openofdm/verilog/dot11.v

1077 lines
33 KiB
Verilog

`include "common_defs.v"
module dot11 (
input clock,
input enable,
input reset,
// setting registers
//input set_stb,
//input [7:0] set_addr,
//input [31:0] set_data,
// add ports for register based inputs
input [10:0] power_thres,
input [31:0] min_plateau,
// INPUT: RSSI
input [10:0] rssi_half_db,
// INPUT: I/Q sample
input [31:0] sample_in,
input sample_in_strobe,
input soft_decoding,
// OUTPUT: bytes and FCS status
output reg demod_is_ongoing,
output reg pkt_begin,
output reg pkt_ht,
output reg pkt_header_valid,
output reg pkt_header_valid_strobe,
output reg ht_unsupport,
output reg [7:0] pkt_rate,
output reg [15:0] pkt_len,
output reg [15:0] pkt_len_total,
output byte_out_strobe,
output [7:0] byte_out,
output reg [15:0] byte_count_total,
output reg [15:0] byte_count,
output reg fcs_out_strobe,
output reg fcs_ok,
/////////////////////////////////////////////////////////
// DEBUG PORTS
/////////////////////////////////////////////////////////
// decode status
// (* mark_debug = "true", DONT_TOUCH = "TRUE" *)
output reg [4:0] state,
output reg [3:0] status_code,
output state_changed,
output reg [31:0] state_history,
// power trigger
output power_trigger,
// sync short
output short_preamble_detected,
output [31:0] phase_offset,
// sync long
output [31:0] sync_long_metric,
output sync_long_metric_stb,
output long_preamble_detected,
output [31:0] sync_long_out,
output sync_long_out_strobe,
output wire signed [31:0] phase_offset_taken,
output [2:0] sync_long_state,
// equalizer
output [31:0] equalizer_out,
output equalizer_out_strobe,
output [2:0] equalizer_state,
output wire ofdm_symbol_eq_out_pulse,
// legacy signal info
output reg legacy_sig_stb,
output [3:0] legacy_rate,
output legacy_sig_rsvd,
output [11:0] legacy_len,
output legacy_sig_parity,
output legacy_sig_parity_ok,
output [5:0] legacy_sig_tail,
// ht signal info
output reg ht_sig_stb,
output [6:0] ht_mcs,
output ht_cbw,
output [15:0] ht_len,
output ht_smoothing,
output ht_not_sounding,
output ht_aggr,
output reg ht_aggr_last,
output [1:0] ht_stbc,
output ht_fec_coding,
output ht_sgi,
output [1:0] ht_num_ext,
output reg ht_sig_crc_ok,
// decoding pipeline
output [5:0] demod_out,
output demod_out_strobe,
output [7:0] deinterleave_erase_out,
output deinterleave_erase_out_strobe,
output conv_decoder_out,
output conv_decoder_out_stb,
output descramble_out,
output descramble_out_strobe,
// for side channel
output wire [31:0] csi,
output wire csi_valid
);
`include "common_params.v"
////////////////////////////////////////////////////////////////////////////////
// extra info output to ease side info and viterbi state monitor
////////////////////////////////////////////////////////////////////////////////
reg [2:0] equalizer_state_reg;
assign ofdm_symbol_eq_out_pulse = (equalizer_state==4 && equalizer_state_reg==6);
always @(posedge clock) begin
if (reset==1) begin
state_history <= 0;
equalizer_state_reg <= 0;
end else begin
equalizer_state_reg <= equalizer_state;
if (state_changed) begin
state_history[3:0] <= state;
state_history[31:4] <= state_history[27:0];
end
end
end
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Shared rotation LUT for sync_long and equalizer
////////////////////////////////////////////////////////////////////////////////
wire [`ROTATE_LUT_LEN_SHIFT-1:0] sync_long_rot_addr;
wire [31:0] sync_long_rot_data;
wire [`ROTATE_LUT_LEN_SHIFT-1:0] eq_rot_addr;
wire [31:0] eq_rot_data;
rot_lut rot_lut_inst (
.clka(clock),
.addra(sync_long_rot_addr),
.douta(sync_long_rot_data),
.clkb(clock),
.addrb(eq_rot_addr),
.doutb(eq_rot_data)
);
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Shared phase module for sync_short and equalizer
////////////////////////////////////////////////////////////////////////////////
wire [31:0] sync_short_phase_in_i;
wire [31:0] sync_short_phase_in_q;
wire sync_short_phase_in_stb;
wire [31:0] sync_short_phase_out;
wire sync_short_phase_out_stb;
wire [31:0] eq_phase_in_i;
wire [31:0] eq_phase_in_q;
wire eq_phase_in_stb;
wire [31:0] eq_phase_out;
wire eq_phase_out_stb;
wire[31:0] phase_in_i = state == S_SYNC_SHORT?
sync_short_phase_in_i: eq_phase_in_i;
wire[31:0] phase_in_q = state == S_SYNC_SHORT?
sync_short_phase_in_q: eq_phase_in_q;
wire phase_in_stb = state == S_SYNC_SHORT?
sync_short_phase_in_stb: eq_phase_in_stb;
wire [31:0] phase_out;
wire phase_out_stb;
assign sync_short_phase_out = phase_out;
assign sync_short_phase_out_stb = phase_out_stb;
assign eq_phase_out = phase_out;
assign eq_phase_out_stb = phase_out_stb;
phase phase_inst (
.clock(clock),
.reset(reset),
.enable(enable),
.in_i(phase_in_i),
.in_q(phase_in_q),
.input_strobe(phase_in_stb),
.phase(phase_out),
.output_strobe(phase_out_stb)
);
////////////////////////////////////////////////////////////////////////////////
reg sync_short_reset;
reg sync_long_reset;
wire sync_short_enable = state == S_SYNC_SHORT;
reg sync_long_enable;
wire [15:0] num_ofdm_symbol;
reg equalizer_reset;
reg equalizer_enable;
reg ht_next;
wire eq_out_stb_delayed;
wire [15:0] eq_out_i = equalizer_out[31:16];
wire [15:0] eq_out_q = equalizer_out[15:0];
wire [15:0] eq_out_i_delayed;
wire [15:0] eq_out_q_delayed;
reg [15:0] abs_eq_i;
reg [15:0] abs_eq_q;
reg [3:0] rot_eq_count;
reg [3:0] normal_eq_count;
// OFDM control
reg ofdm_reset;
reg ofdm_enable;
reg ofdm_in_stb;
reg [15:0] ofdm_in_i;
reg [15:0] ofdm_in_q;
reg do_descramble;
reg [31:0] num_bits_to_decode;
reg short_gi;
reg [4:0] old_state;
assign power_trigger = (rssi_half_db>=power_thres? 1: 0);
assign state_changed = state != old_state;
// SIGNAL information
reg [23:0] signal_bits;
assign legacy_rate = signal_bits[3:0];
assign legacy_sig_rsvd = signal_bits[4];
assign legacy_len = signal_bits[16:5];
assign legacy_sig_parity = signal_bits[17];
assign legacy_sig_tail = signal_bits[23:18];
assign legacy_sig_parity_ok = ~^signal_bits[17:0];
// HT-SIG information
reg [23:0] ht_sig1;
reg [23:0] ht_sig2;
assign ht_mcs = ht_sig1[6:0];
assign ht_cbw = ht_sig1[7];
assign ht_len = ht_sig1[23:8];
assign ht_smoothing = ht_sig2[0];
assign ht_not_sounding = ht_sig2[1];
assign ht_aggr = ht_sig2[3];
assign ht_stbc = ht_sig2[5:4];
assign ht_fec_coding = ht_sig2[6];
assign ht_sgi = ht_sig2[7];
assign ht_num_ext = ht_sig2[9:8];
wire ht_rsvd = ht_sig2[2];
wire [7:0] crc = ht_sig2[17:10];
wire [5:0] ht_sig_tail = ht_sig2[23:18];
reg [15:0] pkt_len_rem;
reg [7:0] mpdu_del_crc;
reg [1:0] mpdu_pad;
reg crc_in_stb;
reg crc_in;
reg [7:0] crc_count;
reg crc_reset;
wire [7:0] crc_out;
reg [31:0] sample_count;
wire fcs_enable = state == S_DECODE_DATA && byte_out_strobe;
wire fcs_reset = state_changed && state == S_DECODE_DATA;
wire [7:0] byte_reversed;
wire [31:0] pkt_fcs;
assign byte_reversed[0] = byte_out[7];
assign byte_reversed[1] = byte_out[6];
assign byte_reversed[2] = byte_out[5];
assign byte_reversed[3] = byte_out[4];
assign byte_reversed[4] = byte_out[3];
assign byte_reversed[5] = byte_out[2];
assign byte_reversed[6] = byte_out[1];
assign byte_reversed[7] = byte_out[0];
reg [15:0] sync_long_out_count;
/*
power_trigger power_trigger_inst (
.clock(clock),
.enable(enable),
.reset(reset),
.sample_in(sample_in),
.sample_in_strobe(sample_in_strobe),
.power_thres(power_thres),
.window_size(window_size),
.num_sample_to_skip(num_sample_to_skip),
.num_sample_changed(num_sample_changed),
.pw_state_spy(pw_state_spy),
.trigger(power_trigger)
);
*/
sync_short sync_short_inst (
.clock(clock),
.reset(reset | sync_short_reset),
.enable(enable & sync_short_enable),
.min_plateau(min_plateau),
.sample_in(sample_in),
.sample_in_strobe(sample_in_strobe),
.phase_in_i(sync_short_phase_in_i),
.phase_in_q(sync_short_phase_in_q),
.phase_in_stb(sync_short_phase_in_stb),
.phase_out(sync_short_phase_out),
.phase_out_stb(sync_short_phase_out_stb),
.short_preamble_detected(short_preamble_detected),
.phase_offset(phase_offset)
);
sync_long sync_long_inst (
.clock(clock),
.reset(reset | sync_long_reset),
.enable(enable & sync_long_enable),
.sample_in(sample_in),
.sample_in_strobe(sample_in_strobe),
.phase_offset(phase_offset),
.short_gi(short_gi),
.rot_addr(sync_long_rot_addr),
.rot_data(sync_long_rot_data),
.metric(sync_long_metric),
.metric_stb(sync_long_metric_stb),
.long_preamble_detected(long_preamble_detected),
.phase_offset_taken(phase_offset_taken),
.state(sync_long_state),
.sample_out(sync_long_out),
.sample_out_strobe(sync_long_out_strobe),
.num_ofdm_symbol(num_ofdm_symbol)
);
equalizer equalizer_inst (
.clock(clock),
.reset(reset | equalizer_reset),
.enable(enable & equalizer_enable),
.sample_in(sync_long_out),
.sample_in_strobe(sync_long_out_strobe),
.ht_next(ht_next),
.pkt_ht(pkt_ht),
.ht_smoothing(ht_smoothing),
.phase_in_i(eq_phase_in_i),
.phase_in_q(eq_phase_in_q),
.phase_in_stb(eq_phase_in_stb),
.phase_out(eq_phase_out),
.phase_out_stb(eq_phase_out_stb),
.rot_addr(eq_rot_addr),
.rot_data(eq_rot_data),
.sample_out(equalizer_out),
.sample_out_strobe(equalizer_out_strobe),
.state(equalizer_state),
.csi(csi),
.csi_valid(csi_valid)
);
delayT #(.DATA_WIDTH(33), .DELAY(6)) eq_delay_inst (
.clock(clock),
.reset(reset),
.data_in({equalizer_out_strobe, equalizer_out}),
.data_out({eq_out_stb_delayed, eq_out_i_delayed, eq_out_q_delayed})
);
ofdm_decoder ofdm_decoder_inst (
.clock(clock),
.reset(reset|ofdm_reset),
.enable(enable & ofdm_enable),
.sample_in({ofdm_in_i, ofdm_in_q}),
.sample_in_strobe(ofdm_in_stb),
.soft_decoding(soft_decoding),
.do_descramble(do_descramble),
.num_bits_to_decode(num_bits_to_decode),
.rate(pkt_rate),
.byte_out(byte_out),
.byte_out_strobe(byte_out_strobe),
.demod_out(demod_out),
.demod_out_strobe(demod_out_strobe),
.deinterleave_erase_out(deinterleave_erase_out),
.deinterleave_erase_out_strobe(deinterleave_erase_out_strobe),
.conv_decoder_out(conv_decoder_out),
.conv_decoder_out_stb(conv_decoder_out_stb),
.descramble_out(descramble_out),
.descramble_out_strobe(descramble_out_strobe)
);
ht_sig_crc crc_inst (
.clock(clock),
.enable(enable),
.reset(reset | crc_reset),
.bit(crc_in),
.input_strobe(crc_in_stb),
.crc(crc_out)
);
crc32 fcs_inst (
.clk(clock),
.crc_en(enable & fcs_enable),
.rst(reset | fcs_reset),
.data_in(byte_reversed),
.crc_out(pkt_fcs)
);
always @(posedge clock) begin
if (reset) begin
status_code <= E_OK;
state <= S_WAIT_POWER_TRIGGER;
old_state <= 0;
sync_short_reset <= 0;
sync_long_reset <= 0;
sync_long_enable <= 0;
byte_count <= 0;
byte_count_total <= 0;
demod_is_ongoing <= 0;
pkt_begin <= 0;
pkt_ht <= 0;
pkt_header_valid <= 0;
pkt_header_valid_strobe <= 0;
ht_unsupport <= 0;
rot_eq_count <= 0;
normal_eq_count <= 0;
abs_eq_i <= 0;
abs_eq_q <= 0;
do_descramble <= 0;
num_bits_to_decode <= 0;
short_gi <= 0;
pkt_rate <= 0;
equalizer_reset <= 0;
equalizer_enable <= 0;
ht_next <= 0;
pkt_len_rem <= 0;
mpdu_del_crc <= 0;
mpdu_pad <= 0;
pkt_len <= 0;
pkt_len_total <= 0;
ofdm_reset <= 0;
ofdm_enable <= 0;
ofdm_in_stb <= 0;
ofdm_in_i <= 0;
ofdm_in_q <= 0;
sample_count <= 0;
sync_long_out_count <= 0;
signal_bits <= 0;
legacy_sig_stb <= 0;
ht_sig1 <= 0;
ht_sig2 <= 0;
crc_in_stb <= 0;
crc_in <= 0;
crc_count <= 0;
crc_reset <= 0;
ht_sig_crc_ok <= 0;
ht_sig_stb <= 0;
ht_aggr_last <= 0;
fcs_out_strobe <= 0;
fcs_ok <= 0;
end else if (enable) begin
old_state <= state;
case(state)
S_WAIT_POWER_TRIGGER: begin
pkt_begin <= 0;
pkt_ht <= 0;
crc_reset <= 0;
short_gi <= 0;
demod_is_ongoing <= 0;
sync_long_enable <= 0;
equalizer_enable <= 0;
ofdm_enable <= 0;
ofdm_reset <= 0;
pkt_len_total <= 16'hffff;
ht_sig1 <= 0;
ht_sig2 <= 0;
pkt_len_rem <= 0;
if (power_trigger) begin
`ifdef DEBUG_PRINT
$display("Power triggered.");
`endif
sync_short_reset <= 1;
state <= S_SYNC_SHORT;
end
end
S_SYNC_SHORT: begin
if (sync_short_reset) begin
sync_short_reset <= 0;
end
if (~power_trigger) begin
// power level drops before finding STS
state <= S_WAIT_POWER_TRIGGER;
end
if (short_preamble_detected) begin
`ifdef DEBUG_PRINT
$display("Short preamble detected");
`endif
sync_long_reset <= 1;
sync_long_enable <= 1;
sample_count <= 0;
state <= S_SYNC_LONG;
end
end
S_SYNC_LONG: begin
if (sync_long_reset) begin
sync_long_reset <= 0;
end
if (sample_in_strobe) begin
sample_count <= sample_count + 1;
end
if (sample_count > 320) begin
state <= S_WAIT_POWER_TRIGGER;
end
if (~power_trigger) begin
state <= S_WAIT_POWER_TRIGGER;
end
if (long_preamble_detected) begin
demod_is_ongoing <= 1;
pkt_rate <= {1'b0, 3'b0, 4'b1011};
do_descramble <= 0;
num_bits_to_decode <= 48;
ofdm_reset <= 1;
ofdm_enable <= 1;
equalizer_enable <= 1;
equalizer_reset <= 1;
byte_count <= 0;
byte_count_total <= 0;
state <= S_DECODE_SIGNAL;
end
end
S_DECODE_SIGNAL: begin
ofdm_reset <= 0;
if (equalizer_reset) begin
equalizer_reset <= 0;
end
ofdm_in_stb <= equalizer_out_strobe;
ofdm_in_i <= eq_out_i;
ofdm_in_q <= eq_out_q;
if (byte_out_strobe) begin
signal_bits <= {byte_out, signal_bits[23:8]};
byte_count <= byte_count + 1;
byte_count_total <= byte_count_total + 1;
end
if (byte_count == 3) begin
byte_count <= 0;
`ifdef DEBUG_PRINT
$display("[SIGNAL] rate = %04b, ", legacy_rate,
"length = %012b (%d), ", legacy_len, legacy_len,
"parity = %b, ", legacy_sig_parity,
"tail = %6b", legacy_sig_tail);
`endif
num_bits_to_decode <= (22+(legacy_len<<3))<<1;
pkt_rate <= {1'b0, 3'b0, legacy_rate};
pkt_len <= legacy_len;
pkt_len_total <= legacy_len+3;
ofdm_reset <= 1;
state <= S_CHECK_SIGNAL;
end
end
S_CHECK_SIGNAL: begin
if (~legacy_sig_parity_ok) begin
pkt_header_valid_strobe <= 1;
status_code <= E_PARITY_FAIL;
state <= S_SIGNAL_ERROR;
end else if (legacy_sig_rsvd) begin
pkt_header_valid_strobe <= 1;
status_code <= E_WRONG_RSVD;
state <= S_SIGNAL_ERROR;
end else if (|legacy_sig_tail) begin
pkt_header_valid_strobe <= 1;
status_code <= E_WRONG_TAIL;
state <= S_SIGNAL_ERROR;
end else if (legacy_rate[3]==0) begin
pkt_header_valid_strobe <= 1;
status_code <= E_UNSUPPORTED_RATE;
state <= S_SIGNAL_ERROR;
end else begin
legacy_sig_stb <= 1;
status_code <= E_OK;
if (legacy_rate == 4'b1011) begin
abs_eq_i <= 0;
abs_eq_q <= 0;
rot_eq_count <= 0;
normal_eq_count <= 0;
state <= S_DETECT_HT;
end else begin
//num_bits_to_decode <= (legacy_len+3)<<4;
do_descramble <= 1;
ofdm_reset <= 1;
pkt_header_valid <= 1;
pkt_header_valid_strobe <= 1;
pkt_begin <= 1;
state <= S_DECODE_DATA;
end
end
end
S_SIGNAL_ERROR: begin
pkt_header_valid_strobe <= 0;
byte_count <= 0;
byte_count_total <= 0;
state <= S_WAIT_POWER_TRIGGER;
end
S_DETECT_HT: begin
legacy_sig_stb <= 0;
ofdm_reset <= 1;
if (equalizer_out_strobe) begin
abs_eq_i <= eq_out_i[15]? ~eq_out_i+1: eq_out_i;
abs_eq_q <= eq_out_q[15]? ~eq_out_q+1: eq_out_q;
if (abs_eq_q > abs_eq_i) begin
rot_eq_count <= rot_eq_count + 1;
end else begin
normal_eq_count <= normal_eq_count + 1;
end
end
if (rot_eq_count >= 4) begin
// HT-SIG detected
num_bits_to_decode <= 96;
do_descramble <= 0;
state <= S_HT_SIGNAL;
end else if (normal_eq_count > 4) begin
//num_bits_to_decode <= (legacy_len+3)<<4;
do_descramble <= 1;
pkt_header_valid <= 1;
pkt_header_valid_strobe <= 1;
pkt_begin <= 1;
state <= S_DECODE_DATA;
end
end
S_HT_SIGNAL: begin
ofdm_reset <= 0;
ofdm_in_stb <= eq_out_stb_delayed;
// rotate clockwise by 90 degree
ofdm_in_i <= eq_out_q_delayed;
ofdm_in_q <= ~eq_out_i_delayed+1;
if (byte_out_strobe) begin
if (byte_count < 3) begin
ht_sig1 <= {byte_out, ht_sig1[23:8]};
end else begin
ht_sig2 <= {byte_out, ht_sig2[23:8]};
end
byte_count <= byte_count + 1;
byte_count_total <= byte_count_total + 1;
end
if (byte_count == 6) begin
byte_count <= 0;
`ifdef DEBUG_PRINT
$display("[HT SIGNAL] mcs = %07b (%d), ", ht_mcs, ht_mcs,
"CBW: %d, ", ht_cbw? 40: 20,
"length = %012b (%d), ", ht_len, ht_len,
"rsvd = %d, ", ht_rsvd,
"aggr = %d, ", ht_aggr,
"aggr_last = %d, ", ht_aggr_last,
"stbd = %02b, ", ht_stbc,
"fec = %d, ", ht_fec_coding,
"sgi = %d, ", ht_sgi,
"num_ext = %d, ", ht_num_ext,
"crc = %08b, ", crc,
"tail = %06b", ht_sig_tail);
`endif
num_bits_to_decode <= (22+(ht_len<<3))<<1;
pkt_rate <= {1'b1, ht_mcs};
pkt_len_rem <= ht_len;
pkt_len <= ht_len;
pkt_len_total <= ht_len+3+6; //(6 bytes for 3 byte HT-SIG1 and 3 byte HT-SIG2)
crc_count <= 0;
crc_reset <= 1;
crc_in_stb <= 0;
ht_sig_crc_ok <= 0;
state <= S_CHECK_HT_SIG_CRC;
end
end
S_CHECK_HT_SIG_CRC: begin
ofdm_reset <= 1;
crc_reset <= 0;
crc_count <= crc_count + 1;
if (crc_count < 24) begin
crc_in_stb <= 1;
crc_in <= ht_sig1[crc_count];
end else if (crc_count < 34) begin
crc_in_stb <= 1;
crc_in <= ht_sig2[crc_count-24];
end else if (crc_count == 34) begin
crc_in_stb <= 0;
end else if (crc_count == 35) begin
ht_sig_stb <= 1;
pkt_ht <= 1;
if (crc_out ^ crc) begin
pkt_header_valid_strobe <= 1;
status_code <= E_WRONG_CRC;
state <= S_HT_SIG_ERROR;
end else begin
`ifdef DEBUG_PRINT
$display("[HT SIGNAL] CRC OK");
`endif
ht_sig_crc_ok <= 1;
state <= S_CHECK_HT_SIG;
end
end
end
S_CHECK_HT_SIG: begin
ofdm_reset <= 1;
ht_sig_stb <= 0;
ht_aggr_last <= 0;
if (ht_mcs > 7) begin
ht_unsupport <= 1;
status_code <= E_UNSUPPORTED_MCS;
state <= S_HT_SIG_ERROR;
end else if (ht_cbw) begin
ht_unsupport <= 1;
status_code <= E_UNSUPPORTED_CBW;
state <= S_HT_SIG_ERROR;
end else if (ht_rsvd == 0) begin
ht_unsupport <= 1;
status_code <= E_HT_WRONG_RSVD;
state <= S_HT_SIG_ERROR;
end else if (ht_stbc != 0) begin
ht_unsupport <= 1;
status_code <= E_UNSUPPORTED_STBC;
state <= S_HT_SIG_ERROR;
end else if (ht_fec_coding) begin
ht_unsupport <= 1;
status_code <= E_UNSUPPORTED_FEC;
state <= S_HT_SIG_ERROR;
// end else if (ht_sgi) begin // seems like it supports ht short_gi, we should proceed
// ht_unsupport <= 1;
// status_code <= E_UNSUPPORTED_SGI;
// state <= S_HT_SIG_ERROR;
end else if (ht_num_ext != 0) begin
ht_unsupport <= 1;
status_code <= E_UNSUPPORTED_SPATIAL;
state <= S_HT_SIG_ERROR;
end else if (ht_sig_tail != 0) begin
ht_unsupport <= 1;
status_code <= E_HT_WRONG_TAIL;
state <= S_HT_SIG_ERROR;
end else begin
sync_long_out_count <= 0;
// When decoding 80211n packets, a lower clock running platform (i.e. zedboard @ 100MHz) will spend more than 4usec to decode an entire OFDM symbol.
// This creates misalignment between the control state and the actual decoding process since a feedback mechanism is not applied.
// By the time the 1st OFDM DATA symbol is being decoded, the control is in HT-LTS state and the equalizer module mistakenly calculates the channel gain.
// A quick fix for this is to bypass the HT-STS symbol to re-establish the alignment. Afterall, HT-STS is not used in this module.
if (num_ofdm_symbol == 5) begin
state <= S_HT_STS;
end else begin
ht_next <= 1;
state <= S_HT_LTS;
end
end
end
S_HT_SIG_ERROR: begin
ht_unsupport <= 0;
pkt_header_valid <= 0;
pkt_header_valid_strobe <= 0;
byte_count <= 0;
byte_count_total <= 0;
ht_sig_stb <= 0;
state <= S_WAIT_POWER_TRIGGER;
end
S_HT_STS: begin
if (sync_long_out_strobe) begin
sync_long_out_count <= sync_long_out_count + 1;
end
if (sync_long_out_count == 64) begin
sync_long_out_count <= 0;
ht_next <= 1;
state <= S_HT_LTS;
end
end
S_HT_LTS: begin
short_gi <= ht_sgi;
if (sync_long_out_strobe) begin
sync_long_out_count <= sync_long_out_count + 1;
end
if (sync_long_out_count == 64) begin
ht_next <= 0;
//num_bits_to_decode <= (ht_len+3)<<4;
do_descramble <= 1;
ofdm_reset <= 1;
if(ht_aggr) begin
crc_reset <= 1;
crc_count <= 0;
state <= S_MPDU_DELIM;
end else begin
pkt_header_valid <= 1;
pkt_header_valid_strobe <= 1;
pkt_begin <= 1;
pkt_len_rem <= 0;
state <= S_DECODE_DATA;
end
end
end
S_MPDU_DELIM: begin
crc_reset <= 0;
ofdm_reset <= 0;
ofdm_in_stb <= eq_out_stb_delayed;
ofdm_in_i <= eq_out_i_delayed;
ofdm_in_q <= eq_out_q_delayed;
if(byte_out_strobe) begin
if(byte_count == 3) begin
byte_count <= 0;
byte_count_total <= 3+6;
if(crc_out == mpdu_del_crc && byte_out == 8'h4e) begin
// Jump over an empty MPDU delimiter
if(pkt_len == 0) begin
pkt_len_rem <= pkt_len_rem - 4;
crc_reset <= 1;
crc_count <= 0;
state <= S_MPDU_DELIM;
// Start actual packet decoding
end else begin
pkt_header_valid <= 1;
pkt_header_valid_strobe <= 1;
pkt_len_total <= pkt_len+3+6;
pkt_begin <= 1;
state <= S_DECODE_DATA;
// All MPDUs except last one does include padding
if((pkt_len_rem-pkt_len) > 4) begin
ht_aggr_last <= 0;
pkt_len_rem <= pkt_len_rem - (4 + pkt_len + mpdu_pad);
end else begin
ht_aggr_last <= 1;
pkt_len_rem <= 0;
end
end
// MPDU delimiter is erroneous and remaining packet length is less than 8. Stop searching
end else if(|pkt_len_rem[15:3] == 0) begin
ht_aggr_last <= 1;
fcs_out_strobe <= 1;
fcs_ok <= 0;
status_code <= E_HT_AMPDU_ERROR;
state <= S_DECODE_DONE;
// Else, restart searching
end else begin
pkt_len_rem <= pkt_len_rem - 4;
crc_reset <= 1;
crc_count <= 0;
status_code <= E_HT_AMPDU_WARN;
state <= S_MPDU_DELIM;
end
end else begin
byte_count <= byte_count + 1;
byte_count_total <= byte_count_total + 1;
if(byte_count == 0) begin
pkt_len[3:0] <= byte_out[7:4];
end else if(byte_count == 1) begin
pkt_len[11:4] <= byte_out;
end else if(byte_count == 2) begin
pkt_len[15:12] <= 0;
mpdu_del_crc <= byte_out;
if(pkt_len[1:0] == 0)
mpdu_pad <= 0;
else if(pkt_len[1:0] == 1)
mpdu_pad <= 3;
else if(pkt_len[1:0] == 2)
mpdu_pad <= 2;
else
mpdu_pad <= 1;
end
// Enable CRC calculation on the first two bytes
if(crc_count[4] == 0) begin
crc_in <= byte_out[crc_count[2:0]];
crc_in_stb <= 1;
crc_count <= crc_count + 1;
end else begin
crc_in_stb <= 0;
end
end
// Enable CRC calculation on the first two bytes
end else if((^byte_count[1:0] == 1) && (|crc_count[2:0] == 1)) begin
crc_in <= byte_out[crc_count[2:0]];
crc_in_stb <= 1;
crc_count <= crc_count + 1;
end else begin
crc_in_stb <= 0;
end
end
S_DECODE_DATA: begin
pkt_begin <= 0;
legacy_sig_stb <= 0;
pkt_header_valid <= 0;
pkt_header_valid_strobe <= 0;
ofdm_reset <= 0;
ofdm_in_stb <= eq_out_stb_delayed;
ofdm_in_i <= eq_out_i_delayed;
ofdm_in_q <= eq_out_q_delayed;
if (byte_out_strobe) begin
`ifdef DEBUG_PRINT
$display("[BYTE] [%4d / %-4d] %02x", byte_count+1, pkt_len,
byte_out);
`endif
byte_count <= byte_count + 1;
byte_count_total <= byte_count_total + 1;
end
if (byte_count >= pkt_len) begin
fcs_out_strobe <= 1;
byte_count <= 0;
byte_count_total <= 0;
if (pkt_fcs == EXPECTED_FCS) begin
fcs_ok <= 1;
status_code <= E_OK;
end else begin
fcs_ok <= 0;
status_code <= E_WRONG_FCS;
end
// restart the decoding process on remaining MPDUs
if(|pkt_len_rem[15:2] == 1) begin
state <= S_MPDU_PAD;
end else begin
state <= S_DECODE_DONE;
end
end
end
S_MPDU_PAD: begin
fcs_out_strobe <= 0;
fcs_ok <= 0;
ofdm_in_stb <= eq_out_stb_delayed;
ofdm_in_i <= eq_out_i_delayed;
ofdm_in_q <= eq_out_q_delayed;
if (byte_out_strobe)
mpdu_pad <= mpdu_pad - 1;
if (mpdu_pad == 0) begin
crc_reset <= 1;
crc_count <= 0;
state <= S_MPDU_DELIM;
end
end
S_DECODE_DONE: begin
`ifdef DEBUG_PRINT
$display("===== PACKET DECODE DONE =====");
if (status_code == E_OK) begin
$display("FCS CORRECT");
end else begin
$display("FCS WRONG");
end
`endif
ht_aggr_last <= 0;
fcs_out_strobe <= 0;
fcs_ok <= 0;
state <= S_WAIT_POWER_TRIGGER;
end
default: begin
byte_count <= 0;
byte_count_total <= 0;
state <= S_WAIT_POWER_TRIGGER;
end
endcase
end
end
endmodule