# Authors: Veeresh Taranalli # License: BSD 3-Clause from fractions import gcd from numpy import array, arange, concatenate, convolve from commpy.channelcoding.gfields import GF, polymultiply, poly_to_string from commpy.utilities import dec2bitarray, bitarray2dec __all__ = ['cyclic_code_genpoly'] def cyclic_code_genpoly(n, k): """ Generate all possible generator polynomials for a (n, k)-cyclic code. Parameters ---------- n : int Code blocklength of the cyclic code. k : int Information blocklength of the cyclic code. Returns ------- poly_list : 1D ndarray of ints A list of generator polynomials (represented as integers) for the (n, k)-cyclic code. """ if n%2 == 0: raise ValueError("n cannot be an even number") for m in arange(1, 18): if (2**m-1)%n == 0: break x_gf = GF(arange(1, 2**m), m) coset_fields = x_gf.cosets() coset_leaders = array([]) minpol_degrees = array([]) for field in coset_fields: coset_leaders = concatenate((coset_leaders, array([field.elements[0]]))) minpol_degrees = concatenate((minpol_degrees, array([len(field.elements)]))) y_gf = GF(coset_leaders, m) minpol_list = y_gf.minpolys() idx_list = arange(1, len(minpol_list)) poly_list = array([]) for i in range(1, 2**len(minpol_list)): i_array = dec2bitarray(i, len(minpol_list)) subset_array = minpol_degrees[i_array == 1] if int(subset_array.sum()) == (n-k): poly_set = minpol_list[i_array == 1] gpoly = 1 for poly in poly_set: gpoly_array = dec2bitarray(gpoly, 2**m) poly_array = dec2bitarray(poly, 2**m) gpoly = bitarray2dec(convolve(gpoly_array, poly_array) % 2) poly_list = concatenate((poly_list, array([gpoly]))) return poly_list.astype(int) if __name__ == "__main__": genpolys = cyclic_code_genpoly(31, 21) for poly in genpolys: print(poly_to_string(poly))