openofdm/scripts/commpy/modulation.py

195 lines
6.3 KiB
Python
Raw Normal View History

2017-04-03 16:52:21 +00:00
# Authors: Veeresh Taranalli <veeresht@gmail.com>
# License: BSD 3-Clause
"""
==================================================
Modulation Demodulation (:mod:`commpy.modulation`)
==================================================
.. autosummary::
:toctree: generated/
PSKModem -- Phase Shift Keying (PSK) Modem.
QAMModem -- Quadrature Amplitude Modulation (QAM) Modem.
mimo_ml -- MIMO Maximum Likelihood (ML) Detection.
"""
from numpy import arange, array, zeros, pi, cos, sin, sqrt, log2, argmin, \
hstack, repeat, tile, dot, sum, shape, concatenate, exp, log
from itertools import product
from commpy.utilities import bitarray2dec, dec2bitarray
from numpy.fft import fft, ifft
__all__ = ['PSKModem', 'QAMModem', 'mimo_ml']
class Modem:
def modulate(self, input_bits):
""" Modulate (map) an array of bits to constellation symbols.
Parameters
----------
input_bits : 1D ndarray of ints
Inputs bits to be modulated (mapped).
Returns
-------
baseband_symbols : 1D ndarray of complex floats
Modulated complex symbols.
"""
index_list = map(lambda i: bitarray2dec(input_bits[i:i+self.num_bits_symbol]), \
xrange(0, len(input_bits), self.num_bits_symbol))
baseband_symbols = self.constellation[index_list]
return baseband_symbols
def demodulate(self, input_symbols, demod_type, noise_var = 0):
""" Demodulate (map) a set of constellation symbols to corresponding bits.
Supports hard-decision demodulation only.
Parameters
----------
input_symbols : 1D ndarray of complex floats
Input symbols to be demodulated.
demod_type : string
'hard' for hard decision output (bits)
'soft' for soft decision output (LLRs)
noise_var : float
AWGN variance. Needs to be specified only if demod_type is 'soft'
Returns
-------
demod_bits : 1D ndarray of ints
Corresponding demodulated bits.
"""
if demod_type == 'hard':
index_list = map(lambda i: argmin(abs(input_symbols[i] - self.constellation)), \
xrange(0, len(input_symbols)))
demod_bits = hstack(map(lambda i: dec2bitarray(i, self.num_bits_symbol),
index_list))
elif demod_type == 'soft':
demod_bits = zeros(len(input_symbols) * self.num_bits_symbol)
for i in arange(len(input_symbols)):
current_symbol = input_symbols[i]
for bit_index in arange(self.num_bits_symbol):
llr_num = 0
llr_den = 0
for const_index in self.symbol_mapping:
if (const_index >> bit_index) & 1:
llr_num = llr_num + exp((-abs(current_symbol - self.constellation[const_index])**2)/noise_var)
else:
llr_den = llr_den + exp((-abs(current_symbol - self.constellation[const_index])**2)/noise_var)
demod_bits[i*self.num_bits_symbol + self.num_bits_symbol - 1 - bit_index] = log(llr_num/llr_den)
else:
pass
# throw an error
return demod_bits
class PSKModem(Modem):
""" Creates a Phase Shift Keying (PSK) Modem object. """
def _constellation_symbol(self, i):
return cos(2*pi*(i-1)/self.m) + sin(2*pi*(i-1)/self.m)*(0+1j)
def __init__(self, m):
""" Creates a Phase Shift Keying (PSK) Modem object.
Parameters
----------
m : int
Size of the PSK constellation.
"""
self.m = m
self.num_bits_symbol = int(log2(self.m))
self.symbol_mapping = arange(self.m)
self.constellation = array(map(self._constellation_symbol,
self.symbol_mapping))
class QAMModem(Modem):
""" Creates a Quadrature Amplitude Modulation (QAM) Modem object."""
def _constellation_symbol(self, i):
return (2*i[0]-1) + (2*i[1]-1)*(1j)
def __init__(self, m):
""" Creates a Quadrature Amplitude Modulation (QAM) Modem object.
Parameters
----------
m : int
Size of the QAM constellation.
"""
self.m = m
self.num_bits_symbol = int(log2(self.m))
self.symbol_mapping = arange(self.m)
mapping_array = arange(1, sqrt(self.m)+1) - (sqrt(self.m)/2)
self.constellation = array(map(self._constellation_symbol,
list(product(mapping_array, repeat=2))))
def ofdm_tx(x, nfft, nsc, cp_length):
""" OFDM Transmit signal generation """
nfft = float(nfft)
nsc = float(nsc)
cp_length = float(cp_length)
ofdm_tx_signal = array([])
for i in xrange(0, shape(x)[1]):
symbols = x[:,i]
ofdm_sym_freq = zeros(nfft, dtype=complex)
ofdm_sym_freq[1:(nsc/2)+1] = symbols[nsc/2:]
ofdm_sym_freq[-(nsc/2):] = symbols[0:nsc/2]
ofdm_sym_time = ifft(ofdm_sym_freq)
cp = ofdm_sym_time[-cp_length:]
ofdm_tx_signal = concatenate((ofdm_tx_signal, cp, ofdm_sym_time))
return ofdm_tx_signal
def ofdm_rx(y, nfft, nsc, cp_length):
""" OFDM Receive Signal Processing """
num_ofdm_symbols = int(len(y)/(nfft + cp_length))
x_hat = zeros([nsc, num_ofdm_symbols], dtype=complex)
for i in xrange(0, num_ofdm_symbols):
ofdm_symbol = y[i*nfft + (i+1)*cp_length:(i+1)*(nfft + cp_length)]
symbols_freq = fft(ofdm_symbol)
x_hat[:,i] = concatenate((symbols_freq[-nsc/2:], symbols_freq[1:(nsc/2)+1]))
return x_hat
def mimo_ml(y, h, constellation):
""" MIMO ML Detection.
parameters
----------
y : 1D ndarray of complex floats
Received complex symbols (shape: num_receive_antennas x 1)
h : 2D ndarray of complex floats
Channel Matrix (shape: num_receive_antennas x num_transmit_antennas)
constellation : 1D ndarray of complex floats
Constellation used to modulate the symbols
"""
m = len(constellation)
x_ideal = array([tile(constellation, m), repeat(constellation, m)])
y_vector = tile(y, m*m)
min_idx = argmin(sum(abs(y_vector - dot(h, x_ideal)), axis=0))
x_r = x_ideal[:, min_idx]
return x_r