mirror of
https://github.com/ParisNeo/lollms.git
synced 2024-12-18 20:27:58 +00:00
Removing conda bit by bit
This commit is contained in:
parent
9e073cfbc7
commit
ae87383034
@ -1,5 +1,5 @@
|
||||
# =================== Lord Of Large Language Multimodal Systems Configuration file ===========================
|
||||
version: 137
|
||||
version: 138
|
||||
binding_name: null
|
||||
model_name: null
|
||||
model_variant: null
|
||||
@ -273,7 +273,7 @@ audio_silenceTimer: 5000
|
||||
|
||||
# Data vectorization
|
||||
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
|
||||
rag_vectorizer: semantic # possible values semantic, tfidf, openai
|
||||
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
|
||||
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
|
||||
rag_vectorizer_parameters: null # Parameters of the model in json format
|
||||
rag_chunk_size: 512 # number of tokens per chunk
|
||||
|
@ -248,7 +248,7 @@ audio_silenceTimer: 5000
|
||||
|
||||
# Data vectorization
|
||||
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
|
||||
rag_vectorizer: semantic # possible values semantic, tfidf, openai
|
||||
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
|
||||
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
|
||||
rag_vectorizer_parameters: null # Parameters of the model in json format
|
||||
rag_chunk_size: 512 # number of tokens per chunk
|
||||
|
@ -248,7 +248,7 @@ audio_silenceTimer: 5000
|
||||
|
||||
# Data vectorization
|
||||
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
|
||||
rag_vectorizer: semantic # possible values semantic, tfidf, openai
|
||||
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
|
||||
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
|
||||
rag_vectorizer_parameters: null # Parameters of the model in json format
|
||||
rag_chunk_size: 512 # number of tokens per chunk
|
||||
|
@ -248,7 +248,7 @@ audio_silenceTimer: 5000
|
||||
|
||||
# Data vectorization
|
||||
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
|
||||
rag_vectorizer: semantic # possible values semantic, tfidf, openai
|
||||
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
|
||||
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
|
||||
rag_vectorizer_parameters: null # Parameters of the model in json format
|
||||
rag_chunk_size: 512 # number of tokens per chunk
|
||||
|
@ -1,42 +0,0 @@
|
||||
name: lollms_env
|
||||
channels:
|
||||
- defaults
|
||||
- conda-forge # Adds a wider selection of packages, especially for less common ones
|
||||
dependencies:
|
||||
- python=3.11
|
||||
- numpy=1.26.*
|
||||
- pandas
|
||||
- pillow>=9.5.0
|
||||
- pyyaml
|
||||
- requests
|
||||
- rich
|
||||
- scipy
|
||||
- tqdm
|
||||
- setuptools
|
||||
- wheel
|
||||
- psutil
|
||||
- pytest
|
||||
- gitpython
|
||||
- beautifulsoup4
|
||||
- packaging
|
||||
- fastapi
|
||||
- uvicorn
|
||||
- pydantic
|
||||
- selenium
|
||||
- aiofiles
|
||||
- pip # Conda will manage pip installation
|
||||
- pip:
|
||||
- colorama
|
||||
- ascii-colors>=0.4.2
|
||||
- python-multipart
|
||||
- python-socketio
|
||||
- python-socketio[client]
|
||||
- python-socketio[asyncio_client]
|
||||
- tiktoken
|
||||
- pipmaster>=0.1.7
|
||||
- lollmsvectordb>=1.1.0
|
||||
- freedom-search>=0.1.9
|
||||
- scrapemaster>=0.2.0
|
||||
- lollms_client>=0.7.5
|
||||
- zipfile36
|
||||
- freedom_search
|
@ -1,5 +1,5 @@
|
||||
# =================== Lord Of Large Language Multimodal Systems Configuration file ===========================
|
||||
version: 137
|
||||
version: 138
|
||||
binding_name: null
|
||||
model_name: null
|
||||
model_variant: null
|
||||
@ -273,7 +273,7 @@ audio_silenceTimer: 5000
|
||||
|
||||
# Data vectorization
|
||||
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
|
||||
rag_vectorizer: semantic # possible values semantic, tfidf, openai
|
||||
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
|
||||
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
|
||||
rag_vectorizer_parameters: null # Parameters of the model in json format
|
||||
rag_chunk_size: 512 # number of tokens per chunk
|
||||
|
@ -1,14 +1,14 @@
|
||||
import sqlite3
|
||||
from lollmsvectordb import VectorDatabase, SemanticVectorizer
|
||||
from lollmsvectordb import VectorDatabase, TFIDFVectorizer
|
||||
from lollmsvectordb.lollms_tokenizers.tiktoken_tokenizer import TikTokenTokenizer
|
||||
import numpy as np
|
||||
from ascii_colors import ASCIIColors
|
||||
class SkillsLibrary:
|
||||
|
||||
def __init__(self, db_path, model_name: str = 'sentence-transformers/bert-base-nli-mean-tokens', chunk_size:int=512, overlap:int=0, n_neighbors:int=5):
|
||||
def __init__(self, db_path, chunk_size:int=512, overlap:int=0, n_neighbors:int=5):
|
||||
self.db_path =db_path
|
||||
self._initialize_db()
|
||||
self.vectorizer = VectorDatabase(db_path, SemanticVectorizer(model_name), TikTokenTokenizer(),chunk_size, overlap, n_neighbors)
|
||||
self.vectorizer = VectorDatabase(db_path, TFIDFVectorizer(), TikTokenTokenizer(),chunk_size, overlap, n_neighbors)
|
||||
ASCIIColors.green("Vecorizer ready")
|
||||
|
||||
|
||||
|
@ -337,9 +337,9 @@ def get_image_gen_prompt(agent_name, number_of_entries=5) -> Tuple[str, str]:
|
||||
"""
|
||||
try:
|
||||
from lollmsvectordb.vector_database import VectorDatabase
|
||||
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
|
||||
from lollmsvectordb.lollms_vectorizers.tfidf_vectorizer import TFIDFVectorizer
|
||||
from lollmsvectordb.lollms_tokenizers.tiktoken_tokenizer import TikTokenTokenizer
|
||||
db = VectorDatabase("", SemanticVectorizer(), TikTokenTokenizer(), number_of_entries)
|
||||
db = VectorDatabase("", TFIDFVectorizer(), TikTokenTokenizer(), number_of_entries)
|
||||
|
||||
image_gen_prompts = get_prompts_list()
|
||||
for entry in image_gen_prompts:
|
||||
|
@ -134,9 +134,9 @@ def get_system_prompt(agent_name, number_of_entries=5) -> Tuple[str, str]:
|
||||
"""
|
||||
try:
|
||||
from lollmsvectordb.vector_database import VectorDatabase
|
||||
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
|
||||
from lollmsvectordb.lollms_vectorizers.tfidf_vectorizer import TFIDFVectorizer
|
||||
from lollmsvectordb.lollms_tokenizers.tiktoken_tokenizer import TikTokenTokenizer
|
||||
db = VectorDatabase("", SemanticVectorizer(), TikTokenTokenizer(), number_of_entries)
|
||||
db = VectorDatabase("", TFIDFVectorizer(), TikTokenTokenizer(), number_of_entries)
|
||||
|
||||
system_prompts = get_prompts()
|
||||
|
||||
|
@ -17,8 +17,6 @@ from lollms.utilities import PromptReshaper, PackageManager, discussion_path_to_
|
||||
from lollms.com import NotificationType, NotificationDisplayType
|
||||
from lollms.client_session import Session, Client
|
||||
from lollmsvectordb.vector_database import VectorDatabase
|
||||
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
|
||||
from lollmsvectordb.lollms_vectorizers.tfidf_vectorizer import TFIDFVectorizer
|
||||
from lollmsvectordb.text_document_loader import TextDocumentsLoader
|
||||
from lollmsvectordb.database_elements.document import Document
|
||||
import pkg_resources
|
||||
|
@ -248,7 +248,7 @@ audio_silenceTimer: 5000
|
||||
|
||||
# Data vectorization
|
||||
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
|
||||
rag_vectorizer: semantic # possible values semantic, tfidf, openai
|
||||
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
|
||||
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
|
||||
rag_vectorizer_parameters: null # Parameters of the model in json format
|
||||
rag_chunk_size: 512 # number of tokens per chunk
|
||||
|
@ -128,7 +128,6 @@ def select_rag_database(client) -> Optional[Dict[str, Path]]:
|
||||
if not PackageManager.check_package_installed_with_version("lollmsvectordb","0.6.0"):
|
||||
PackageManager.install_or_update("lollmsvectordb")
|
||||
|
||||
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
|
||||
from lollmsvectordb import VectorDatabase
|
||||
from lollmsvectordb.text_document_loader import TextDocumentsLoader
|
||||
from lollmsvectordb.lollms_tokenizers.tiktoken_tokenizer import TikTokenTokenizer
|
||||
|
@ -13,8 +13,6 @@ from typing import List, Optional, Union
|
||||
from pathlib import Path
|
||||
from lollmsvectordb.database_elements.chunk import Chunk
|
||||
from lollmsvectordb.vector_database import VectorDatabase
|
||||
from lollmsvectordb.lollms_vectorizers.semantic_vectorizer import SemanticVectorizer
|
||||
from lollmsvectordb.lollms_vectorizers.tfidf_vectorizer import TFIDFVectorizer
|
||||
import sqlite3
|
||||
import secrets
|
||||
import time
|
||||
|
@ -248,7 +248,7 @@ audio_silenceTimer: 5000
|
||||
|
||||
# Data vectorization
|
||||
rag_databases: [] # This is the list of paths to database sources. Each database is a folder containing data
|
||||
rag_vectorizer: semantic # possible values semantic, tfidf, openai
|
||||
rag_vectorizer: tfidf # possible values semantic, tfidf, openai
|
||||
rag_vectorizer_model: sentence-transformers/bert-base-nli-mean-tokens # The model name if applicable
|
||||
rag_vectorizer_parameters: null # Parameters of the model in json format
|
||||
rag_chunk_size: 512 # number of tokens per chunk
|
||||
|
Loading…
Reference in New Issue
Block a user