197 lines
6.2 KiB
Python
Raw Normal View History

2017-04-03 12:52:21 -04:00
# Authors: Veeresh Taranalli <veeresht@gmail.com>
# License: BSD 3-Clause
""" Galois Fields """
from fractions import gcd
from numpy import array, zeros, arange, convolve, ndarray, concatenate
from itertools import *
from commpy.utilities import dec2bitarray, bitarray2dec
__all__ = ['GF', 'polydivide', 'polymultiply', 'poly_to_string']
class GF:
"""
Defines a Binary Galois Field of order m, containing n,
where n can be a single element or a list of elements within the field.
Parameters
----------
n : int
Represents the Galois field element(s).
m : int
Specifies the order of the Galois Field.
Returns
-------
x : int
A Galois Field GF(2\ :sup:`m`) object.
Examples
--------
>>> from numpy import arange
>>> from gfields import GF
>>> x = arange(16)
>>> m = 4
>>> x = GF(x, m)
>>> print x.elements
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>>> print x.prim_poly
19
"""
# Initialization
def __init__(self, x, m):
self.m = m
primpoly_array = array([0, 3, 7, 11, 19, 37, 67, 137, 285, 529, 1033,
2053, 4179, 8219, 17475, 32771, 69643])
self.prim_poly = primpoly_array[self.m]
if type(x) is int and x >= 0 and x < pow(2, m):
self.elements = array([x])
elif type(x) is ndarray and len(x) >= 1:
self.elements = x
# Overloading addition operator for Galois Field
def __add__(self, x):
if len(self.elements) == len(x.elements):
return GF(self.elements ^ x.elements, self.m)
else:
raise ValueError("The arguments should have the same number of elements")
# Overloading multiplication operator for Galois Field
def __mul__(self, x):
if len(x.elements) == len(self.elements):
prod_elements = arange(len(self.elements))
for i in range(len(self.elements)):
prod_elements[i] = polymultiply(self.elements[i], x.elements[i], self.m, self.prim_poly)
return GF(prod_elements, self.m)
else:
raise ValueError("Two sets of elements cannot be multiplied")
def power_to_tuple(self):
"""
Convert Galois field elements from power form to tuple form representation.
"""
y = zeros(len(self.elements))
for idx, i in enumerate(self.elements):
if 2**i < 2**self.m:
y[idx] = 2**i
else:
y[idx] = polydivide(2**i, self.prim_poly)
return GF(y, self.m)
def tuple_to_power(self):
"""
Convert Galois field elements from tuple form to power form representation.
"""
y = zeros(len(self.elements))
for idx, i in enumerate(self.elements):
if i != 0:
init_state = 1
cur_state = 1
power = 0
while cur_state != i:
cur_state = ((cur_state << 1) & (2**self.m-1)) ^ (-((cur_state & 2**(self.m-1)) >> (self.m - 1)) &
(self.prim_poly & (2**self.m-1)))
power+=1
y[idx] = power
else:
y[idx] = 0
return GF(y, self.m)
def order(self):
"""
Compute the orders of the Galois field elements.
"""
orders = zeros(len(self.elements))
power_gf = self.tuple_to_power()
for idx, i in enumerate(power_gf.elements):
orders[idx] = (2**self.m - 1)/(gcd(i, 2**self.m-1))
return orders
def cosets(self):
"""
Compute the cyclotomic cosets of the Galois field.
"""
coset_list = []
x = self.tuple_to_power().elements
mark_list = zeros(len(x))
coset_count = 1
for idx in range(len(x)):
if mark_list[idx] == 0:
a = x[idx]
mark_list[idx] = coset_count
i = 1
while (a*(2**i) % (2**self.m-1)) != a:
for idx2 in range(len(x)):
if (mark_list[idx2] == 0) and (x[idx2] == a*(2**i)%(2**self.m-1)):
mark_list[idx2] = coset_count
i+=1
coset_count+=1
for counts in range(1, coset_count):
coset_list.append(GF(self.elements[mark_list==counts], self.m))
return coset_list
def minpolys(self):
"""
Compute the minimal polynomials for all elements of the Galois field.
"""
minpol_list = array([])
full_gf = GF(arange(2**self.m), self.m)
full_cosets = full_gf.cosets()
for x in self.elements:
for i in range(len(full_cosets)):
if x in full_cosets[i].elements:
t = array([1, full_cosets[i].elements[0]])[::-1]
for root in full_cosets[i].elements[1:]:
t2 = concatenate((zeros(len(t)-1), array([1, root]), zeros(len(t)-1)))
prod_poly = array([])
for n in range(len(t2)-len(t)+1):
root_sum = 0
for k in range(len(t)):
root_sum = root_sum ^ polymultiply(int(t[k]), int(t2[n+k]), self.m, self.prim_poly)
prod_poly = concatenate((prod_poly, array([root_sum])))
t = prod_poly[::-1]
minpol_list = concatenate((minpol_list, array([bitarray2dec(t[::-1])])))
return minpol_list.astype(int)
# Divide two polynomials and returns the remainder
def polydivide(x, y):
r = y
while len(bin(r)) >= len(bin(y)):
shift_count = len(bin(x)) - len(bin(y))
if shift_count > 0:
d = y << shift_count
else:
d = y
x = x ^ d
r = x
return r
def polymultiply(x, y, m, prim_poly):
x_array = dec2bitarray(x, m)
y_array = dec2bitarray(y, m)
prod = bitarray2dec(convolve(x_array, y_array) % 2)
return polydivide(prod, prim_poly)
def poly_to_string(x):
i = 0
polystr = ""
while x != 0:
y = x%2
x = x >> 1
if y == 1:
polystr = polystr + "x^" + str(i) + " + "
i+=1
return polystr[:-2]