session untouched. Let's go to the second ssh session (packet injection), and do single packet Tx again:
```
./inject_80211 -m n -r 5 -n 1 sdr0
```
Normally in the 1st ssh session, the count becomes 2. You should also see IQ sample capture figures like this:
![](./openwifi-iq-loopback.jpg)
- Stop the python3 script, which plots above, in the host session. A file **iq.txt** is generated. You can use the Matlab script test_iq_file_display.m
to do further offline analysis, or feed the IQ sample to the openwifi receiver simulation, etc.
## Check the packet loopback on board
- While signal/packet is looped back, you can capture it on board via normal sniffer program for further check/analysis on the packet (bit/byte level instead of IQ level), such as tcpdump or tshark.
A new ssh session to the board should be opened to do this before running the packet injection:
Run the packet injection "./inject_80211 -m n -r 5 -n 1 sdr0" in another session, you should see the packet information printed by tcpdump from self over-the-air loopback.
- By default, the loopback is via the air (from Tx antenna to Rx antenna). FPGA inernal loopback option is offered to have IQ sample and packet without
- Lots of packet injection parameters can be set: number of packet, type (data/control/management), MCS/rate, size, interval, etc. Please run the packet injection
program without any arguments to see the help.
- Besides the packet Tx via injection over monitor mode for loopback test, normal WiFi mode (AP/Client/ad-hoc) can also run together with self loopback.
For instance, run **fosdem.sh** instead of **wgd.sh** to setup an openwifi AP that will transmit beacons. The wgd.sh can also be replaced with other scenario
- To understand deeper of all above commands/settings, please refer to [Capture IQ sample, AGC gain, RSSI with many types of trigger condition](iq.md) and
[Capture dual antenna TX/RX IQ for multi-purpose (capture collision)](iq_2ant.md)