diff --git a/configs/config.yaml b/configs/config.yaml index 5e80cec..b28be6e 100644 --- a/configs/config.yaml +++ b/configs/config.yaml @@ -1,5 +1,5 @@ # =================== Lord Of Large Language Multimodal Systems Configuration file =========================== -version: 74 +version: 75 binding_name: null model_name: null model_variant: null @@ -26,8 +26,8 @@ port: 9600 # Genreration parameters discussion_prompt_separator: "!@>" seed: -1 -n_predict: 1024 ctx_size: 4084 +max_n_predict: 4096 min_n_predict: 512 temperature: 0.9 top_k: 50 diff --git a/lollms/app.py b/lollms/app.py index 1f98c55..e4eb0df 100644 --- a/lollms/app.py +++ b/lollms/app.py @@ -493,7 +493,7 @@ class LollmsApplication(LoLLMsCom): ASCIIColors.info(f"Deleted file: {file_path}") # -------------------------------------- Prompt preparing - def prepare_query(self, client_id: str, message_id: int = -1, is_continue: bool = False, n_tokens: int = 0, generation_type = None) -> Tuple[str, str, List[str]]: + def prepare_query(self, client_id: str, message_id: int = -1, is_continue: bool = False, n_tokens: int = 0, generation_type = None, force_using_internet=False) -> Tuple[str, str, List[str]]: """ Prepares the query for the model. @@ -563,19 +563,19 @@ class LollmsApplication(LoLLMsCom): discussion = None if generation_type != "simple_question": - if self.config.activate_internet_search: + if self.config.activate_internet_search or force_using_internet or generation_type == "full_context_with_internet": if discussion is None: discussion = self.recover_discussion(client_id) if self.config.internet_activate_search_decision: self.personality.step_start(f"Requesting if {self.personality.name} needs to search internet to answer the user") - need = not self.personality.yes_no(f"Do you have enough information to give a satisfactory answer to {self.config.user_name}'s request without internet search? (If you do not know or you can't answer 0 (no)", discussion) + need = not self.personality.yes_no(f"!@>system: Answer the question with yes or no. Don't add any extra explanation.\n!@>user: Do you have enough information to give a satisfactory answer to {self.config.user_name}'s request without internet search? (If you do not know or you can't answer 0 (no)", discussion) self.personality.step_end(f"Requesting if {self.personality.name} needs to search internet to answer the user") self.personality.step("Yes" if need else "No") else: need=True if need: self.personality.step_start("Crafting internet search query") - query = self.personality.fast_gen(f"!@>discussion:\n{discussion[-2048:]}\n!@>system: Read the discussion and craft a web search query suited to recover needed information to reply to last {self.config.user_name} message.\nDo not answer the prompt. Do not add explanations.\n!@>websearch query: ", max_generation_size=256, show_progress=True, callback=self.personality.sink) + query = self.personality.fast_gen(f"!@>discussion:\n{discussion[-2048:]}\n!@>system: Read the discussion and craft a web search query suited to recover needed information to reply to last {self.config.user_name} message.\nDo not answer the prompt. Do not add explanations.\n!@>current date: {datetime.now()}!@>websearch query: ", max_generation_size=256, show_progress=True, callback=self.personality.sink) self.personality.step_end("Crafting internet search query") self.personality.step(f"web search query: {query}") @@ -628,16 +628,25 @@ class LollmsApplication(LoLLMsCom): except: self.warning("Couldn't add documentation to the context. Please verify the vector database") # Check if there is discussion knowledge to add to the prompt - if self.config.activate_skills_lib and self.long_term_memory is not None: - if knowledge=="": - knowledge="!@>knowledge:\n" - + if self.config.activate_skills_lib: try: - docs, sorted_similarities, document_ids = self.long_term_memory.recover_text(current_message.content, top_k=self.config.data_vectorization_nb_chunks) - for i,(doc, infos) in enumerate(zip(docs, sorted_similarities)): - knowledge += f"!@>knowledge {i}:\n!@>title:\n{infos[0]}\ncontent:\n{doc}" - except: + self.personality.step_start("Building skills library") + if discussion is None: + discussion = self.recover_discussion(client_id) + query = self.personality.fast_gen(f"!@>discussion:\n{discussion[-2048:]}\n!@>system: Read the discussion and craft a short skills database search query suited to recover needed information to reply to last {self.config.user_name} message.\nDo not answer the prompt. Do not add explanations.\n!@>search query: ", max_generation_size=256, show_progress=True, callback=self.personality.sink) + # skills = self.skills_library.query_entry(query) + skills = self.skills_library.query_entry_fts(query) + + if len(query)>0: + if knowledge=="": + knowledge=f"!@>knowledge:\n!@>instructions: Use the knowledge to answer {self.config.user_name}'s message. If you don't have enough information or you don't know how to answer, just say you do not know.\n" + for i,(category, title, content) in enumerate(skills): + knowledge += f"!@>knowledge {i}:\n!@>category:\n{category}\n!@>title:\n{title}\ncontent:\n{content}" + self.personality.step_end("Building skills library") + except Exception as ex: + ASCIIColors.error(ex) self.warning("Couldn't add long term memory information to the context. Please verify the vector database") # Add information about the user + self.personality.step_end("Building skills library",False) user_description="" if self.config.use_user_informations_in_discussion: user_description="!@>User description:\n"+self.config.user_description+"\n" @@ -687,7 +696,7 @@ class LollmsApplication(LoLLMsCom): total_tokens = n_cond_tk + n_isearch_tk + n_doc_tk + n_history_tk + n_user_description_tk + n_positive_boost + n_negative_boost + n_force_language + n_fun_mode # Calculate the available space for the messages - available_space = self.config.ctx_size - n_tokens - total_tokens + available_space = min(self.config.ctx_size - n_tokens - total_tokens, self.config.max_n_predict) # if self.config.debug: # self.info(f"Tokens summary:\nConditionning:{n_cond_tk}\nn_isearch_tk:{n_isearch_tk}\ndoc:{n_doc_tk}\nhistory:{n_history_tk}\nuser description:{n_user_description_tk}\nAvailable space:{available_space}",10) diff --git a/lollms/configs/config.yaml b/lollms/configs/config.yaml index 5e80cec..b28be6e 100644 --- a/lollms/configs/config.yaml +++ b/lollms/configs/config.yaml @@ -1,5 +1,5 @@ # =================== Lord Of Large Language Multimodal Systems Configuration file =========================== -version: 74 +version: 75 binding_name: null model_name: null model_variant: null @@ -26,8 +26,8 @@ port: 9600 # Genreration parameters discussion_prompt_separator: "!@>" seed: -1 -n_predict: 1024 ctx_size: 4084 +max_n_predict: 4096 min_n_predict: 512 temperature: 0.9 top_k: 50 diff --git a/lollms/databases/skills_database.py b/lollms/databases/skills_database.py index 9546edf..b77eb9a 100644 --- a/lollms/databases/skills_database.py +++ b/lollms/databases/skills_database.py @@ -25,6 +25,7 @@ class SkillsLibrary: """) cursor.execute("SELECT version FROM db_info") version = cursor.fetchone() + self._create_fts_table() # Create FTS table after initializing the database if version is None: cursor.execute("INSERT INTO db_info (version) VALUES (1)") conn.commit() @@ -35,6 +36,16 @@ class SkillsLibrary: conn.close() self._migrate_db(version[0]) + def _create_fts_table(self): + conn = sqlite3.connect(self.db_path) + cursor = conn.cursor() + cursor.execute(""" + CREATE VIRTUAL TABLE IF NOT EXISTS skills_library_fts USING fts5(category, title, content) + """) + conn.commit() + cursor.close() + conn.close() + def _migrate_db(self, version): conn = sqlite3.connect(self.db_path) cursor = conn.cursor() @@ -95,6 +106,19 @@ class SkillsLibrary: conn.close() return res + def query_entry_fts(self, text): + conn = sqlite3.connect(self.db_path) + cursor = conn.cursor() + # Use direct string concatenation for the MATCH expression. + # Ensure text is safely escaped to avoid SQL injection. + query = "SELECT * FROM skills_library_fts WHERE skills_library_fts MATCH ?" + cursor.execute(query, (text,)) + res = cursor.fetchall() + cursor.close() + conn.close() + return res + + def remove_entry(self, id): conn = sqlite3.connect(self.db_path) cursor = conn.cursor() diff --git a/lollms/utilities.py b/lollms/utilities.py index 83ae524..3846a77 100644 --- a/lollms/utilities.py +++ b/lollms/utilities.py @@ -39,6 +39,8 @@ import git import mimetypes import subprocess +from functools import partial + def create_conda_env(env_name, python_version): from conda.cli.python_api import run_command, Commands # Create a new Conda environment with the specified Python version @@ -148,6 +150,58 @@ def yes_or_no_input(prompt): else: print("Please enter 'yes' or 'no'.") +def show_console_custom_dialog(title, text, options): + print(title) + print(text) + for i, option in enumerate(options, 1): + print(f"{i}. {option}") + while True: + try: + choice = int(input("Enter the number of your choice: ")) + if 1 <= choice <= len(options): + return options[choice - 1] + else: + print("Invalid choice. Please try again.") + except ValueError: + print("Invalid input. Please enter a number.") + +def show_custom_dialog(title, text, options): + try: + import tkinter as tk + from tkinter import simpledialog + class CustomDialog(simpledialog.Dialog): + def __init__(self, parent, title, options, root): + self.options = options + self.root = root + self.buttons = [] + self.result_value = "" + super().__init__(parent, title) + def do_ok(self, option): + self.result_value = option + self.ok(option) + self.root.destroy() + def body(self, master): + for option in self.options: + button = tk.Button(master, text=option, command=partial(self.do_ok, option)) + button.pack(side="left", fill="x") + self.buttons.append(button) + + def apply(self): + self.result = self.options[0] # Default value + root = tk.Tk() + root.withdraw() + root.attributes('-topmost', True) + d = CustomDialog(root, title=title, options=options, root=root) + try: + d.mainloop() + except Exception as ex: + pass + result = d.result_value + return result + except Exception as ex: + ASCIIColors.error(ex) + return show_console_custom_dialog(title, text, options) + def show_yes_no_dialog(title, text): try: import tkinter as tk