mirror of
https://github.com/jhshi/openofdm.git
synced 2025-01-26 13:59:17 +00:00
197 lines
6.2 KiB
Python
197 lines
6.2 KiB
Python
|
|
||
|
|
||
|
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||
|
# License: BSD 3-Clause
|
||
|
|
||
|
""" Galois Fields """
|
||
|
|
||
|
from fractions import gcd
|
||
|
from numpy import array, zeros, arange, convolve, ndarray, concatenate
|
||
|
from itertools import *
|
||
|
from commpy.utilities import dec2bitarray, bitarray2dec
|
||
|
|
||
|
__all__ = ['GF', 'polydivide', 'polymultiply', 'poly_to_string']
|
||
|
|
||
|
class GF:
|
||
|
"""
|
||
|
Defines a Binary Galois Field of order m, containing n,
|
||
|
where n can be a single element or a list of elements within the field.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Represents the Galois field element(s).
|
||
|
|
||
|
m : int
|
||
|
Specifies the order of the Galois Field.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : int
|
||
|
A Galois Field GF(2\ :sup:`m`) object.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from numpy import arange
|
||
|
>>> from gfields import GF
|
||
|
>>> x = arange(16)
|
||
|
>>> m = 4
|
||
|
>>> x = GF(x, m)
|
||
|
>>> print x.elements
|
||
|
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
|
||
|
>>> print x.prim_poly
|
||
|
19
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Initialization
|
||
|
def __init__(self, x, m):
|
||
|
self.m = m
|
||
|
primpoly_array = array([0, 3, 7, 11, 19, 37, 67, 137, 285, 529, 1033,
|
||
|
2053, 4179, 8219, 17475, 32771, 69643])
|
||
|
self.prim_poly = primpoly_array[self.m]
|
||
|
if type(x) is int and x >= 0 and x < pow(2, m):
|
||
|
self.elements = array([x])
|
||
|
elif type(x) is ndarray and len(x) >= 1:
|
||
|
self.elements = x
|
||
|
|
||
|
# Overloading addition operator for Galois Field
|
||
|
def __add__(self, x):
|
||
|
if len(self.elements) == len(x.elements):
|
||
|
return GF(self.elements ^ x.elements, self.m)
|
||
|
else:
|
||
|
raise ValueError("The arguments should have the same number of elements")
|
||
|
|
||
|
# Overloading multiplication operator for Galois Field
|
||
|
def __mul__(self, x):
|
||
|
if len(x.elements) == len(self.elements):
|
||
|
prod_elements = arange(len(self.elements))
|
||
|
for i in range(len(self.elements)):
|
||
|
prod_elements[i] = polymultiply(self.elements[i], x.elements[i], self.m, self.prim_poly)
|
||
|
return GF(prod_elements, self.m)
|
||
|
else:
|
||
|
raise ValueError("Two sets of elements cannot be multiplied")
|
||
|
|
||
|
def power_to_tuple(self):
|
||
|
"""
|
||
|
Convert Galois field elements from power form to tuple form representation.
|
||
|
"""
|
||
|
y = zeros(len(self.elements))
|
||
|
for idx, i in enumerate(self.elements):
|
||
|
if 2**i < 2**self.m:
|
||
|
y[idx] = 2**i
|
||
|
else:
|
||
|
y[idx] = polydivide(2**i, self.prim_poly)
|
||
|
return GF(y, self.m)
|
||
|
|
||
|
def tuple_to_power(self):
|
||
|
"""
|
||
|
Convert Galois field elements from tuple form to power form representation.
|
||
|
"""
|
||
|
y = zeros(len(self.elements))
|
||
|
for idx, i in enumerate(self.elements):
|
||
|
if i != 0:
|
||
|
init_state = 1
|
||
|
cur_state = 1
|
||
|
power = 0
|
||
|
while cur_state != i:
|
||
|
cur_state = ((cur_state << 1) & (2**self.m-1)) ^ (-((cur_state & 2**(self.m-1)) >> (self.m - 1)) &
|
||
|
(self.prim_poly & (2**self.m-1)))
|
||
|
power+=1
|
||
|
y[idx] = power
|
||
|
else:
|
||
|
y[idx] = 0
|
||
|
return GF(y, self.m)
|
||
|
|
||
|
def order(self):
|
||
|
"""
|
||
|
Compute the orders of the Galois field elements.
|
||
|
"""
|
||
|
orders = zeros(len(self.elements))
|
||
|
power_gf = self.tuple_to_power()
|
||
|
for idx, i in enumerate(power_gf.elements):
|
||
|
orders[idx] = (2**self.m - 1)/(gcd(i, 2**self.m-1))
|
||
|
return orders
|
||
|
|
||
|
def cosets(self):
|
||
|
"""
|
||
|
Compute the cyclotomic cosets of the Galois field.
|
||
|
"""
|
||
|
coset_list = []
|
||
|
x = self.tuple_to_power().elements
|
||
|
mark_list = zeros(len(x))
|
||
|
coset_count = 1
|
||
|
for idx in range(len(x)):
|
||
|
if mark_list[idx] == 0:
|
||
|
a = x[idx]
|
||
|
mark_list[idx] = coset_count
|
||
|
i = 1
|
||
|
while (a*(2**i) % (2**self.m-1)) != a:
|
||
|
for idx2 in range(len(x)):
|
||
|
if (mark_list[idx2] == 0) and (x[idx2] == a*(2**i)%(2**self.m-1)):
|
||
|
mark_list[idx2] = coset_count
|
||
|
i+=1
|
||
|
coset_count+=1
|
||
|
|
||
|
for counts in range(1, coset_count):
|
||
|
coset_list.append(GF(self.elements[mark_list==counts], self.m))
|
||
|
|
||
|
return coset_list
|
||
|
|
||
|
def minpolys(self):
|
||
|
"""
|
||
|
Compute the minimal polynomials for all elements of the Galois field.
|
||
|
"""
|
||
|
minpol_list = array([])
|
||
|
full_gf = GF(arange(2**self.m), self.m)
|
||
|
full_cosets = full_gf.cosets()
|
||
|
for x in self.elements:
|
||
|
for i in range(len(full_cosets)):
|
||
|
if x in full_cosets[i].elements:
|
||
|
t = array([1, full_cosets[i].elements[0]])[::-1]
|
||
|
for root in full_cosets[i].elements[1:]:
|
||
|
t2 = concatenate((zeros(len(t)-1), array([1, root]), zeros(len(t)-1)))
|
||
|
prod_poly = array([])
|
||
|
for n in range(len(t2)-len(t)+1):
|
||
|
root_sum = 0
|
||
|
for k in range(len(t)):
|
||
|
root_sum = root_sum ^ polymultiply(int(t[k]), int(t2[n+k]), self.m, self.prim_poly)
|
||
|
prod_poly = concatenate((prod_poly, array([root_sum])))
|
||
|
t = prod_poly[::-1]
|
||
|
minpol_list = concatenate((minpol_list, array([bitarray2dec(t[::-1])])))
|
||
|
|
||
|
return minpol_list.astype(int)
|
||
|
|
||
|
# Divide two polynomials and returns the remainder
|
||
|
def polydivide(x, y):
|
||
|
r = y
|
||
|
while len(bin(r)) >= len(bin(y)):
|
||
|
shift_count = len(bin(x)) - len(bin(y))
|
||
|
if shift_count > 0:
|
||
|
d = y << shift_count
|
||
|
else:
|
||
|
d = y
|
||
|
x = x ^ d
|
||
|
r = x
|
||
|
return r
|
||
|
|
||
|
def polymultiply(x, y, m, prim_poly):
|
||
|
x_array = dec2bitarray(x, m)
|
||
|
y_array = dec2bitarray(y, m)
|
||
|
prod = bitarray2dec(convolve(x_array, y_array) % 2)
|
||
|
return polydivide(prod, prim_poly)
|
||
|
|
||
|
|
||
|
def poly_to_string(x):
|
||
|
|
||
|
i = 0
|
||
|
polystr = ""
|
||
|
while x != 0:
|
||
|
y = x%2
|
||
|
x = x >> 1
|
||
|
if y == 1:
|
||
|
polystr = polystr + "x^" + str(i) + " + "
|
||
|
i+=1
|
||
|
|
||
|
return polystr[:-2]
|