Removing conda bit by bit

This commit is contained in:
Saifeddine ALOUI 2024-09-26 00:46:17 +02:00
parent 9e073cfbc7
commit ae87383034
14 changed files with 16 additions and 63 deletions

View File

@ -1,5 +1,5 @@
# =================== Lord Of Large Language Multimodal Systems Configuration file ===========================
version: 137
version: 138
binding_name: null
model_name: null
model_variant: null
@ -273,7 +273,7 @@ audio_silenceTimer: 5000
# Data vectorization
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
rag_vectorizer: semantic # possible values semantic, tfidf, openai
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
rag_vectorizer_parameters: null # Parameters of the model in json format
rag_chunk_size: 512 # number of tokens per chunk

View File

@ -248,7 +248,7 @@ audio_silenceTimer: 5000
# Data vectorization
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
rag_vectorizer: semantic # possible values semantic, tfidf, openai
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
rag_vectorizer_parameters: null # Parameters of the model in json format
rag_chunk_size: 512 # number of tokens per chunk

View File

@ -248,7 +248,7 @@ audio_silenceTimer: 5000
# Data vectorization
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
rag_vectorizer: semantic # possible values semantic, tfidf, openai
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
rag_vectorizer_parameters: null # Parameters of the model in json format
rag_chunk_size: 512 # number of tokens per chunk

View File

@ -248,7 +248,7 @@ audio_silenceTimer: 5000
# Data vectorization
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
rag_vectorizer: semantic # possible values semantic, tfidf, openai
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
rag_vectorizer_parameters: null # Parameters of the model in json format
rag_chunk_size: 512 # number of tokens per chunk

View File

@ -1,42 +0,0 @@
name: lollms_env
channels:
- defaults
- conda-forge # Adds a wider selection of packages, especially for less common ones
dependencies:
- python=3.11
- numpy=1.26.*
- pandas
- pillow>=9.5.0
- pyyaml
- requests
- rich
- scipy
- tqdm
- setuptools
- wheel
- psutil
- pytest
- gitpython
- beautifulsoup4
- packaging
- fastapi
- uvicorn
- pydantic
- selenium
- aiofiles
- pip # Conda will manage pip installation
- pip:
- colorama
- ascii-colors>=0.4.2
- python-multipart
- python-socketio
- python-socketio[client]
- python-socketio[asyncio_client]
- tiktoken
- pipmaster>=0.1.7
- lollmsvectordb>=1.1.0
- freedom-search>=0.1.9
- scrapemaster>=0.2.0
- lollms_client>=0.7.5
- zipfile36
- freedom_search

View File

@ -1,5 +1,5 @@
# =================== Lord Of Large Language Multimodal Systems Configuration file ===========================
version: 137
version: 138
binding_name: null
model_name: null
model_variant: null
@ -273,7 +273,7 @@ audio_silenceTimer: 5000
# Data vectorization
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
rag_vectorizer: semantic # possible values semantic, tfidf, openai
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
rag_vectorizer_parameters: null # Parameters of the model in json format
rag_chunk_size: 512 # number of tokens per chunk

View File

@ -1,14 +1,14 @@
import sqlite3
from lollmsvectordb import VectorDatabase, SemanticVectorizer
from lollmsvectordb import VectorDatabase, TFIDFVectorizer
from lollmsvectordb.lollms_tokenizers.tiktoken_tokenizer import TikTokenTokenizer
import numpy as np
from ascii_colors import ASCIIColors
class SkillsLibrary:
def __init__(self, db_path, model_name: str = 'sentence-transformers/bert-base-nli-mean-tokens', chunk_size:int=512, overlap:int=0, n_neighbors:int=5):
def __init__(self, db_path, chunk_size:int=512, overlap:int=0, n_neighbors:int=5):
self.db_path =db_path
self._initialize_db()
self.vectorizer = VectorDatabase(db_path, SemanticVectorizer(model_name), TikTokenTokenizer(),chunk_size, overlap, n_neighbors)
self.vectorizer = VectorDatabase(db_path, TFIDFVectorizer(), TikTokenTokenizer(),chunk_size, overlap, n_neighbors)
ASCIIColors.green("Vecorizer ready")

View File

@ -337,9 +337,9 @@ def get_image_gen_prompt(agent_name, number_of_entries=5) -> Tuple[str, str]:
"""
try:
from lollmsvectordb.vector_database import VectorDatabase
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
from lollmsvectordb.lollms_vectorizers.tfidf_vectorizer import TFIDFVectorizer
from lollmsvectordb.lollms_tokenizers.tiktoken_tokenizer import TikTokenTokenizer
db = VectorDatabase("", SemanticVectorizer(), TikTokenTokenizer(), number_of_entries)
db = VectorDatabase("", TFIDFVectorizer(), TikTokenTokenizer(), number_of_entries)
image_gen_prompts = get_prompts_list()
for entry in image_gen_prompts:

View File

@ -134,9 +134,9 @@ def get_system_prompt(agent_name, number_of_entries=5) -> Tuple[str, str]:
"""
try:
from lollmsvectordb.vector_database import VectorDatabase
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
from lollmsvectordb.lollms_vectorizers.tfidf_vectorizer import TFIDFVectorizer
from lollmsvectordb.lollms_tokenizers.tiktoken_tokenizer import TikTokenTokenizer
db = VectorDatabase("", SemanticVectorizer(), TikTokenTokenizer(), number_of_entries)
db = VectorDatabase("", TFIDFVectorizer(), TikTokenTokenizer(), number_of_entries)
system_prompts = get_prompts()

View File

@ -17,8 +17,6 @@ from lollms.utilities import PromptReshaper, PackageManager, discussion_path_to_
from lollms.com import NotificationType, NotificationDisplayType
from lollms.client_session import Session, Client
from lollmsvectordb.vector_database import VectorDatabase
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
from lollmsvectordb.lollms_vectorizers.tfidf_vectorizer import TFIDFVectorizer
from lollmsvectordb.text_document_loader import TextDocumentsLoader
from lollmsvectordb.database_elements.document import Document
import pkg_resources

View File

@ -248,7 +248,7 @@ audio_silenceTimer: 5000
# Data vectorization
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
rag_vectorizer: semantic # possible values semantic, tfidf, openai
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
rag_vectorizer_parameters: null # Parameters of the model in json format
rag_chunk_size: 512 # number of tokens per chunk

View File

@ -128,7 +128,6 @@ def select_rag_database(client) -> Optional[Dict[str, Path]]:
if not PackageManager.check_package_installed_with_version("lollmsvectordb","0.6.0"):
PackageManager.install_or_update("lollmsvectordb")
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
from lollmsvectordb import VectorDatabase
from lollmsvectordb.text_document_loader import TextDocumentsLoader
from lollmsvectordb.lollms_tokenizers.tiktoken_tokenizer import TikTokenTokenizer

View File

@ -13,8 +13,6 @@ from typing import List, Optional, Union
from pathlib import Path
from lollmsvectordb.database_elements.chunk import Chunk
from lollmsvectordb.vector_database import VectorDatabase
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
from lollmsvectordb.lollms_vectorizers.tfidf_vectorizer import TFIDFVectorizer
import sqlite3
import secrets
import time

View File

@ -248,7 +248,7 @@ audio_silenceTimer: 5000
# Data vectorization
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
rag_vectorizer: semantic # possible values semantic, tfidf, openai
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
rag_vectorizer_parameters: null # Parameters of the model in json format
rag_chunk_size: 512 # number of tokens per chunk