`timescale 1 ns / 1 ps module openofdm_rx_s_axi # ( // Users to add parameters here // User parameters ends // Do not modify the parameters beyond this line // Width of S_AXI data bus parameter integer C_S_AXI_DATA_WIDTH = 32, // Width of S_AXI address bus parameter integer C_S_AXI_ADDR_WIDTH = 7 ) ( // Users to add ports here output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG0, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG1, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG2, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG3, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG4,/* output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG5, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG6, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG7, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG8, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG9, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG10, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG11, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG12, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG13, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG14, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG15, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG16, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG17, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG18, output wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG19,*/ input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG20,/* input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG21, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG22, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG23, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG24, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG25, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG26, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG27, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG28, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG29, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG30, input wire [C_S_AXI_DATA_WIDTH-1:0] SLV_REG31,*/ // User ports ends // Do not modify the ports beyond this line // Global Clock Signal input wire S_AXI_ACLK, // Global Reset Signal. This Signal is Active LOW input wire S_AXI_ARESETN, // Write address (issued by master, acceped by Slave) input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR, // Write channel Protection type. This signal indicates the // privilege and security level of the transaction, and whether // the transaction is a data access or an instruction access. input wire [2 : 0] S_AXI_AWPROT, // Write address valid. This signal indicates that the master signaling // valid write address and control information. input wire S_AXI_AWVALID, // Write address ready. This signal indicates that the slave is ready // to accept an address and associated control signals. output wire S_AXI_AWREADY, // Write data (issued by master, acceped by Slave) input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA, // Write strobes. This signal indicates which byte lanes hold // valid data. There is one write strobe bit for each eight // bits of the write data bus. input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB, // Write valid. This signal indicates that valid write // data and strobes are available. input wire S_AXI_WVALID, // Write ready. This signal indicates that the slave // can accept the write data. output wire S_AXI_WREADY, // Write response. This signal indicates the status // of the write transaction. output wire [1 : 0] S_AXI_BRESP, // Write response valid. This signal indicates that the channel // is signaling a valid write response. output wire S_AXI_BVALID, // Response ready. This signal indicates that the master // can accept a write response. input wire S_AXI_BREADY, // Read address (issued by master, acceped by Slave) input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR, // Protection type. This signal indicates the privilege // and security level of the transaction, and whether the // transaction is a data access or an instruction access. input wire [2 : 0] S_AXI_ARPROT, // Read address valid. This signal indicates that the channel // is signaling valid read address and control information. input wire S_AXI_ARVALID, // Read address ready. This signal indicates that the slave is // ready to accept an address and associated control signals. output wire S_AXI_ARREADY, // Read data (issued by slave) output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA, // Read response. This signal indicates the status of the // read transfer. output wire [1 : 0] S_AXI_RRESP, // Read valid. This signal indicates that the channel is // signaling the required read data. output wire S_AXI_RVALID, // Read ready. This signal indicates that the master can // accept the read data and response information. input wire S_AXI_RREADY ); // AXI4LITE signals reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr; reg axi_awready; reg axi_wready; reg [1 : 0] axi_bresp; reg axi_bvalid; reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr; reg axi_arready; reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata; reg [1 : 0] axi_rresp; reg axi_rvalid; // Example-specific design signals // local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH // ADDR_LSB is used for addressing 32/64 bit registers/memories // ADDR_LSB = 2 for 32 bits (n downto 2) // ADDR_LSB = 3 for 64 bits (n downto 3) localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1; localparam integer OPT_MEM_ADDR_BITS = 4; //---------------------------------------------- //-- Signals for user logic register space example //------------------------------------------------ //-- Number of Slave Registers 32 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg4;/* reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg5; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg6; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg7; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg8; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg9; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg10; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg11; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg12; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg13; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg14; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg15; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg16; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg17; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg18; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg19;*/ reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg20;/* reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg21; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg22; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg23; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg24; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg25; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg26; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg27; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg28; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg29; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg30; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg31;*/ wire slv_reg_rden; wire slv_reg_wren; reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out; integer byte_index; // I/O Connections assignments assign S_AXI_AWREADY = axi_awready; assign S_AXI_WREADY = axi_wready; assign S_AXI_BRESP = axi_bresp; assign S_AXI_BVALID = axi_bvalid; assign S_AXI_ARREADY = axi_arready; assign S_AXI_RDATA = axi_rdata; assign S_AXI_RRESP = axi_rresp; assign S_AXI_RVALID = axi_rvalid; assign SLV_REG0 = slv_reg0; assign SLV_REG1 = slv_reg1; assign SLV_REG2 = slv_reg2; assign SLV_REG3 = slv_reg3; assign SLV_REG4 = slv_reg4;/* assign SLV_REG5 = slv_reg5; assign SLV_REG6 = slv_reg6; assign SLV_REG7 = slv_reg7; assign SLV_REG8 = slv_reg8; assign SLV_REG9 = slv_reg9; assign SLV_REG10 = slv_reg10; assign SLV_REG11 = slv_reg11; assign SLV_REG12 = slv_reg12; assign SLV_REG13 = slv_reg13; assign SLV_REG14 = slv_reg14; assign SLV_REG15 = slv_reg15; assign SLV_REG16 = slv_reg16; assign SLV_REG17 = slv_reg17; assign SLV_REG18 = slv_reg18; assign SLV_REG19 = slv_reg19;*/ // Implement axi_awready generation // axi_awready is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is // de-asserted when reset is low. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_awready <= 1'b0; end else begin if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID) begin // slave is ready to accept write address when // there is a valid write address and write data // on the write address and data bus. This design // expects no outstanding transactions. axi_awready <= 1'b1; end else begin axi_awready <= 1'b0; end end end // Implement axi_awaddr latching // This process is used to latch the address when both // S_AXI_AWVALID and S_AXI_WVALID are valid. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_awaddr <= 0; end else begin if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID) begin // Write Address latching axi_awaddr <= S_AXI_AWADDR; end end end // Implement axi_wready generation // axi_wready is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is // de-asserted when reset is low. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_wready <= 1'b0; end else begin if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID) begin // slave is ready to accept write data when // there is a valid write address and write data // on the write address and data bus. This design // expects no outstanding transactions. axi_wready <= 1'b1; end else begin axi_wready <= 1'b0; end end end // Implement memory mapped register select and write logic generation // The write data is accepted and written to memory mapped registers when // axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to // select byte enables of slave registers while writing. // These registers are cleared when reset (active low) is applied. // Slave register write enable is asserted when valid address and data are available // and the slave is ready to accept the write address and write data. assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID; always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin slv_reg0 <= 32'h0; slv_reg1 <= 32'h0; slv_reg2 <= 32'h0; slv_reg3 <= 32'h0; slv_reg4 <= 32'h0;/* slv_reg5 <= 32'h0; slv_reg6 <= 32'h0; slv_reg7 <= 32'h0; slv_reg8 <= 32'h0; slv_reg9 <= 32'h0; slv_reg10 <= 32'h0; slv_reg11 <= 32'h0; slv_reg12 <= 32'h0; slv_reg13 <= 32'h0; slv_reg14 <= 32'h0; slv_reg15 <= 32'h0; slv_reg16 <= 32'h0; slv_reg17 <= 32'h0; slv_reg18 <= 32'h0; slv_reg19 <= 32'h0;*/ end else begin if (slv_reg_wren) begin case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ) 5'h00: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 0 slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h01: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 1 slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h02: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 2 slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h03: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 3 slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h04: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 4 slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end /* 5'h05: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 5 slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h06: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 6 slv_reg6[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h07: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 7 slv_reg7[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h08: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 8 slv_reg8[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h09: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 9 slv_reg9[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0A: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 10 slv_reg10[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0B: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 11 slv_reg11[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0C: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 12 slv_reg12[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0D: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 13 slv_reg13[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0E: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 14 slv_reg14[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0F: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 15 slv_reg15[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h10: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 16 slv_reg16[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h11: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 17 slv_reg17[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h12: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 18 slv_reg18[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h13: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 19 slv_reg19[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h14: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 20 //slv_reg20[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h15: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 21 //slv_reg21[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h16: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 22 //slv_reg22[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h17: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 23 //slv_reg23[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h18: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 24 //slv_reg24[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h19: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 25 //slv_reg25[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1A: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 26 //slv_reg26[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1B: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 27 //slv_reg27[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1C: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 28 //slv_reg28[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1D: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 29 //slv_reg29[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1E: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 30 //slv_reg30[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1F: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 31 //slv_reg31[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end */ default : begin slv_reg0 <= slv_reg0; slv_reg1 <= slv_reg1; slv_reg2 <= slv_reg2; slv_reg3 <= slv_reg3; slv_reg4 <= slv_reg4;/* slv_reg5 <= slv_reg5; slv_reg6 <= slv_reg6; slv_reg7 <= slv_reg7; slv_reg8 <= slv_reg8; slv_reg9 <= slv_reg9; slv_reg10 <= slv_reg10; slv_reg11 <= slv_reg11; slv_reg12 <= slv_reg12; slv_reg13 <= slv_reg13; slv_reg14 <= slv_reg14; slv_reg15 <= slv_reg15; slv_reg16 <= slv_reg16; slv_reg17 <= slv_reg17; slv_reg18 <= slv_reg18; slv_reg19 <= slv_reg19;*/ //slv_reg20 <= slv_reg20; //slv_reg21 <= slv_reg21; //slv_reg22 <= slv_reg22; //slv_reg23 <= slv_reg23; //slv_reg24 <= slv_reg24; //slv_reg25 <= slv_reg25; //slv_reg26 <= slv_reg26; //slv_reg27 <= slv_reg27; //slv_reg28 <= slv_reg28; //slv_reg29 <= slv_reg29; //slv_reg30 <= slv_reg30; //slv_reg31 <= slv_reg31; end endcase end end end // Implement write response logic generation // The write response and response valid signals are asserted by the slave // when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. // This marks the acceptance of address and indicates the status of // write transaction. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_bvalid <= 0; axi_bresp <= 2'b0; end else begin if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID) begin // indicates a valid write response is available axi_bvalid <= 1'b1; axi_bresp <= 2'b0; // 'OKAY' response end // work error responses in future else begin if (S_AXI_BREADY && axi_bvalid) //check if bready is asserted while bvalid is high) //(there is a possibility that bready is always asserted high) begin axi_bvalid <= 1'b0; end end end end // Implement axi_arready generation // axi_arready is asserted for one S_AXI_ACLK clock cycle when // S_AXI_ARVALID is asserted. axi_awready is // de-asserted when reset (active low) is asserted. // The read address is also latched when S_AXI_ARVALID is // asserted. axi_araddr is reset to zero on reset assertion. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_arready <= 1'b0; axi_araddr <= 32'b0; end else begin if (~axi_arready && S_AXI_ARVALID) begin // indicates that the slave has acceped the valid read address axi_arready <= 1'b1; // Read address latching axi_araddr <= S_AXI_ARADDR; end else begin axi_arready <= 1'b0; end end end // Implement axi_arvalid generation // axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_ARVALID and axi_arready are asserted. The slave registers // data are available on the axi_rdata bus at this instance. The // assertion of axi_rvalid marks the validity of read data on the // bus and axi_rresp indicates the status of read transaction.axi_rvalid // is deasserted on reset (active low). axi_rresp and axi_rdata are // cleared to zero on reset (active low). always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_rvalid <= 0; axi_rresp <= 0; end else begin if (axi_arready && S_AXI_ARVALID && ~axi_rvalid) begin // Valid read data is available at the read data bus axi_rvalid <= 1'b1; axi_rresp <= 2'b0; // 'OKAY' response end else if (axi_rvalid && S_AXI_RREADY) begin // Read data is accepted by the master axi_rvalid <= 1'b0; end end end // Implement memory mapped register select and read logic generation // Slave register read enable is asserted when valid address is available // and the slave is ready to accept the read address. assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid; always @(*) begin // Address decoding for reading registers case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ) 5'h00 : reg_data_out <= slv_reg0; 5'h01 : reg_data_out <= slv_reg1; 5'h02 : reg_data_out <= slv_reg2; 5'h03 : reg_data_out <= slv_reg3; 5'h04 : reg_data_out <= slv_reg4;/* 5'h05 : reg_data_out <= slv_reg5; 5'h06 : reg_data_out <= slv_reg6; 5'h07 : reg_data_out <= slv_reg7; 5'h08 : reg_data_out <= slv_reg8; 5'h09 : reg_data_out <= slv_reg9; 5'h0A : reg_data_out <= slv_reg10; 5'h0B : reg_data_out <= slv_reg11; 5'h0C : reg_data_out <= slv_reg12; 5'h0D : reg_data_out <= slv_reg13; 5'h0E : reg_data_out <= slv_reg14; 5'h0F : reg_data_out <= slv_reg15; 5'h10 : reg_data_out <= slv_reg16; 5'h11 : reg_data_out <= slv_reg17; 5'h12 : reg_data_out <= slv_reg18; 5'h13 : reg_data_out <= slv_reg19;*/ 5'h14 : reg_data_out <= slv_reg20;/* 5'h15 : reg_data_out <= slv_reg21; 5'h16 : reg_data_out <= slv_reg22; 5'h17 : reg_data_out <= slv_reg23; 5'h18 : reg_data_out <= slv_reg24; 5'h19 : reg_data_out <= slv_reg25; 5'h1A : reg_data_out <= slv_reg26; 5'h1B : reg_data_out <= slv_reg27; 5'h1C : reg_data_out <= slv_reg28; 5'h1D : reg_data_out <= slv_reg29; 5'h1E : reg_data_out <= slv_reg30; 5'h1F : reg_data_out <= slv_reg31;*/ default : reg_data_out <= 0; endcase end // Output register or memory read data always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_rdata <= 0; end else begin // When there is a valid read address (S_AXI_ARVALID) with // acceptance of read address by the slave (axi_arready), // output the read dada if (slv_reg_rden) begin axi_rdata <= reg_data_out; // register read data end end end // Add user logic here always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin slv_reg20 <= 32'h0;/* slv_reg21 <= 32'h0; slv_reg22 <= 32'h0; slv_reg23 <= 32'h0; slv_reg24 <= 32'h0; slv_reg25 <= 32'h0; slv_reg26 <= 32'h0; slv_reg27 <= 32'h0; slv_reg28 <= 32'h0; slv_reg29 <= 32'h0; slv_reg30 <= 32'h0; slv_reg31 <= 32'h0;*/ end else begin slv_reg20 <= SLV_REG20;/* slv_reg21 <= SLV_REG21; slv_reg22 <= SLV_REG22; slv_reg23 <= SLV_REG23; slv_reg24 <= SLV_REG24; slv_reg25 <= SLV_REG25; slv_reg26 <= SLV_REG26; slv_reg27 <= SLV_REG27; slv_reg28 <= SLV_REG28; slv_reg29 <= SLV_REG29; slv_reg30 <= SLV_REG30; slv_reg31 <= SLV_REG31;*/ end end // User logic ends endmodule