mirror of
https://github.com/ParisNeo/lollms.git
synced 2025-01-18 18:56:28 +00:00
61a4f15109
Create README.md upgraded readme upgraded upgraded Added an example of a console chat Upgraded code upgraded submodule upgraded example upgraded console application Added some logo and readme upgraded upgraded updated updated changed logo upgraded upgrade upgraded upgraded upgraded version Added console app upgraded code and service information changed documentation title upgraded code updated zoo Upgraded logo upgradded Update server_endpoints.md Update README.md Update server_endpoints.md Enhanced code enhanced work + added training fixed error in README upgraded readme Fixed console problem enhanced code Added reference to models upgraded version Update README.md upgraded binding Update README.md enhanced server upgraded console and server upgraded tool upgraded upgraded Upgraded to new Version enhanced updated personalities zoo personalities_zoo upgraded readme Possibility to send files to personalities Possibility to send files to personalities upgraded code bugfix updated upgraded upgraded console updated readme version upgrade Update README.md Added menu build at startup change upgraded code now you select a personality of not selected upgraded upgraded documentation upgraded documentation updated Upgraded bugfix now you can build custom personalities updated. now we can use other personalities Bugfix added return changed colors added protection added back to personality installation bugfix typo fixed autogptq fixed autogptq gptq upgraded gptq changed version upgraded console typo Added send file updated send file upgraded personality upgraded image analysis tool updated upgraded version upgraded tool updated gpt4all is now working version update upgraded naming scheme hapen Upgraded path data upgraded version updated upgraded version upgraded install procedures personal path can be changed online upgraded chatgpt upgraded upgraded updated version bugfix upgraded personalities upgraded version enhanced enhanced update bugfix version update Added reset functionality Added settings upgraded enhanced library upgraded models Upgraded upgraded rebased upgraded code fixed gpt4all updated version
233 lines
8.8 KiB
Python
233 lines
8.8 KiB
Python
import os
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler, LlamaForCausalLM
|
|
import torch
|
|
from torch.optim import AdamW
|
|
from argparse import ArgumentParser
|
|
from read import read_config
|
|
from accelerate import Accelerator
|
|
from accelerate.utils import DummyScheduler, DummyOptim, set_seed
|
|
from peft import get_peft_model, LoraConfig, TaskType
|
|
from data import load_data
|
|
from torchmetrics import MeanMetric
|
|
from tqdm import tqdm
|
|
import wandb
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
def format_metrics(metrics, split, prefix=""):
|
|
log = f"[{split}]" + prefix
|
|
log += " ".join([f"{key}: {value:.4f}" for key, value in metrics.items()])
|
|
|
|
return log
|
|
|
|
|
|
def evaluate(model, val_dataloader):
|
|
model.eval()
|
|
val_loss = MeanMetric(nan_strategy="error").to(model.device)
|
|
|
|
with torch.no_grad():
|
|
for batch in tqdm(val_dataloader):
|
|
loss = model(**batch).loss
|
|
|
|
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
|
|
|
|
val_loss.update(loss_values["loss"])
|
|
|
|
return val_loss
|
|
|
|
|
|
def train(accelerator, config):
|
|
set_seed(config['seed'])
|
|
|
|
accelerator.print(config)
|
|
accelerator.print(f"Using {accelerator.num_processes} GPUs")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'])
|
|
# if no pad token, set it to eos
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
with accelerator.main_process_first():
|
|
train_dataloader, val_dataloader = load_data(config, tokenizer)
|
|
|
|
|
|
checkpoint = config["gradient_checkpointing"]
|
|
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
|
|
use_cache=False if checkpoint else True,
|
|
trust_remote_code=True)
|
|
if checkpoint:
|
|
model.gradient_checkpointing_enable()
|
|
|
|
if config["lora"]:
|
|
peft_config = LoraConfig(
|
|
# should R be configurable?
|
|
task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
|
|
)
|
|
model = get_peft_model(model, peft_config)
|
|
model.print_trainable_parameters()
|
|
|
|
optimizer_cls = (
|
|
AdamW
|
|
if accelerator.state.deepspeed_plugin is None
|
|
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
|
else DummyOptim
|
|
)
|
|
|
|
# karpathy doesn't decay embeddding, maybe we should exclude
|
|
# https://github.com/karpathy/minGPT/commit/bbbdac74fa9b2e55574d70056163ffbae42310c1#diff-2075fa9c224b395be5bda85544dd36572b59c76c54562819eadadbf268602834R157s
|
|
optimizer = optimizer_cls(model.parameters(), lr=config["lr"], weight_decay=config["weight_decay"])
|
|
|
|
if accelerator.state.deepspeed_plugin is not None:
|
|
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
|
|
"gradient_accumulation_steps"
|
|
]
|
|
|
|
# decay to min_lr instead of 0
|
|
lr_ratio = config["min_lr"] / config["lr"]
|
|
accelerator.print(f"Len of train_dataloader: {len(train_dataloader)}")
|
|
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * config["num_epochs"]
|
|
# instead of decaying to zero, decay to ratio of min_lr / lr
|
|
total_num_steps += int(total_num_steps * lr_ratio) + config["warmup_steps"]
|
|
accelerator.print(f"Total training steps: {total_num_steps}")
|
|
|
|
# Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler
|
|
if (
|
|
accelerator.state.deepspeed_plugin is None
|
|
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
|
):
|
|
scheduler = get_scheduler(
|
|
name="cosine",
|
|
optimizer=optimizer,
|
|
num_warmup_steps=config["warmup_steps"] * accelerator.num_processes,
|
|
num_training_steps=total_num_steps,
|
|
)
|
|
else:
|
|
scheduler = DummyScheduler(
|
|
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
|
|
)
|
|
|
|
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
|
|
model, optimizer, train_dataloader, val_dataloader, scheduler
|
|
)
|
|
|
|
# setup for saving training states in case preemption
|
|
accelerator.register_for_checkpointing(scheduler)
|
|
|
|
if config["checkpoint"]:
|
|
accelerator.load_state(config["checkpoint"])
|
|
accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}")
|
|
path = os.path.basename(config["train_args"]["resume_from_checkpoint"])
|
|
training_difference = os.path.splitext(path)[0]
|
|
resume_step = int(training_difference.replace("step_", ""))
|
|
accelerator.skip_first_batches(train_dataloader, resume_step)
|
|
accelerator.print(f"Resuming from step {resume_step}")
|
|
|
|
|
|
# log gradients
|
|
if accelerator.is_main_process and config["wandb"]:
|
|
wandb.watch(model, log_freq=config["log_grads_every"], log="all")
|
|
|
|
for epoch in range(config["num_epochs"]):
|
|
train_loss = MeanMetric(nan_strategy="error").to(model.device)
|
|
for step, batch in enumerate(tqdm(train_dataloader)):
|
|
model.train()
|
|
outputs = model(**batch)
|
|
loss = outputs.loss
|
|
|
|
# gather loss before backprop in case of gradient accumulation
|
|
loss_values = accelerator.gather_for_metrics({"loss": loss.detach().float()})
|
|
train_loss.update(loss_values["loss"])
|
|
|
|
loss = loss / gradient_accumulation_steps
|
|
accelerator.backward(loss)
|
|
# get gradient norm of all params
|
|
|
|
# log LR in case something weird happens
|
|
if step > 0 and step % (config["eval_every"] // 10) == 0:
|
|
if config["wandb"]:
|
|
curr_step = step + epoch * len(train_dataloader)
|
|
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step)
|
|
|
|
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
|
optimizer.step()
|
|
scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
|
|
if step > 0 and step % config["save_every"] == 0:
|
|
curr_step = step + epoch * len(train_dataloader)
|
|
accelerator.save_state(f"{config['output_dir']}/step_{curr_step}")
|
|
|
|
if step > 0 and (step % config["eval_every"] == 0 or step == len(train_dataloader) - 1):
|
|
val_loss = evaluate(model, val_dataloader)
|
|
|
|
log_train = {
|
|
"train_loss": train_loss.compute()
|
|
}
|
|
log_val = {
|
|
"val_loss": val_loss.compute()
|
|
}
|
|
|
|
if config["wandb"]:
|
|
curr_step = step + epoch * len(train_dataloader)
|
|
accelerator.log({**log_train, **log_val}, step=curr_step)
|
|
|
|
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
|
|
accelerator.print(format_metrics(log_train, "train", f" step {step} "))
|
|
accelerator.print(format_metrics(log_val, "val", f" step {step} "))
|
|
|
|
train_loss.reset()
|
|
|
|
accelerator.print(f"Epoch {epoch} finished")
|
|
accelerator.print(f"Pushing to HF hub")
|
|
accelerator.wait_for_everyone()
|
|
unwrapped_model = accelerator.unwrap_model(model)
|
|
try:
|
|
if accelerator.is_main_process:
|
|
unwrapped_model.push_to_hub(config["save_name"] + f"-epoch_{epoch}", private=True)
|
|
|
|
except Exception as e:
|
|
accelerator.print(e)
|
|
accelerator.print(f"Failed to push to hub")
|
|
|
|
unwrapped_model.save_pretrained(
|
|
f"{config['output_dir']}/epoch_{epoch}",
|
|
is_main_process=accelerator.is_main_process,
|
|
save_function=accelerator.save,
|
|
state_dict=accelerator.get_state_dict(model),
|
|
)
|
|
|
|
accelerator.wait_for_everyone()
|
|
unwrapped_model = accelerator.unwrap_model(model)
|
|
unwrapped_model.save_pretrained(
|
|
f"{config['output_dir']}/final",
|
|
is_main_process=accelerator.is_main_process,
|
|
save_function=accelerator.save,
|
|
state_dict=accelerator.get_state_dict(model),
|
|
)
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# parse arguments by reading in a config
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--config", type=str, default="config.yaml")
|
|
|
|
args = parser.parse_args()
|
|
|
|
config = read_config(args.config)
|
|
|
|
if config["wandb"]:
|
|
accelerator = Accelerator(log_with="wandb")
|
|
accelerator.init_trackers(
|
|
project_name=config["wandb_project_name"],
|
|
config=config,
|
|
init_kwargs={"wandb": {"entity": config["wandb_entity"]}},
|
|
)
|
|
else:
|
|
accelerator = Accelerator()
|
|
|
|
train(accelerator, config=config) |