lollms/lollms/internet.py
2024-06-14 01:43:49 +02:00

364 lines
13 KiB
Python

from ascii_colors import ASCIIColors, trace_exception
from lollms.utilities import PackageManager
import time
import re
def get_favicon_url(url):
import requests
from bs4 import BeautifulSoup
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
favicon_link = soup.find('link', rel='icon') or soup.find('link', rel='shortcut icon')
if favicon_link:
favicon_url = favicon_link['href']
if not favicon_url.startswith('http'):
favicon_url = url + favicon_url
return favicon_url
except:
ASCIIColors.warning(f"Couldn't get fav icon from {url}")
return None
def get_root_url(url):
from urllib.parse import urlparse
parsed_url = urlparse(url)
root_url = parsed_url.scheme + "://" + parsed_url.netloc
return root_url
def format_url_parameter(value:str):
encoded_value = value.strip().replace("\"","")
return encoded_value
def wait_for_page(driver, step_delay=1):
# Get the initial page height
last_height = driver.execute_script("return document.body.scrollHeight")
while True:
# Scroll to the bottom of the page
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
# Wait for the page to load new content
time.sleep(step_delay)
# Get the new page height
new_height = driver.execute_script("return document.body.scrollHeight")
# If the page height hasn't changed, exit the loop
if new_height == last_height:
break
last_height = new_height
def prepare_chrome_driver(chromedriver_path = None):
from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
# Create a new instance of the Chrome driver
chrome_options = webdriver.ChromeOptions()
#chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
# chrome_options.add_argument("--remote-debugging-port=9222")
chrome_options.add_argument("--headless") # Run Chrome in headless mode
# chrome_options.add_argument('--ignore-certificate-errors')
# chrome_options.add_argument('--ignore-ssl-errors')
chrome_options.add_argument("--enable-third-party-cookies")
# Set path to chromedriver executable (replace with your own path)
if chromedriver_path is None:
chromedriver_path = ""#"/snap/bin/chromium.chromedriver"
# Create a new Chrome webdriver instance
try:
driver = webdriver.Chrome(executable_path=chromedriver_path, options=chrome_options)
except:
driver = webdriver.Chrome(options=chrome_options)
return driver
def press_buttons(driver, buttons_to_press=['accept']):
from selenium.webdriver.common.by import By
from bs4 import BeautifulSoup
# Parse the HTML content using BeautifulSoup
soup = BeautifulSoup(driver.page_source, 'html.parser')
# Find the button that contains the text "accept" (case-insensitive)
for button_to_press in buttons_to_press.split(",") if isinstance(buttons_to_press, str) else buttons_to_press:
try:
button_to_press = button_to_press.strip()
button = soup.find('button', text=lambda t: button_to_press in t.lower())
if button:
# Click the button using Selenium
button_element = driver.find_element(By.XPATH, "//button[contains(translate(., 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'accept')]")
button_element.click()
print(f"Button {button_to_press} clicked!")
else:
print(f"Button {button_to_press} not found in page.")
except:
ASCIIColors.warning(f"Couldn't press button {button_to_press} in this page.")
def scrape_and_save(url, file_path=None, lollms_com=None, chromedriver_path=None, wait_step_delay=1, buttons_to_press=['accept'], max_size=None):
if not PackageManager.check_package_installed("selenium"):
PackageManager.install_package("selenium")
if not PackageManager.check_package_installed("bs4"):
PackageManager.install_package("bs4")
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
driver = prepare_chrome_driver(chromedriver_path)
# Navigate to the URL
driver.get(url)
wait_for_page(driver, wait_step_delay)
press_buttons(driver, buttons_to_press)
# Parse the HTML content using BeautifulSoup
soup = BeautifulSoup(driver.page_source, 'html.parser')
# Find all the text content in the webpage
text_content = soup.get_text()
text_content = re.sub(r'\n+', '\n', text_content)
if file_path:
if max_size and len(text_content)< max_size:
# Save the text content as a text file
with open(file_path, 'w', encoding="utf-8") as file:
file.write(text_content)
if lollms_com:
lollms_com.info(f"Webpage content saved to {file_path}")
# Close the driver
driver.quit()
return text_content
def get_relevant_text_block(
url,
driver,
internet_vectorization_chunk_size,
internet_vectorization_overlap_size,
vectorizer,
title=None,
brief=None,
wait_step_delay=0.5,
query="",
asses_using_llm=True,
yes_no=None
):
from bs4 import BeautifulSoup
import time
try:
# Chargez la page web avec le driver passé en paramètre
driver.get(url)
# Attendez que le JavaScript s'exécute, avec un délai d'attente progressif si nécessaire
time.sleep(wait_step_delay)
html_content = driver.page_source
soup = BeautifulSoup(html_content, "html.parser")
# Supprimez les éléments non désirés
for script_or_style in soup(["script", "style", "header", "footer", "nav", "aside"]):
script_or_style.decompose()
# Ciblez l'élément contenant le texte principal
article = soup.find('article')
if article:
text_block = ''
sections = article.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'li'])
for element in sections:
if element.name in ['h1', 'h2', 'h3', 'h4', 'h5', 'h6']:
if text_block:
text_block += '\n\n'
text_block += element.get_text(strip=True)
text_block += '\n'
else:
text_block += element.get_text(strip=True) + '\n'
document_id = {
'url':url
}
document_id["title"] = title
document_id["brief"] = brief
text_block=text_block.strip()
if asses_using_llm and yes_no is not None:
if yes_no(f"Is this content relevant to the query: {query}", text_block):
vectorizer.add_document(document_id,text_block, internet_vectorization_chunk_size, internet_vectorization_overlap_size)
else:
vectorizer.add_document(document_id,text_block, internet_vectorization_chunk_size, internet_vectorization_overlap_size)
return True
else:
body = soup.body
if body:
text_block = body.get_text(strip=True)
document_id = {
'url':url
}
document_id["title"] = title
document_id["brief"] = brief
text_block=text_block.strip()
vectorizer.add_document(document_id,text_block, internet_vectorization_chunk_size, internet_vectorization_overlap_size)
return True
else:
ASCIIColors.warning("No data found in his page.")
return False
except Exception as ex:
ASCIIColors.warning(f"Couldn't scrape: {url}")
return False
def extract_results(url, max_num, driver=None, wait_step_delay=0.5):
from bs4 import BeautifulSoup
# Load the webpage
driver.get(url)
# Get the initial page height
last_height = driver.execute_script("return document.body.scrollHeight")
wait_for_page(driver, wait_step_delay)
# Wait for JavaScript to execute and get the final page source
html_content = driver.page_source
# Parse the HTML content
soup = BeautifulSoup(html_content, "html.parser")
# Detect that no outputs are found
Not_found = soup.find("No results found")
if Not_found :
return []
# Find the <ol> tag with class="react-results--main"
ol_tag = soup.find("ol", class_="react-results--main")
# Initialize an empty list to store the results
results_list = []
try:
# Find all <li> tags within the <ol> tag
li_tags = ol_tag.find_all("li")
# Loop through each <li> tag, limited by max_num
for index, li_tag in enumerate(li_tags):
if index > max_num*3:
break
try:
# Find the three <div> tags within the <article> tag
div_tags = li_tag.find_all("div")
# Extract the link, title, and content from the <div> tags
links = div_tags[0].find_all("a")
href_value = links[1].get('href')
span = links[1].find_all("span")
link = span[0].text.strip()
title = div_tags[2].text.strip()
content = div_tags[3].text.strip()
# Add the extracted information to the list
results_list.append({
"link": link,
"href": href_value,
"title": title,
"brief": content
})
except Exception:
pass
except:
pass
return results_list
def internet_search(query, internet_nb_search_pages, chromedriver_path=None, quick_search:bool=False, buttons_to_press=['acccept']):
"""
"""
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from safe_store.text_vectorizer import TextVectorizer, VectorizationMethod
search_results = []
nb_non_empty = 0
# Configure Chrome options
driver = prepare_chrome_driver(chromedriver_path)
results = extract_results(
f"https://duckduckgo.com/?q={format_url_parameter(query)}&t=h_&ia=web",
internet_nb_search_pages,
driver
)
for i, result in enumerate(results):
title = result["title"]
brief = result["brief"]
href = result["href"]
if quick_search:
search_results.append({'url':href, 'title':title, 'brief': brief, 'content':""})
else:
search_results.append({'url':href, 'title':title, 'brief': brief, 'content':scrape_and_save(href, chromedriver_path=chromedriver_path, buttons_to_press=buttons_to_press)})
nb_non_empty += 1
if nb_non_empty>=internet_nb_search_pages:
break
return search_results
def internet_search_with_vectorization(query, chromedriver_path=None, internet_nb_search_pages=5, internet_vectorization_chunk_size=512, internet_vectorization_overlap_size=20, internet_vectorization_nb_chunks=4, model = None, quick_search:bool=False, vectorize=True, asses_using_llm=True, yes_no=None):
"""
"""
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from safe_store.text_vectorizer import TextVectorizer, VectorizationMethod
vectorizer = TextVectorizer(VectorizationMethod.TFIDF_VECTORIZER, model = model)
formatted_text = ""
nb_non_empty = 0
# Configure Chrome options
driver = prepare_chrome_driver(chromedriver_path)
results = extract_results(
f"https://duckduckgo.com/?q={format_url_parameter(query)}&t=h_&ia=web",
internet_nb_search_pages,
driver
)
for i, result in enumerate(results):
ASCIIColors.orange(f"Processing result:{result['title']}")
title = result["title"]
brief = result["brief"]
href = result["href"]
if quick_search:
vectorizer.add_document({'url':href, 'title':title, 'brief': brief}, brief)
else:
get_relevant_text_block(href, driver, internet_vectorization_chunk_size, internet_vectorization_overlap_size, vectorizer, title, brief, query=query, asses_using_llm=asses_using_llm, yes_no=yes_no)
nb_non_empty += 1
if nb_non_empty>=internet_nb_search_pages:
break
vectorizer.index()
# Close the browser
driver.quit()
docs, sorted_similarities, document_ids = vectorizer.recover_text(query, internet_vectorization_nb_chunks)
return docs, sorted_similarities, document_ids