Create README

Create README.md

upgraded readme

upgraded

upgraded

Added an example of a console chat

Upgraded code

upgraded submodule

upgraded example

upgraded console application

Added some logo and readme

upgraded

upgraded

updated

updated

changed logo

upgraded

upgrade

upgraded

upgraded

upgraded version

Added console app

upgraded code and service information

changed documentation title

upgraded code

updated zoo

Upgraded logo

upgradded

Update server_endpoints.md

Update README.md

Update server_endpoints.md

Enhanced code

enhanced work + added training

fixed error in README

upgraded readme

Fixed console problem

enhanced code

Added reference to models

upgraded version

Update README.md

upgraded binding

Update README.md

enhanced server

upgraded console and server

upgraded tool

upgraded

upgraded

Upgraded to new Version

enhanced

updated personalities zoo

personalities_zoo

upgraded readme

Possibility to send files to personalities

Possibility to send files to personalities

upgraded code

bugfix

updated

upgraded

upgraded console

updated readme

version upgrade

Update README.md

Added menu build at startup

change

upgraded code

now you select a personality of not selected

upgraded

upgraded documentation

upgraded documentation

updated

Upgraded

bugfix

now you can build custom personalities

updated. now we can use other personalities

Bugfix

added return

changed colors

added protection

added back to personality installation

bugfix

typo

fixed autogptq

fixed autogptq

gptq

upgraded gptq

changed version

upgraded console

typo

Added send file

updated send file

upgraded personality

upgraded image analysis tool

updated

upgraded version

upgraded tool

updated

gpt4all is now working

version update

upgraded naming scheme

hapen

Upgraded path data

upgraded version

updated

upgraded version

upgraded install procedures

personal path can be changed online

upgraded chatgpt

upgraded

upgraded

updated version

bugfix

upgraded personalities

upgraded version

enhanced

enhanced

update

bugfix

version update

Added reset functionality

Added settings

upgraded

enhanced library

upgraded models

Upgraded

upgraded

rebased

upgraded code

fixed gpt4all

updated version
This commit is contained in:
Saifeddine ALOUI 2023-06-02 12:46:41 +02:00
parent a65750e5fc
commit 61a4f15109
53 changed files with 16863 additions and 0 deletions

21
.gitignore vendored
View File

@ -158,3 +158,24 @@ cython_debug/
# and can be added to the global gitignore or merged into this file. For a more nuclear # and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder. # option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/ #.idea/
# Custom stuff
.installed
shared/*
*.ckpt
*.safetensors
models
# rest tests
*.http
# shared resources
shared
src
temp
outputs
# Global path configuration
global_paths_cfg.yaml

16
.gitmodules vendored Normal file
View File

@ -0,0 +1,16 @@
[submodule "lollms/bindings_zoo"]
path = lollms/bindings_zoo
url = https://github.com/ParisNeo/lollms_bindings_zoo.git
branch = main
[submodule "lollms/personalities_zoo"]
path = lollms/personalities_zoo
url = https://github.com/ParisNeo/lollms_personalities_zoo.git
branch = main
[submodule "lollms/bindings_zoo"]
path = lollms/bindings_zoo
url = https://github.com/ParisNeo/lollms_bindings_zoo.git
branch = main
[submodule "lollms/personalities_zoo"]
path = lollms/personalities_zoo
url = https://github.com/ParisNeo/lollms_personalities_zoo.git
branch = main

3
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,3 @@
{
"ros.distro": "noetic"
}

9
MANIFEST.in Normal file
View File

@ -0,0 +1,9 @@
recursive-include lollms/configs *
recursive-include lollms/bindings_zoo *
recursive-include lollms/personalities_zoo *
global-exclude *.bin
global-exclude *.pyc
global-exclude local_config.yaml
global-exclude .installed
global-exclude .git
global-exclude .gitignore

273
README.md Normal file
View File

@ -0,0 +1,273 @@
# Lord of Large Language Models (LoLLMs)
<div align="center">
<img src="https://github.com/ParisNeo/lollms/blob/main/lollms/assets/logo.png" alt="Logo" width="200" height="200">
</div>
![GitHub license](https://img.shields.io/github/license/ParisNeo/lollms)
![GitHub issues](https://img.shields.io/github/issues/ParisNeo/lollms)
![GitHub stars](https://img.shields.io/github/stars/ParisNeo/lollms)
![GitHub forks](https://img.shields.io/github/forks/ParisNeo/lollms)
[![Discord](https://img.shields.io/discord/1092918764925882418?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/4rR282WJb6)
[![Follow me on Twitter](https://img.shields.io/twitter/follow/SpaceNerduino?style=social)](https://twitter.com/SpaceNerduino)
[![Follow Me on YouTube](https://img.shields.io/badge/Follow%20Me%20on-YouTube-red?style=flat&logo=youtube)](https://www.youtube.com/user/Parisneo)
Lord of Large Language Models (LoLLMs) Server is a text generation server based on large language models. It provides a Flask-based API for generating text using various pre-trained language models. This server is designed to be easy to install and use, allowing developers to integrate powerful text generation capabilities into their applications.
## Features
- Fully integrated library with access to bindings, personalities and helper tools.
- Generate text using large language models.
- Supports multiple personalities for generating text with different styles and tones.
- Real-time text generation with WebSocket-based communication.
- RESTful API for listing personalities and adding new personalities.
- Easy integration with various applications and frameworks.
- Possibility to send files to personalities
## Installation
You can install LoLLMs using pip, the Python package manager. Open your terminal or command prompt and run the following command:
```bash
pip install --upgrade lollms
```
Or if you want to get the latest version from the git:
```bash
pip install --upgrade git+https://github.com/ParisNeo/lollms.git
```
To simply configure your environment run the console app:
```bash
lollms-console
```
The first time you will be prompted to select a binding.
![image](https://github.com/ParisNeo/lollms/assets/827993/2d7f58fe-089d-4d3e-a21a-0609f8e27969)
Once the binding is selected, you have to install at least a model. You have two options:
1- install from internet. Just give the link to a model on hugging face. For example. if you select the default llamacpp python bindings (7), you can install this model:
```bash
https://huggingface.co/TheBloke/airoboros-7b-gpt4-GGML/resolve/main/airoboros-7b-gpt4.ggmlv3.q4_1.bin
```
2- install from local drive. Just give the path to a model on your pc. The model will not be copied. We only create a reference to the model. This is useful if you use multiple clients so that you can mutualize your models with other tools.
Now you are ready to use the server.
## Library example
Here is the smallest possible example that allows you to use the full potential of the tool with nearly no code
```python
from lollms.console import Conversation
cv = Conversation(None)
cv.start_conversation()
```
Now you can reimplement the start_conversation method to do the things you want:
```python
from lollms.console import Conversation
class MyConversation(Conversation):
def __init__(self, cfg=None):
super().__init__(cfg, show_welcome_message=False)
def start_conversation(self):
prompt = "Once apon a time"
def callback(text, type=None):
print(text, end="", flush=True)
return True
print(prompt, end="", flush=True)
output = self.safe_generate(prompt, callback=callback)
if __name__ == '__main__':
cv = MyConversation()
cv.start_conversation()
```
Or if you want here is a conversation tool written in few lines
```python
from lollms.console import Conversation
class MyConversation(Conversation):
def __init__(self, cfg=None):
super().__init__(cfg, show_welcome_message=False)
def start_conversation(self):
full_discussion=""
while True:
prompt = input("You: ")
if prompt=="exit":
return
if prompt=="menu":
self.menu.main_menu()
full_discussion += self.personality.user_message_prefix+prompt+self.personality.link_text
full_discussion += self.personality.ai_message_prefix
def callback(text, type=None):
print(text, end="", flush=True)
return True
print(self.personality.name+": ",end="",flush=True)
output = self.safe_generate(full_discussion, callback=callback)
full_discussion += output.strip()+self.personality.link_text
print()
if __name__ == '__main__':
cv = MyConversation()
cv.start_conversation()
```
Here we use the safe_generate method that does all the cropping for you ,so you can chat forever and will never run out of context.
## Socket IO Server Usage
Once installed, you can start the LoLLMs Server using the `lollms-server` command followed by the desired parameters.
```
lollms-server --host <host> --port <port> --config <config_file> --bindings_path <bindings_path> --personalities_path <personalities_path> --models_path <models_path> --binding_name <binding_name> --model_name <model_name> --personality_full_name <personality_full_name>
```
### Parameters
- `--host`: The hostname or IP address to bind the server (default: localhost).
- `--port`: The port number to run the server (default: 9600).
- `--config`: Path to the configuration file (default: None).
- `--bindings_path`: The path to the Bindings folder (default: "./bindings_zoo").
- `--personalities_path`: The path to the personalities folder (default: "./personalities_zoo").
- `--models_path`: The path to the models folder (default: "./models").
- `--binding_name`: The default binding to be used (default: "llama_cpp_official").
- `--model_name`: The default model name (default: "Manticore-13B.ggmlv3.q4_0.bin").
- `--personality_full_name`: The full name of the default personality (default: "personality").
### Examples
Start the server with default settings:
```
lollms-server
```
Start the server on a specific host and port:
```
lollms-server --host 0.0.0.0 --port 5000
```
## API Endpoints
### WebSocket Events
- `connect`: Triggered when a client connects to the server.
- `disconnect`: Triggered when a client disconnects from the server.
- `list_personalities`: List all available personalities.
- `add_personality`: Add a new personality to the server.
- `generate_text`: Generate text based on the provided prompt and selected personality.
For more details refer to the [API documentation](doc/server_endpoints.md)
### RESTful API
- `GET /personalities`: List all available personalities.
- `POST /personalities`: Add a new personality to the server.
Sure! Here are examples of how to communicate with the LoLLMs Server using JavaScript and Python.
### JavaScript Example
```javascript
// Establish a WebSocket connection with the server
const socket = io.connect('http://localhost:9600');
// Event: When connected to the server
socket.on('connect', () => {
console.log('Connected to the server');
// Request the list of available personalities
socket.emit('list_personalities');
});
// Event: Receive the list of personalities from the server
socket.on('personalities_list', (data) => {
const personalities = data.personalities;
console.log('Available Personalities:', personalities);
// Select a personality and send a text generation request
const selectedPersonality = personalities[0];
const prompt = 'Once upon a time...';
socket.emit('generate_text', { personality: selectedPersonality, prompt: prompt });
});
// Event: Receive the generated text from the server
socket.on('text_generated', (data) => {
const generatedText = data.text;
console.log('Generated Text:', generatedText);
// Do something with the generated text
});
// Event: When disconnected from the server
socket.on('disconnect', () => {
console.log('Disconnected from the server');
});
```
### Python Example
```python
import socketio
# Create a SocketIO client
sio = socketio.Client()
# Event: When connected to the server
@sio.on('connect')
def on_connect():
print('Connected to the server')
# Request the list of available personalities
sio.emit('list_personalities')
# Event: Receive the list of personalities from the server
@sio.on('personalities_list')
def on_personalities_list(data):
personalities = data['personalities']
print('Available Personalities:', personalities)
# Select a personality and send a text generation request
selected_personality = personalities[0]
prompt = 'Once upon a time...'
sio.emit('generate_text', {'personality': selected_personality, 'prompt': prompt})
# Event: Receive the generated text from the server
@sio.on('text_generated')
def on_text_generated(data):
generated_text = data['text']
print('Generated Text:', generated_text)
# Do something with the generated text
# Event: When disconnected from the server
@sio.on('disconnect')
def on_disconnect():
print('Disconnected from the server')
# Connect to the server
sio.connect('http://localhost:9600')
# Keep the client running
sio.wait()
```
Make sure to have the necessary dependencies installed for the JavaScript and Python examples. For JavaScript, you need the `socket.io-client` package, and for Python, you need the `python-socketio` package.
## Contributing
Contributions to the LoLLMs Server project are welcome and appreciated. If you would like to contribute, please follow the guidelines outlined in the [CONTRIBUTING.md](https://github.com/ParisNeo/lollms/blob/main/CONTRIBUTING.md) file.
## License
LoLLMs Server is licensed under the Apache 2.0 License. See the [LICENSE](https://github.com/ParisNeo/lollms/blob/main/LICENSE) file for more information.
## Repository
The source code for LoLLMs Server can be found on GitHub

309
doc/server_endpoints.md Normal file
View File

@ -0,0 +1,309 @@
# Lord Of Large Language Models Socket.io Endpoints Documentation
<img src="https://github.com/ParisNeo/lollms/blob/main/lollms/assets/logo.png" alt="Logo" width="200" height="200">
The server provides several Socket.io endpoints that clients can use to interact with the server. The default URL for the server is `http://localhost:9600`, but it can be changed using the configuration file or launch parameters.
## Endpoints
### `connect`
- Event: `'connect'`
- Description: This event is triggered when a client connects to the server.
- Actions:
- Adds the client to the list of connected clients with a unique session ID.
- Prints a message indicating the client's session ID.
### `disconnect`
- Event: `'disconnect'`
- Description: This event is triggered when a client disconnects from the server.
- Actions:
- Removes the client from the list of connected clients, if it exists.
- Prints a message indicating the client's session ID.
#### `list_available_bindings`
- Event: `'list_available_bindings'`
- Description: This event is triggered when a client requests a list of available bindings.
- Parameters: None
- Actions:
- Initializes an empty list `binding_infs` to store information about each binding.
- Iterates over the files and directories in the `self.bindings_path` directory.
- For each directory in `self.bindings_path`:
- Reads the content of the `binding_card.yaml` file, which contains information about the binding card.
- Reads the content of the `models.yaml` file, which contains information about the models associated with the binding.
- Creates an entry dictionary that includes the binding's name, card information, and model information.
- Appends the entry to the `binding_infs` list.
- Emits a response event `'bindings_list'` to the client containing the list of available bindings and their information (`bindings`) as well as a `success` parameter that is `False` when not successful.
Events generated:
- `'bindings_list'`: Sent to the client as a response to the `'list_available_bindings'` request. It contains the list of available bindings along with their associated information (`binding_infs`).
#### `list_available_personalities`
- Event: `'list_available_personalities'`
- Description: This event is triggered when a client requests a list of available personalities.
- Parameters: None
- Actions:
- Retrieves the path to the personalities folder from the server (`self.personalities_path`).
- Initializes an empty dictionary to store the available personalities.
- Iterates over each language folder in the personalities folder.
- Checks if the current item is a directory.
- Initializes an empty dictionary to store the personalities within the language.
- Iterates over each category folder within the language folder.
- Checks if the current item is a directory.
- Initializes an empty list to store the personalities within the category.
- Iterates over each personality folder within the category folder.
- Checks if the current item is a directory.
- Tries to load personality information from the config file (`config.yaml`) within the personality folder.
- Retrieves the name, description, author, and version from the config data.
- Checks if the `scripts` folder exists within the personality folder to determine if the personality has scripts.
- Checks for the existence of logo files named `logo.gif` or `logo.webp` or `logo.png` or `logo.jpg` or `logo.jpeg` or `logo.bmp` within the `assets` folder to determine if the personality has a logo.
- Sets the `avatar` field of the personality info based on the available logo file.
- Appends the personality info to the list of personalities within the category.
- Adds the list of personalities to the dictionary of the current category within the language.
- Adds the dictionary of categories to the dictionary of the current language.
- Sends a response to the client containing the dictionary of available personalities.
Events generated:
- `'personalities_list'`: Emits an event to the client with the list of available personalities, categorized by language and category. The event data includes the personality information such as name, description, author, version, presence of scripts, and avatar image file path.
#### `list_available_models`
- Event: `'list_available_models'`
- Description: This event is triggered when a client requests a list of available models.
- Parameters: None (except `self` which refers to the class instance)
- Actions:
- Checks if a binding class is selected. If not, emits an event `'available_models_list'` with a failure response indicating that no binding is selected.
- Retrieves the list of available models using the binding class.
- Processes each model in the list to extract relevant information such as filename, server, image URL, license, owner, owner link, filesize, description, model type, etc.
- Constructs a dictionary representation for each model with the extracted information.
- Appends each model dictionary to the `models` list.
- Emits an event `'available_models_list'` with a success response containing the list of available models to the client.
Events generated:
- `'available_models_list'`: This event is emitted as a response to the client requesting a list of available models. It contains the success status and a list of available models with their details, such as title, icon, license, owner, owner link, description, installation status, file path, filesize, and model type.
#### `list_available_personalities_languages`
- Event: `'list_available_personalities_languages'`
- Description: This event is triggered when a client requests a list of available personality languages.
- Actions:
- Attempts to retrieve a list of available personality languages by iterating over the `self.personalities_path` directory.
- Sends a response to the client containing the success status and the list of available personality languages.
Parameters: None
Events:
- `'available_personalities_languages_list'`: This event is emitted as a response to the client after listing the available personality languages.
- Data:
- `'success'` (boolean): Indicates whether the operation was successful or not.
- `'available_personalities_languages'` (list): Contains the available personality languages as a list of strings.
#### `list_available_personalities_categories`
- Event: `'list_available_personalities_categories'`
- Description: This event is triggered when a client requests a list of available personality categories based on a specified language.
- Parameters:
- `data`: A dictionary containing the following parameter:
- `language`: The language for which to retrieve available personality categories.
- Actions:
- Extracts the `language` parameter from the request data.
- Attempts to retrieve the available personality categories for the specified language.
- Emits an event `'available_personalities_categories_list'` to the client.
- If successful, sends a response with a list of available personality categories in the `'available_personalities_categories'` field of the event data.
- If an error occurs, sends a response with an error message in the `'error'` field of the event data.
Events:
- Event: `'available_personalities_categories_list'`
- Description: This event is emitted in response to the `list_available_personalities_categories` event.
- Data:
- If successful:
- `'success'` (boolean): Indicates whether the retrieval of available personality categories was successful.
- `'available_personalities_categories'` (list): A list of available personality categories.
- If an error occurs:
- `'success'` (boolean): Indicates whether an error occurred during the retrieval of available personality categories.
- `'error'` (string): The error message describing the encountered error.
#### `list_available_personalities_names`
- Event: `'list_available_personalities_names'`
- Description: This event is triggered when a client requests a list of available personality names based on the specified language and category.
- Parameters:
- `language` (string): The language for which the available personality names are requested.
- `category` (string): The category for which the available personality names are requested.
- Actions:
- Extracts the `language` and `category` parameters from the request data.
- Retrieves the list of available personalities by iterating over the directory specified by the `language` and `category` parameters.
- Sends a response to the client containing the list of available personality names.
- Event Generated: `'list_available_personalities_names_list'`
- Description: This event is emitted as a response to the `list_available_personalities_names` request, providing the list of available personality names.
- Parameters:
- `success` (bool): Indicates the success or failure of the request.
- `list_available_personalities_names` (list): The list of available personality names.
- `error` (string, optional): If the request fails, this parameter contains the error message.
#### `select_binding`
- Event: `'select_binding'`
- Description: This event is triggered when a client selects a binding.
- Parameters:
- `data['binding_name']`: The name of the binding selected by the client.
Actions:
- Creates a deep copy of the `self.config` dictionary and assigns it to `self.cp_config` variable.
- Updates the `"binding_name"` value in `self.cp_config` with the selected binding name obtained from `data['binding_name']`.
- Attempts to build a binding instance using the `self.bindings_path` and `self.cp_config`.
- If successful, updates `self.binding_class` with the created binding instance and updates `self.config` with `self.cp_config`.
- Sends a response to the client indicating the success of the binding selection along with the selected binding name.
- If an exception occurs during the binding creation process, the exception is printed and a response is sent to the client indicating the failure of the binding selection along with the selected binding name and the error message.
Events generated:
- `'select_binding'`: This event is emitted to the client to provide a response regarding the binding selection. It contains the following data:
- `'success'`: A boolean value indicating the success or failure of the binding selection.
- `'binding_name'`: The name of the selected binding.
- If the binding selection fails, it also includes:
- `'error'`: An error message explaining the reason for the failure.
#### `select_model`
- Event: `'select_model'`
- Description: This event is triggered when a client requests to select a model.
- Parameters:
- `data['model_name']` (string): The name of the model to select.
- Actions:
- Extracts the model name from the request data.
- Checks if a binding class is available (`self.binding_class`).
- If no binding class is available, emits a `'select_model'` event with a failure response, indicating that a binding needs to be selected first.
- Returns and exits the function.
- Creates a deep copy of the configuration (`self.config`) and assigns it to `self.cp_config`.
- Sets the `"model_name"` property of `self.cp_config` to the selected model name.
- Tries to create an instance of the binding class (`self.binding_class`) with `self.cp_config`.
- If successful, assigns the created binding instance to `self.current_model`.
- Emits a `'select_model'` event with a success response, indicating that the model selection was successful.
- Returns and exits the function.
- If an exception occurs during model creation, prints the exception and emits a `'select_model'` event with a failure response, indicating that a binding needs to be selected first.
Events generated:
- `'select_model'` (success response):
- Emits to the client a success response indicating that the model selection was successful.
- Parameters:
- `'success'` (boolean): `True` to indicate success.
- `'model_name'` (string): The selected model name.
- `'select_model'` (failure response):
- Emits to the client a failure response indicating that a binding needs to be selected first or an error occurred during model creation.
- Parameters:
- `'success'` (boolean): `False` to indicate failure.
- `'model_name'` (string): The selected model name.
- `'error'` (string): An error message providing additional details.
#### `add_personality`
- Event: `'add_personality'`
- Description: This event is triggered when a client requests to add a new personality.
- Parameters:
- `data`: A dictionary containing the following key-value pairs:
- `'path'`: The path to the personality file.
- Actions:
- Extracts the personality path from the `data` dictionary.
- Attempts to create a new `AIPersonality` instance with the provided path.
- Appends the created personality to the `self.personalities` list.
- Appends the personality path to the `self.config["personalities"]` list.
- Saves the updated configuration using `self.config.save_config()`.
- Sends a response to the client indicating the success of the personality addition along with the name and ID of the added personality.
- Events Generated:
- `'personality_added'`: This event is emitted to the client to indicate the successful addition of the personality. The emitted data is a dictionary with the following key-value pairs:
- `'success'`: `True` to indicate success.
- `'name'`: The name of the added personality.
- `'id'`: The ID of the added personality in the `self.personalities` list.
- `'personality_add_failed'`: This event is emitted to the client if an exception occurs during the personality addition. The emitted data is a dictionary with the following key-value pairs:
- `'success'`: `False` to indicate failure.
- `'error'`: A string containing the error message explaining the cause of the failure.
#### `activate_personality`
- Event: `'activate_personality'`
- Description: This event is triggered when a client requests to activate a personality.
- Actions:
- Extracts the personality ID from the request data.
- Checks if the personality ID is valid (within the range of `self.personalities`).
- Sets the `self.active_personality` to the selected personality.
- Sends a response to the client indicating the success of the personality activation along with the name and ID of the activated personality.
- Updates the default personality ID in `self.config["active_personality_id"]`.
- Saves the updated configuration using `self.config.save_config()`.
- Event Generated:
- `'activate_personality'`: Emits the event to the client with the following data:
- `'success'`: Indicates whether the personality activation was successful (`True` or `False`).
- `'name'`: The name of the activated personality.
- `'id'`: The ID (index) of the activated personality in the `self.personalities` list.
#### `list_active_personalities`
- Event: `'list_active_personalities'`
- Description: This event is triggered when a client requests a list of active personalities.
- Parameters: None
- Actions:
- Retrieves the names of all the active personalities from the `self.personalities` list.
- Sends a response to the client containing the list of active personality names.
- Event Generated: `'active_personalities_list'`
- Event Data:
- `'success'`: A boolean value indicating the success of the operation.
- `'personalities'`: A list of strings representing the names of the active personalities.
Please note that the `'list_active_personalities'` event does not require any parameters when triggering the endpoint. It simply returns the list of active personalities to the client.
#### `activate_personality`
- Event: `'activate_personality'`
- Description: This event is triggered when a client requests to activate a personality.
- Parameters:
- `data['id']` (integer): The ID of the personality to activate.
- Actions:
- Extracts the personality ID from the request data.
- Checks if the personality ID is valid by comparing it with the length of the `self.personalities` list.
- If the personality ID is valid:
- Sets the `self.active_personality` to the personality at the specified ID.
- Sends a response to the client indicating the success of the personality activation, along with the name and ID of the activated personality.
- Updates the `active_personality_id` in the `self.config` object with the activated personality's ID.
- Saves the updated configuration.
- If the personality ID is not valid:
- Sends a response to the client indicating the failure of the personality activation, along with an error message.
Generated Events:
- `'activate_personality'`: This event is emitted to the client after successfully activating a personality.
- Parameters:
- `{'success': True, 'name': self.active_personality, 'id': len(self.personalities) - 1}`:
- `'success'` (boolean): Indicates whether the personality activation was successful.
- `'name'` (string): The name of the activated personality.
- `'id'` (integer): The ID of the activated personality.
- `'personality_add_failed'`: This event is emitted to the client if the personality ID provided is not valid.
- Parameters:
- `{'success': False, 'error': 'Personality ID not valid'}`:
- `'success'` (boolean): Indicates whether the personality activation failed.
- `'error'` (string): The error message indicating the reason for the failure.
#### `generate_text`
- Event: `'generate_text'`
- Description: This event is triggered when a client requests text generation.
- Parameters:
- `data`: A dictionary containing the following fields:
- `prompt` (string): The text prompt for text generation.
- `personality` (integer): The index of the selected personality for conditioning the text generation.
- Actions:
- Retrieves the selected model and client ID from the server.
- Extracts the prompt and selected personality index from the request data.
- Initializes an empty answer list for text chunks.
- Retrieves the full discussion blocks from the client's data.
- Defines a callback function to handle generated text chunks.
- Preprocesses the prompt based on the selected personality's configuration, if applicable.
- Constructs the full discussion text by combining the personality's conditioning, prompt, and AI message prefix.
- Prints the input prompt for debugging purposes.
- If a personality processor is available and has a custom workflow, runs the processor's workflow with the prompt and full discussion text, providing the callback function for text chunk emission.
- If no custom workflow is available, generates text using the selected model with the full discussion text, specifying the number of predictions.
- Appends the generated text to the full discussion blocks.
- Prints a success message for debugging purposes.
- Emits the generated text to the client through the `'text_generated'` event.
Events generated:
- `'text_chunk'`: Generated text chunks are emitted to the client through this event during the text generation process.
- `'text_generated'`: Once the text generation process is complete, the final generated text is emitted to the client through this event.

View File

@ -0,0 +1,27 @@
from lollms.console import Conversation
class MyConversation(Conversation):
def __init__(self, cfg=None):
super().__init__(cfg, show_welcome_message=False)
def start_conversation(self):
full_discussion=""
while True:
prompt = input("You: ")
if prompt=="exit":
return
if prompt=="menu":
self.menu.main_menu()
full_discussion += self.personality.user_message_prefix+prompt+self.personality.link_text
full_discussion += self.personality.ai_message_prefix
def callback(text, type=None):
print(text, end="", flush=True)
return True
print(self.personality.name+": ",end="",flush=True)
output = self.safe_generate(full_discussion, callback=callback)
full_discussion += output.strip()+self.personality.link_text
print()
if __name__ == '__main__':
cv = MyConversation()
cv.start_conversation()

View File

@ -0,0 +1,43 @@
# AIPersonality Server and PyQt Client
This is a Python project that consists of a server and a PyQt client for interacting with the AIPersonality text generation model. The server is built using Flask and Flask-SocketIO, while the client is implemented using PyQt5.
## Server
The server code is located in the file `lllm_server.py`. It sets up a Flask application with Flask-SocketIO to establish a WebSocket connection with clients. The server receives text generation requests from clients, generates text based on the given prompt, and sends the generated text back to the clients.
To run the server, execute the following command:
```bash
python server.py --host localhost --port 9600 --config configs/config.yaml --bindings_path bindings_zoo
```
You can customize the host, port, configuration file, and bindings path by providing appropriate command-line arguments.
## Client
The client code is implemented using PyQt5 and can be found in the file client.py. It provides a graphical user interface (GUI) for interacting with the server. The client connects to the server using WebSocket and allows users to enter a prompt and generate text based on that prompt.
To run the client, execute the following command:
```bash
pyaipersonality-server --host 0.0.0.0 --port 9600
```
The client GUI will appear, and you can enter a prompt in the text area. Click the "Generate Text" button to send the prompt to the server for text generation. The generated text will be displayed in the text area.
Make sure you have the necessary dependencies installed, such as Flask, Flask-SocketIO, Flask-CORS, pyaipersonality, and PyQt5, before running the server and client.
## Dependencies
The project depends on the following Python packages:
- Flask
- Flask-SocketIO
- Flask-CORS
- pyaipersonality
- PyQt5
You can install the dependencies using pip:
```bash
pip install flask flask-socketio flask-cors pyaipersonality pyqt5
```
# License
PyAIPersonality is licensed under the Apache 2.0 license. See the `LICENSE` file for more information.

View File

@ -0,0 +1,4 @@
<?xml version="1.0"?>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 50 50">
<path d="M 44 1.59375 L 33.5625 12 L 31.3125 9.75 C 28.9695 7.41 25.18675 7.41 22.84375 9.75 L 18.5 14.125 L 17.1875 12.8125 A 1.0001 1.0001 0 0 0 16.375 12.5 A 1.0001 1.0001 0 0 0 15.78125 14.21875 L 35.78125 34.21875 A 1.0001 1.0001 0 1 0 37.1875 32.8125 L 35.875 31.5 L 40.25 27.15625 C 42.594 24.81425 42.592 21.0315 40.25 18.6875 L 40.25 18.65625 L 38 16.40625 L 48.40625 6 L 44 1.59375 z M 13.40625 15.46875 A 1.0001 1.0001 0 0 0 12.8125 17.1875 L 14.125 18.5 L 9.75 22.84375 C 7.406 25.18575 7.408 28.99975 9.75 31.34375 L 12 33.59375 L 1.59375 44 L 6 48.40625 L 16.40625 38 L 18.65625 40.25 C 20.99925 42.59 24.81325 42.59 27.15625 40.25 L 31.5 35.875 L 32.8125 37.1875 A 1.0001 1.0001 0 1 0 34.21875 35.78125 L 14.21875 15.78125 A 1.0001 1.0001 0 0 0 13.5 15.46875 A 1.0001 1.0001 0 0 0 13.40625 15.46875 z"/>
</svg>

After

Width:  |  Height:  |  Size: 913 B

View File

@ -0,0 +1,4 @@
<?xml version="1.0"?>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 50 50">
<path style="text-indent:0;text-align:start;line-height:normal;text-transform:none;block-progression:tb;-inkscape-font-specification:Sans" d="M 43.6875 2 L 38.65625 7.0625 L 36.34375 4.75 C 34.00075 2.41 30.18675 2.41 27.84375 4.75 L 23.03125 9.59375 L 21.71875 8.28125 A 1.0001 1.0001 0 0 0 20.78125 8 A 1.0001 1.0001 0 0 0 20.28125 9.71875 L 25.0625 14.5 L 18.9375 20.65625 L 20.34375 22.0625 L 26.5 15.9375 L 34.0625 23.5 L 27.9375 29.65625 L 29.34375 31.0625 L 35.5 24.9375 L 40.28125 29.71875 A 1.016466 1.016466 0 1 0 41.71875 28.28125 L 40.40625 26.96875 L 45.25 22.15625 C 47.594 19.81425 47.592 16.0315 45.25 13.6875 L 45.25 13.65625 L 42.9375 11.34375 L 48 6.3125 L 43.6875 2 z M 8.90625 19.96875 A 1.0001 1.0001 0 0 0 8.78125 20 A 1.0001 1.0001 0 0 0 8.28125 21.71875 L 9.59375 23.03125 L 4.75 27.84375 C 2.406 30.18575 2.408 33.99975 4.75 36.34375 L 7.0625 38.625 L 2 43.6875 L 6.3125 48 L 11.375 42.9375 L 13.65625 45.25 C 15.99925 47.59 19.81325 47.59 22.15625 45.25 L 26.96875 40.40625 L 28.28125 41.71875 A 1.016466 1.016466 0 1 0 29.71875 40.28125 L 9.71875 20.28125 A 1.0001 1.0001 0 0 0 8.90625 19.96875 z" overflow="visible" font-family="Sans"/>
</svg>

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@ -0,0 +1,184 @@
import sys
from PyQt5.QtGui import QIcon
from PyQt5.QtCore import QObject, pyqtSignal, pyqtSlot
from PyQt5.QtWidgets import QApplication, QMainWindow, QTextEdit,QHBoxLayout, QLineEdit, QVBoxLayout, QWidget, QToolBar, QAction, QPushButton, QStatusBar, QComboBox
from PyQt5.QtSvg import QSvgWidget
from socketio.client import Client
from socketio.exceptions import ConnectionError
from pathlib import Path
class ServerConnector(QObject):
text_chunk_received = pyqtSignal(str)
text_generated = pyqtSignal(str)
connection_failed = pyqtSignal()
connection_status_changed = pyqtSignal(bool)
personalities_received = pyqtSignal(list)
def __init__(self, parent=None):
super(ServerConnector, self).__init__(parent)
self.socketio = Client()
self.connected = False
self.personalities = []
self.selected_personality_id = 0
self.socketio.on('connect', self.handle_connect)
self.socketio.on('text_chunk', self.handle_text_chunk)
self.socketio.on('text_generated', self.handle_text_generated)
self.socketio.on('active_personalities_list', self.handle_personalities_received)
def handle_connect(self):
self.socketio.emit('connect')
self.list_personalities()
def connect_to_server(self):
if not self.connected:
try:
self.socketio.connect('http://localhost:9600')
self.connected = True
self.connection_status_changed.emit(True)
except ConnectionError:
self.connection_failed.emit()
self.connection_status_changed.emit(False)
def disconnect_from_server(self):
if self.connected:
self.socketio.disconnect()
self.connected = False
self.connection_status_changed.emit(False)
def list_personalities(self):
self.socketio.emit('list_active_personalities')
@pyqtSlot(str)
def generate_text(self, prompt):
if not self.connected:
self.connection_failed.emit()
return
data = {
'client_id': self.socketio.sid,
'prompt': prompt,
'personality': self.selected_personality_id
}
self.socketio.emit('generate_text', data)
def handle_personalities_list(self, data):
personalities = data['personalities']
self.personalities_list_received.emit(personalities)
def handle_text_chunk(self, data):
chunk = data['chunk']
self.text_chunk_received.emit(chunk)
def handle_text_generated(self, data):
text = data['text']
self.text_generated.emit(text)
def handle_personalities_received(self, data):
personalities = data['personalities']
print(f"Received List of personalities:{personalities}")
self.personalities = personalities
self.personalities_received.emit(personalities)
class MainWindow(QMainWindow):
def __init__(self, parent=None):
super(MainWindow, self).__init__(parent)
self.setWindowTitle("AIPersonality Client")
self.user_input_layout = QHBoxLayout()
self.user_text = QLineEdit()
self.text_edit = QTextEdit()
self.toolbar = QToolBar()
self.submit_button = QPushButton("Submit")
self.user_input_layout.addWidget(self.user_text)
self.user_input_layout.addWidget(self.submit_button)
self.statusbar = QStatusBar()
self.personality_combo_box = QComboBox()
self.personality_combo_box.setMinimumWidth(500)
self.connect_action = QAction(QIcon(str(Path(__file__).parent/'assets/connected.svg')), "", self)
self.connect_action.setCheckable(True)
self.connect_action.toggled.connect(self.toggle_connection)
self.toolbar.addAction(self.connect_action)
self.toolbar.addWidget(self.personality_combo_box)
self.addToolBar(self.toolbar)
layout = QVBoxLayout()
layout.addLayout(self.user_input_layout)
layout.addWidget(self.text_edit)
widget = QWidget()
widget.setLayout(layout)
self.setCentralWidget(widget)
self.connector = ServerConnector()
self.connector.text_chunk_received.connect(self.handle_text_chunk)
self.connector.text_generated.connect(self.handle_text_generated)
self.connector.connection_failed.connect(self.handle_connection_failed)
self.connector.connection_status_changed.connect(self.handle_connection_status_changed)
self.connector.personalities_received.connect(self.handle_personalities_received)
self.connector.connect_to_server()
self.submit_button.clicked.connect(self.submit_text)
self.setStatusBar(self.statusbar)
self.update_statusbar()
@pyqtSlot(bool)
def toggle_connection(self, checked):
if checked:
self.connector.connect_to_server()
self.connect_action.setIcon(QIcon(str(Path(__file__).parent/'assets/connected.svg')))
else:
self.connector.disconnect_from_server()
self.connect_action.setIcon(QIcon(str(Path(__file__).parent/'assets/disconnected.svg')))
@pyqtSlot()
def submit_text(self):
prompt = self.user_text.text()
self.selected_personality_id = self.personality_combo_box.currentIndex()
self.text_edit.insertPlainText("User:"+prompt+"\n"+self.connector.personalities[self.selected_personality_id]+":")
self.connector.generate_text(prompt)
@pyqtSlot(str)
def handle_text_chunk(self, chunk):
self.text_edit.insertPlainText(chunk)
@pyqtSlot(str)
def handle_text_generated(self, text):
self.text_edit.append(text)
@pyqtSlot()
def handle_connection_failed(self):
self.text_edit.append("Failed to connect to the server.")
@pyqtSlot(bool)
def handle_connection_status_changed(self, connected):
if connected:
self.statusbar.showMessage("Connected to the server")
else:
self.statusbar.showMessage("Disconnected from the server")
@pyqtSlot(list)
def handle_personalities_received(self, personalities):
print("Received personalities")
self.personality_combo_box.clear()
self.personality_combo_box.addItems(personalities)
def update_statusbar(self):
if self.connector.connected:
self.statusbar.showMessage("Connected to the server")
self.connect_action.setIcon(QIcon(str(Path(__file__).parent/'assets/connected.svg')))
else:
self.statusbar.showMessage("Disconnected from the server")
self.connect_action.setIcon(QIcon(str(Path(__file__).parent/'assets/disconnected.svg')))
if __name__ == '__main__':
app = QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec_())

View File

@ -0,0 +1,3 @@
Flask_SocketIO==5.3.4
PyQt5==5.15.9
python-socketio[client]

View File

@ -0,0 +1,17 @@
from lollms.console import Conversation
class MyConversation(Conversation):
def __init__(self, cfg=None):
super().__init__(cfg, show_welcome_message=False)
def start_conversation(self):
prompt = "Once apon a time"
def callback(text, type=None):
print(text, end="", flush=True)
return True
print(prompt, end="", flush=True)
output = self.safe_generate(prompt, callback=callback)
if __name__ == '__main__':
cv = MyConversation()
cv.start_conversation()

View File

@ -0,0 +1,23 @@
.DS_Store
node_modules
/dist
# local env files
.env.local
.env.*.local
# Log files
npm-debug.log*
yarn-debug.log*
yarn-error.log*
pnpm-debug.log*
# Editor directories and files
.idea
.vscode
*.suo
*.ntvs*
*.njsproj
*.sln
*.sw?

View File

@ -0,0 +1,24 @@
# lollms_webui
## Project setup
```
npm install
```
### Compiles and hot-reloads for development
```
npm run serve
```
### Compiles and minifies for production
```
npm run build
```
### Lints and fixes files
```
npm run lint
```
### Customize configuration
See [Configuration Reference](https://cli.vuejs.org/config/).

View File

@ -0,0 +1,5 @@
module.exports = {
presets: [
'@vue/cli-plugin-babel/preset'
]
}

View File

@ -0,0 +1,19 @@
{
"compilerOptions": {
"target": "es5",
"module": "esnext",
"baseUrl": "./",
"moduleResolution": "node",
"paths": {
"@/*": [
"src/*"
]
},
"lib": [
"esnext",
"dom",
"dom.iterable",
"scripthost"
]
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,45 @@
{
"name": "lollms_webui",
"version": "0.1.0",
"private": true,
"scripts": {
"serve": "vue-cli-service serve",
"build": "vue-cli-service build",
"lint": "vue-cli-service lint"
},
"dependencies": {
"core-js": "^3.8.3",
"socket.io-client": "^4.6.2",
"tailwindcss": "^3.3.2",
"vue": "^3.2.13"
},
"devDependencies": {
"@babel/core": "^7.12.16",
"@babel/eslint-parser": "^7.12.16",
"@vue/cli-plugin-babel": "~5.0.0",
"@vue/cli-plugin-eslint": "~5.0.0",
"@vue/cli-service": "~5.0.0",
"eslint": "^7.32.0",
"eslint-plugin-vue": "^8.0.3"
},
"eslintConfig": {
"root": true,
"env": {
"node": true
},
"extends": [
"plugin:vue/vue3-essential",
"eslint:recommended"
],
"parserOptions": {
"parser": "@babel/eslint-parser"
},
"rules": {}
},
"browserslist": [
"> 1%",
"last 2 versions",
"not dead",
"not ie 11"
]
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 KiB

View File

@ -0,0 +1,17 @@
<!DOCTYPE html>
<html lang="">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<link rel="icon" href="<%= BASE_URL %>favicon.ico">
<title><%= htmlWebpackPlugin.options.title %></title>
</head>
<body>
<noscript>
<strong>We're sorry but <%= htmlWebpackPlugin.options.title %> doesn't work properly without JavaScript enabled. Please enable it to continue.</strong>
</noscript>
<div id="app"></div>
<!-- built files will be auto injected -->
</body>
</html>

View File

@ -0,0 +1,124 @@
<template>
<div class="bg-gray-900 text-white min-h-screen p-4">
<h1 class="text-3xl font-bold mb-4">Lord Of Large Language Models</h1>
<div class="mb-4">
<h2 class="text-xl font-bold">Select Binding</h2>
<select v-model="selectedBinding" @change="selectBinding" class="p-2 bg-gray-800 text-white">
<option v-for="binding in bindings" :key="binding.name" :value="binding.name">{{ binding.name }}</option>
</select>
</div>
<div v-if="selectedBinding" class="mb-4">
<h2 class="text-xl font-bold">Select Model</h2>
<select v-model="selectedModel" @change="selectModel" class="p-2 bg-gray-800 text-white">
<option v-for="model in models" :key="model.title" :value="model.title">{{ model.title }}</option>
</select>
</div>
<div v-if="selectedModel" class="mb-4">
<h2 class="text-xl font-bold">Select Personality</h2>
<select v-model="selectedPersonality" @change="selectPersonality" class="p-2 bg-gray-800 text-white">
<option v-for="personality in personalities" :key="personality.name" :value="personality.name">{{ personality.name }}</option>
</select>
</div>
<div>
<h2 class="text-xl font-bold">Chat</h2>
<div class="mb-4">
<div v-for="message in chatMessages" :key="message.id" class="text-white">
<strong>{{ message.sender }}:</strong> {{ message.text }}
</div>
</div>
<div class="flex">
<input type="text" v-model="inputMessage" @keydown.enter="sendMessage" placeholder="Type your message" class="p-2 flex-grow bg-gray-800 text-white mr-2">
<button @click="sendMessage" class="p-2 bg-blue-500 text-white">Send</button>
</div>
</div>
</div>
</template>
<style src="./assets/css/app.css"></style>
<script>
import io from 'socket.io-client';
// Import Tailwind CSS styles
import 'tailwindcss/tailwind.css';
export default {
data() {
return {
socket: null,
bindings: [],
models: [],
personalities: [],
selectedBinding: '',
selectedModel: '',
selectedPersonality: '',
chatMessages: [],
inputMessage: '',
};
},
created() {
this.socket = io('http://localhost:9600');
this.socket.on('connect', () => {
console.log('Connected to server');
this.socket.emit('list_available_bindings');
this.socket.emit('list_available_models');
this.socket.emit('list_available_personalities');
});
// Handle the event emitted when the select_binding is sent
this.socket.on('select_binding', (data) => {
console.log('Received:', data);
if(data["success"]){
console.log('Binding selected:', data);
this.socket.emit('list_available_models');
}
// You can perform any additional actions or update data properties as needed
});
// Handle the event emitted when the select_binding is sent
this.socket.on('select_model', (data) => {
console.log('Received:', data);
if(data["success"]){
console.log('Model selected:', data);
}
// You can perform any additional actions or update data properties as needed
});
this.socket.on('bindings_list', (bindings) => {
this.bindings = bindings["bindings"];
console.log(this.bindings)
});
this.socket.on('available_models_list', (models) => {
if(models["success"]){
this.models = models["available_models"];
}
console.log(this.models)
});
this.socket.on('personalities_list', (personalities) => {
this.personalities = personalities;
});
this.socket.on('text_chunk', (message) => {
this.chatMessages.push(message.chunk);
});
},
methods: {
selectBinding() {
this.socket.emit('select_binding', { binding_name: this.selectedBinding });
},
selectModel() {
this.socket.emit('select_model', { model_name: this.selectedModel });
},
selectPersonality() {
this.socket.emit('activate_personality', { personality_name: this.selectedPersonality });
},
sendMessage() {
const message = {
text: this.inputMessage,
sender: 'User',
};
this.chatMessages.push(message);
this.socket.emit('generate_text', {prompt:message.text, personality:0});
this.inputMessage = '';
},
},
};
</script>

View File

@ -0,0 +1,3 @@
@import 'tailwindcss/base';
@import 'tailwindcss/components';
@import 'tailwindcss/utilities';

View File

@ -0,0 +1,3 @@
@import 'tailwindcss/base';
@import 'tailwindcss/components';
@import 'tailwindcss/utilities';

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

View File

@ -0,0 +1,58 @@
<template>
<div class="hello">
<h1>{{ msg }}</h1>
<p>
For a guide and recipes on how to configure / customize this project,<br>
check out the
<a href="https://cli.vuejs.org" target="_blank" rel="noopener">vue-cli documentation</a>.
</p>
<h3>Installed CLI Plugins</h3>
<ul>
<li><a href="https://github.com/vuejs/vue-cli/tree/dev/packages/%40vue/cli-plugin-babel" target="_blank" rel="noopener">babel</a></li>
<li><a href="https://github.com/vuejs/vue-cli/tree/dev/packages/%40vue/cli-plugin-eslint" target="_blank" rel="noopener">eslint</a></li>
</ul>
<h3>Essential Links</h3>
<ul>
<li><a href="https://vuejs.org" target="_blank" rel="noopener">Core Docs</a></li>
<li><a href="https://forum.vuejs.org" target="_blank" rel="noopener">Forum</a></li>
<li><a href="https://chat.vuejs.org" target="_blank" rel="noopener">Community Chat</a></li>
<li><a href="https://twitter.com/vuejs" target="_blank" rel="noopener">Twitter</a></li>
<li><a href="https://news.vuejs.org" target="_blank" rel="noopener">News</a></li>
</ul>
<h3>Ecosystem</h3>
<ul>
<li><a href="https://router.vuejs.org" target="_blank" rel="noopener">vue-router</a></li>
<li><a href="https://vuex.vuejs.org" target="_blank" rel="noopener">vuex</a></li>
<li><a href="https://github.com/vuejs/vue-devtools#vue-devtools" target="_blank" rel="noopener">vue-devtools</a></li>
<li><a href="https://vue-loader.vuejs.org" target="_blank" rel="noopener">vue-loader</a></li>
<li><a href="https://github.com/vuejs/awesome-vue" target="_blank" rel="noopener">awesome-vue</a></li>
</ul>
</div>
</template>
<script>
export default {
name: 'HelloWorld',
props: {
msg: String
}
}
</script>
<!-- Add "scoped" attribute to limit CSS to this component only -->
<style scoped>
h3 {
margin: 40px 0 0;
}
ul {
list-style-type: none;
padding: 0;
}
li {
display: inline-block;
margin: 0 10px;
}
a {
color: #42b983;
}
</style>

View File

@ -0,0 +1,6 @@
import { createApp } from 'vue'
import App from './App.vue'
import '@/assets/css/app.css';
import './assets/css/tailwind.css';
createApp(App).mount('#app')

View File

@ -0,0 +1,14 @@
/** @type {import('tailwindcss').Config} */
module.exports = {
purge: [
'./src/**/*.vue',
'./src/**/*.html',
// Add any other paths to your Vue components and templates here
],
content: [],
theme: {
extend: {},
},
plugins: [],
}

View File

@ -0,0 +1,12 @@
const { defineConfig } = require('@vue/cli-service')
module.exports = defineConfig({
transpileDependencies: true,
css: {
loaderOptions: {
css: {
// Import the tailwind.css file
import: 'assets/css/tailwind.css'
}
}
}
})

70
lollms/__init__.py Normal file
View File

@ -0,0 +1,70 @@
__author__ = "ParisNeo"
__github__ = "https://github.com/ParisNeo/lollms"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
from lollms.binding import LLMBinding, LOLLMSConfig
from lollms.personality import AIPersonality, MSG_TYPE
from lollms.paths import LollmsPaths
#from lollms.binding import LLMBinding
import importlib
from pathlib import Path
class BindingBuilder:
def build_binding(self, bindings_path: Path, cfg: LOLLMSConfig, force_reinstall=False)->LLMBinding:
binding_path = Path(bindings_path) / cfg["binding_name"]
# first find out if there is a requirements.txt file
install_file_name = "install.py"
install_script_path = binding_path / install_file_name
if install_script_path.exists():
module_name = install_file_name[:-3] # Remove the ".py" extension
module_spec = importlib.util.spec_from_file_location(module_name, str(install_script_path))
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
if hasattr(module, "Install"):
module.Install(cfg, force_reinstall=force_reinstall)
# define the full absolute path to the module
absolute_path = binding_path.resolve()
# infer the module name from the file path
module_name = binding_path.stem
# use importlib to load the module from the file path
loader = importlib.machinery.SourceFileLoader(module_name, str(absolute_path / "__init__.py"))
binding_module = loader.load_module()
binding_class = getattr(binding_module, binding_module.binding_name)
return binding_class
class ModelBuilder:
def __init__(self, binding_class:LLMBinding, config:LOLLMSConfig):
self.binding_class = binding_class
self.model = None
self.build_model(config)
def build_model(self, cfg: LOLLMSConfig):
self.model = self.binding_class(cfg)
def get_model(self):
return self.model
class PersonalityBuilder:
def __init__(self, lollms_paths:LollmsPaths, config:LOLLMSConfig, model:LLMBinding):
self.config = config
self.lollms_paths = lollms_paths
self.model = model
def build_personality(self, force_reinstall=False):
if len(self.config["personalities"][self.config["active_personality_id"]].split("/"))==3:
self.personality = AIPersonality(self.lollms_paths, self.lollms_paths.personalities_zoo_path / self.config["personalities"][self.config["active_personality_id"]], self.model, force_reinstall= force_reinstall)
else:
self.personality = AIPersonality(self.lollms_paths, self.config["personalities"][self.config["active_personality_id"]], self.model, is_relative_path=False, force_reinstall= force_reinstall)
return self.personality
def get_personality(self):
return self.personality

BIN
lollms/assets/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 459 KiB

293
lollms/binding.py Normal file
View File

@ -0,0 +1,293 @@
######
# Project : GPT4ALL-UI
# File : binding.py
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
# license : Apache 2.0
# Description :
# This is an interface class for GPT4All-ui bindings.
######
from pathlib import Path
from typing import Callable
from lollms.helpers import BaseConfig, ASCIIColors
from lollms.paths import LollmsPaths
import inspect
import yaml
import sys
from tqdm import tqdm
import urllib.request
import importlib
import shutil
__author__ = "parisneo"
__github__ = "https://github.com/ParisNeo/lollms_bindings_zoo"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
import yaml
DEFAULT_CONFIG = {
# =================== Lord Of Large Language Models Configuration file ===========================
"version": 5,
"binding_name": "llama_cpp_official",
"model_name": "Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_0.bin",
# Host information
"host": "localhost",
"port": 9600,
# Genreration parameters
"seed": -1,
"n_predict": 1024,
"ctx_size": 2048,
"temperature": 0.9,
"top_k": 50,
"top_p": 0.95,
"repeat_last_n": 40,
"repeat_penalty": 1.2,
"n_threads": 8,
#Personality parameters
"personalities": ["english/generic/lollms"],
"active_personality_id": 0,
"override_personality_model_parameters": False, #if true the personality parameters are overriden by those of the configuration (may affect personality behaviour)
"user_name": "user",
}
class LOLLMSConfig(BaseConfig):
def __init__(self, file_path=None, lollms_paths:LollmsPaths = None):
super().__init__(["file_path", "config", "lollms_paths"])
if file_path:
self.file_path = Path(file_path)
else:
self.file_path = None
if file_path is not None:
self.load_config(file_path)
else:
self.config = DEFAULT_CONFIG.copy()
if lollms_paths is None:
self.lollms_paths = LollmsPaths()
else:
self.lollms_paths = lollms_paths
@staticmethod
def autoload(lollms_paths, config_path:str=None):
# Configuration loading part
original_cfg_path = lollms_paths.default_cfg_path
if config_path is None:
local = lollms_paths.personal_configuration_path / "local_config.yaml"
if not local.exists():
shutil.copy(original_cfg_path, local)
cfg_path = local
else:
cfg_path = config_path
if cfg_path.exists():
original_config = LOLLMSConfig(original_cfg_path,lollms_paths)
config = LOLLMSConfig(cfg_path,lollms_paths)
if "version" not in config or int(config["version"])<int(original_config["version"]):
#Upgrade old configuration files to new format
ASCIIColors.error("Configuration file is very old.\nReplacing with default configuration")
_, added, removed = config.sync_cfg(original_config)
print(f"Added entries : {added}, removed entries:{removed}")
config.save_config(cfg_path)
else:
config = LOLLMSConfig()
return config
def sync_cfg(self, default_config):
"""Syncs a configuration with the default configuration
Args:
default_config (_type_): _description_
config (_type_): _description_
Returns:
_type_: _description_
"""
added_entries = []
removed_entries = []
# Ensure all fields from default_config exist in config
for key, value in default_config.config.items():
if key not in self:
self[key] = value
added_entries.append(key)
# Remove fields from config that don't exist in default_config
for key in list(self.config.keys()):
if key not in default_config.config:
del self.config[key]
removed_entries.append(key)
self["version"]=default_config["version"]
return self, added_entries, removed_entries
def get_model_path_infos(self):
return f"personal_models_path: {self.lollms_paths.personal_models_path}\nBinding name:{self.binding_name}\nModel name:{self.model_name}"
def get_personality_path_infos(self):
return f"personalities_zoo_path: {self.lollms_paths.personalities_zoo_path}\nPersonalities:{self.personalities}\nActive personality id:{self.active_personality_id}"
def get_model_full_path(self):
try:
return self.lollms_paths.personal_models_path/self.binding_name/self.model_name
except:
return None
def check_model_existance(self):
try:
model_path = self.lollms_paths.personal_models_path/self.binding_name/self.model_name
return model_path.exists()
except Exception as ex:
print(f"Exception in checking model existance: {ex}")
return False
def download_model(self, url, binding, callback = None):
folder_path = self.lollms_paths.personal_models_path/self.binding_name
model_name = url.split("/")[-1]
model_full_path = (folder_path / model_name)
if binding is not None and hasattr(binding,'download_model'):
binding.download_model(url, model_full_path, callback)
else:
# Check if file already exists in folder
if model_full_path.exists():
print("File already exists in folder")
else:
# Create folder if it doesn't exist
folder_path.mkdir(parents=True, exist_ok=True)
progress_bar = tqdm(total=None, unit="B", unit_scale=True, desc=f"Downloading {url.split('/')[-1]}")
# Define callback function for urlretrieve
def report_progress(block_num, block_size, total_size):
progress_bar.total=total_size
progress_bar.update(block_size)
# Download file from URL to folder
try:
urllib.request.urlretrieve(url, folder_path / url.split("/")[-1], reporthook=report_progress if callback is None else callback)
print("File downloaded successfully!")
except Exception as e:
print("Error downloading file:", e)
sys.exit(1)
def reference_model(self, path):
path = str(path).replace("\\","/")
folder_path = self.lollms_paths.personal_models_path/self.binding_name
model_name = path.split("/")[-1]+".reference"
model_full_path = (folder_path / model_name)
# Check if file already exists in folder
if model_full_path.exists():
print("File already exists in folder")
else:
# Create folder if it doesn't exist
folder_path.mkdir(parents=True, exist_ok=True)
with open(model_full_path,"w") as f:
f.write(path)
print("Reference created, please make sure you don't delete the file or you will have broken link")
class BindingInstaller:
def __init__(self, config: LOLLMSConfig) -> None:
self.config = config
class LLMBinding:
file_extension='*.bin'
binding_path = Path(__file__).parent
def __init__(self, config:LOLLMSConfig, inline:bool) -> None:
self.config = config
self.inline = inline
def load_config_file(self, path):
"""
Load the content of local_config.yaml file.
The function reads the content of the local_config.yaml file and returns it as a Python dictionary.
Args:
None
Returns:
dict: A dictionary containing the loaded data from the local_config.yaml file.
"""
with open(path, 'r') as file:
data = yaml.safe_load(file)
return data
def generate(self,
prompt:str,
n_predict: int = 128,
callback: Callable[[str], None] = None,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
This should ber implemented by child class
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
pass
def tokenize(self, prompt:str):
"""
Tokenizes the given prompt using the model's tokenizer.
Args:
prompt (str): The input prompt to be tokenized.
Returns:
list: A list of tokens representing the tokenized prompt.
"""
return prompt.split(" ")
def detokenize(self, tokens_list:list):
"""
Detokenizes the given list of tokens using the model's tokenizer.
Args:
tokens_list (list): A list of tokens to be detokenized.
Returns:
str: The detokenized text as a string.
"""
return " ".join(tokens_list)
@staticmethod
def list_models(config:dict, root_path="."):
"""Lists the models for this binding
"""
root_path = Path(root_path)
models_dir =(root_path/'models')/config["binding_name"] # replace with the actual path to the models folder
return [f.name for f in models_dir.glob(LLMBinding.file_extension)]
@staticmethod
def install_binding(binding_path, config:LOLLMSConfig):
install_file_name = "install.py"
install_script_path = binding_path / install_file_name
if install_script_path.exists():
module_name = install_file_name[:-3] # Remove the ".py" extension
module_spec = importlib.util.spec_from_file_location(module_name, str(install_script_path))
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
if hasattr(module, "Install"):
module.Install(config)
# To implement by children
# @staticmethod
# def get_available_models():

1
lollms/bindings_zoo Submodule

@ -0,0 +1 @@
Subproject commit 3e3f2904d97368ca57ce7f382c629d39b439de23

1
lollms/configs/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
local_config.yaml

View File

@ -0,0 +1,28 @@
# =================== Lord Of Large Language Models Configuration file ===========================
version: 6
binding_name: llama_cpp_official
model_name: null
# Host information
host: localhost
port: 9600
# Genreration parameters
seed: -1
n_predict: 1024
ctx_size: 2048
temperature: 0.9
top_k: 50
top_p: 0.95
repeat_last_n: 40
repeat_penalty: 1.2
n_threads: 8
#Personality parameters
personalities: ["english/generic/lollms"]
active_personality_id: 0
override_personality_model_parameters: false #if true the personality parameters are overriden by those of the configuration (may affect personality behaviour)
user_name: user

563
lollms/console.py Normal file
View File

@ -0,0 +1,563 @@
from lollms.personality import AIPersonality, MSG_TYPE
from lollms.binding import LOLLMSConfig, LLMBinding
from lollms.helpers import ASCIIColors
from lollms.paths import LollmsPaths
import shutil
import yaml
from pathlib import Path
import sys
import pkg_resources
import argparse
from tqdm import tqdm
from lollms import BindingBuilder, ModelBuilder, PersonalityBuilder
class MainMenu:
def __init__(self, conversation):
self.binding_infs = []
self.conversation = conversation
def show_logo(self):
print(f"{ASCIIColors.color_bright_yellow}")
print("█ █ █ █▄ ▄█▄ ▄█ ")
print("█ ▄▀▀▄ █ █ █ ▀ ▀ █ ▄▀▀▄ ")
print("█ █ █ █ █ █ █ ▀▄▄ ")
print("█▄▄▄▄ ▀▄▄▀ █▄▄▄▄▄ █▄▄▄▄ █ █ ▄▄▄▀ ")
print(f"{ASCIIColors.color_reset}")
print(f"{ASCIIColors.color_red}Version: {ASCIIColors.color_green}{pkg_resources.get_distribution('lollms').version}")
print(f"{ASCIIColors.color_red}By : {ASCIIColors.color_green}ParisNeo")
print(f"{ASCIIColors.color_reset}")
def show_commands_list(self):
print()
print("Commands:")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} menu: shows main menu")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} help: shows this info")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} reset: resets the context")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} <empty prompt>: forces the model to continue generating")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} context_infos: current context size and space left before cropping")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} start_log: starts logging the discussion to a text file")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} stop_log: stops logging the discussion to a text file")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} send_file: uploads a file to the AI")
print(f" {ASCIIColors.color_red}{ASCIIColors.color_reset} exit: exists the console")
def show_menu(self, options):
print("Menu:")
for index, option in enumerate(options):
print(f"{ASCIIColors.color_green}{index + 1} -{ASCIIColors.color_reset} {option}")
choice = input("Enter your choice: ")
return int(choice) if choice.isdigit() else -1
def select_binding(self):
bindings_list = []
print()
print(f"{ASCIIColors.color_green}Current binding: {ASCIIColors.color_reset}{self.conversation.config['binding_name']}")
for p in self.conversation.lollms_paths.bindings_zoo_path.iterdir():
if p.is_dir():
with open(p/"binding_card.yaml", "r") as f:
card = yaml.safe_load(f)
with open(p/"models.yaml", "r") as f:
models = yaml.safe_load(f)
entry=f"{card['name']} (by {card['author']})"
bindings_list.append(entry)
entry={
"name":p.name,
"card":card,
"models":models
}
self.binding_infs.append(entry)
bindings_list += ["Back"]
choice = self.show_menu(bindings_list)
if 1 <= choice <= len(bindings_list)-1:
print(f"You selected binding: {ASCIIColors.color_green}{self.binding_infs[choice - 1]['name']}{ASCIIColors.color_reset}")
self.conversation.config['binding_name']=self.binding_infs[choice - 1]['name']
self.conversation.load_binding()
self.conversation.config.save_config()
elif choice <= len(bindings_list):
return
else:
print("Invalid choice!")
def select_model(self):
print()
print(f"{ASCIIColors.color_green}Current model: {ASCIIColors.color_reset}{self.conversation.config['model_name']}")
models_dir:Path = (self.conversation.lollms_paths.personal_models_path/self.conversation.config['binding_name'])
models_dir.mkdir(parents=True, exist_ok=True)
models_list = [m.name for m in models_dir.iterdir() if m.name.lower() not in [".ds_dtore","thumb.db"]] + ["Install model", "Change binding", "Back"]
choice = self.show_menu(models_list)
if 1 <= choice <= len(models_list)-3:
print(f"You selected model: {ASCIIColors.color_green}{models_list[choice - 1]}{ASCIIColors.color_reset}")
self.conversation.config['model_name']=models_list[choice - 1]
self.conversation.load_model()
self.conversation.config.save_config()
elif choice <= len(models_list)-2:
self.install_model()
elif choice <= len(models_list)-1:
self.select_binding()
self.select_model()
elif choice <= len(models_list):
return
else:
print("Invalid choice!")
def install_model(self):
models_list = ["Install model from internet","Install model from local file","Back"]
choice = self.show_menu(models_list)
if 1 <= choice <= len(models_list)-2:
url = input("Give a URL to the model to be downloaded :")
def progress_callback(blocks, block_size, total_size):
tqdm_bar.total=total_size
tqdm_bar.update(block_size)
# Usage example
with tqdm(total=100, unit="%", desc="Download Progress", ncols=80) as tqdm_bar:
self.conversation.config.download_model(url,self.conversation.binding_class, progress_callback)
self.select_model()
elif choice <= len(models_list)-1:
path = Path(input("Give a path to the model to be used on your PC:"))
if path.exists():
self.conversation.config.reference_model(path)
self.select_model()
elif choice <= len(models_list):
return
else:
print("Invalid choice!")
def select_personality(self):
print()
print(f"{ASCIIColors.color_green}Current personality: {ASCIIColors.color_reset}{self.conversation.config['personalities'][self.conversation.config['active_personality_id']]}")
personality_languages = [p.stem for p in self.conversation.lollms_paths.personalities_zoo_path.iterdir() if p.is_dir()] + ["Back"]
print("Select language")
choice = self.show_menu(personality_languages)
if 1 <= choice <= len(personality_languages)-1:
language = personality_languages[choice - 1]
print(f"You selected language: {ASCIIColors.color_green}{language}{ASCIIColors.color_reset}")
personality_categories = [p.stem for p in (self.conversation.lollms_paths.personalities_zoo_path/language).iterdir() if p.is_dir()]+["Back"]
print("Select category")
choice = self.show_menu(personality_categories)
if 1 <= choice <= len(personality_categories):
category = personality_categories[choice - 1]
print(f"You selected category: {ASCIIColors.color_green}{category}{ASCIIColors.color_reset}")
personality_names = [p.stem for p in (self.conversation.lollms_paths.personalities_zoo_path/language/category).iterdir() if p.is_dir()]+["Back"]
print("Select personality")
choice = self.show_menu(personality_names)
if 1 <= choice <= len(personality_names)-1:
name = personality_names[choice - 1]
print(f"You selected personality: {ASCIIColors.color_green}{name}{ASCIIColors.color_reset}")
self.conversation.config["personalities"]=[f"{language}/{category}/{name}"]
self.conversation.load_personality()
self.conversation.config.save_config()
print("Personality saved successfully!")
elif 1 <= choice <= len(personality_names):
return
else:
print("Invalid choice!")
elif 1 <= choice <= len(personality_categories):
return
else:
print("Invalid choice!")
elif 1 <= choice <= len(personality_languages):
return
else:
print("Invalid choice!")
def reinstall_binding(self):
conversation = self.conversation
try:
conversation.binding_class = BindingBuilder().build_binding(conversation.lollms_paths.bindings_zoo_path, conversation.config, force_reinstall=True)
except Exception as ex:
print(ex)
print(f"Couldn't find binding. Please verify your configuration file at {conversation.config.file_path} or use the next menu to select a valid binding")
self.select_binding()
def reinstall_personality(self):
conversation = self.conversation
try:
conversation.personality = PersonalityBuilder(conversation.lollms_paths, conversation.config, conversation.model).build_personality(force_reinstall=True)
except Exception as ex:
ASCIIColors.error(f"Couldn't load personality. Please verify your configuration file at {conversation.configuration_path} or use the next menu to select a valid personality")
ASCIIColors.error(f"Binding returned this exception : {ex}")
ASCIIColors.error(f"{conversation.config.get_personality_path_infos()}")
print("Please select a valid model or install a new one from a url")
self.select_model()
def main_menu(self):
while True:
print("\nMain Menu:")
print(f"{ASCIIColors.color_green}1 -{ASCIIColors.color_reset} Select Binding")
print(f"{ASCIIColors.color_green}2 -{ASCIIColors.color_reset} Select Model")
print(f"{ASCIIColors.color_green}3 -{ASCIIColors.color_reset} Select Personality")
print(f"{ASCIIColors.color_green}4 -{ASCIIColors.color_reset} Reinstall Binding")
print(f"{ASCIIColors.color_green}5 -{ASCIIColors.color_reset} Reinstall Personality")
print(f"{ASCIIColors.color_green}0 -{ASCIIColors.color_reset} Exit")
choice = input("Enter your choice: ").strip()
if choice == "1":
self.select_binding()
elif choice == "2":
self.select_model()
elif choice == "3":
self.select_personality()
elif choice == "4":
self.reinstall_binding()
elif choice == "5":
self.reinstall_personality()
elif choice == "0":
print("Back to main app...")
break
else:
print("Invalid choice! Try again.")
class Conversation:
def __init__(
self,
configuration_path:str|Path=None,
show_logo:bool=True,
show_commands_list:bool=False,
show_personality_infos:bool=True,
show_model_infos:bool=True,
show_welcome_message:bool=True
):
# Fore it to be a path
self.configuration_path = configuration_path
self.is_logging = False
self.log_file_path = ""
self.bot_says = ""
# get paths
self.lollms_paths = LollmsPaths.find_paths(force_local=False)
# Build menu
self.menu = MainMenu(self)
# Configuration loading part
self.config = LOLLMSConfig.autoload(self.lollms_paths, configuration_path)
# load binding
self.load_binding()
# Load model
self.load_model()
# cfg.binding_name = llm_binding.binding_folder_name
# cfg.model_name = model_name
# Load personality
try:
self.load_personality()
except Exception as ex:
print(f"No personality selected. Please select one from the zoo. {ex}")
self.menu.select_personality()
if show_logo:
self.menu.show_logo()
if show_commands_list:
self.menu.show_commands_list()
if show_personality_infos:
print()
print(f"{ASCIIColors.color_green}Current personality : {ASCIIColors.color_reset}{self.personality}")
print(f"{ASCIIColors.color_green}Version : {ASCIIColors.color_reset}{self.personality.version}")
print(f"{ASCIIColors.color_green}Author : {ASCIIColors.color_reset}{self.personality.author}")
print(f"{ASCIIColors.color_green}Description : {ASCIIColors.color_reset}{self.personality.personality_description}")
print()
if show_model_infos:
print()
print(f"{ASCIIColors.color_green}Current binding : {ASCIIColors.color_reset}{self.config['binding_name']}")
print(f"{ASCIIColors.color_green}Current model : {ASCIIColors.color_reset}{self.config['model_name']}")
print(f"{ASCIIColors.color_green}Personal data path : {ASCIIColors.color_reset}{self.lollms_paths.personal_path}")
print()
# If there is a disclaimer, show it
if self.personality.disclaimer != "":
print(f"\n{ASCIIColors.color_red}Disclaimer")
print(self.personality.disclaimer)
print(f"{ASCIIColors.color_reset}")
if show_welcome_message and self.personality.welcome_message:
print(self.personality.name+": ", end="")
print(self.personality.welcome_message)
def ask_override_file(self):
user_input = input("Would you like to override the existing file? (Y/N): ")
user_input = user_input.lower()
if user_input == "y" or user_input == "yes":
print("File will be overridden.")
return True
elif user_input == "n" or user_input == "no":
print("File will not be overridden.")
return False
else:
print("Invalid input. Please enter 'Y' or 'N'.")
# Call the function again recursively to prompt the user for valid input
return self.ask_override_file()
def start_log(self, file_name):
if Path(file_name).is_absolute():
self.log_file_path = Path(file_name)
else:
home_dir = Path.home()/"Documents/lollms/logs"
home_dir.mkdir(parents=True, exist_ok=True)
self.log_file_path = home_dir/file_name
if self.log_file_path.exists():
if not self.ask_override_file():
print("Canceled")
return
try:
with(open(self.log_file_path, "w") as f):
self.header = f"""------------------------
Log file for lollms discussion
Participating personalities:
{self.config['personalities']}
------------------------
"""
f.write(self.header)
self.is_logging = True
return True
except:
return False
def log(self, text, append=False):
try:
with(open(self.log_file_path, "a" if append else "w") as f):
f.write(text) if append else f.write(self.header+self.personality.personality_conditioning+text)
return True
except:
return False
def stop_log(self):
self.is_logging = False
def load_binding(self):
if self.config.binding_name is None:
print(f"No bounding selected")
print("Please select a valid model or install a new one from a url")
self.menu.select_binding()
# cfg.download_model(url)
else:
try:
self.binding_class = BindingBuilder().build_binding(self.lollms_paths.bindings_zoo_path, self.config)
except Exception as ex:
print(ex)
print(f"Couldn't find binding. Please verify your configuration file at {self.configuration_path} or use the next menu to select a valid binding")
self.menu.select_binding()
def load_model(self):
try:
self.model = ModelBuilder(self.binding_class, self.config).get_model()
except Exception as ex:
ASCIIColors.error(f"Couldn't load model. Please verify your configuration file at {self.configuration_path} or use the next menu to select a valid model")
ASCIIColors.error(f"Binding returned this exception : {ex}")
ASCIIColors.error(f"{self.config.get_model_path_infos()}")
print("Please select a valid model or install a new one from a url")
self.menu.select_model()
def load_personality(self):
try:
self.personality = PersonalityBuilder(self.lollms_paths, self.config, self.model).build_personality()
except Exception as ex:
ASCIIColors.error(f"Couldn't load personality. Please verify your configuration file at {self.configuration_path} or use the next menu to select a valid personality")
ASCIIColors.error(f"Binding returned this exception : {ex}")
ASCIIColors.error(f"{self.config.get_personality_path_infos()}")
print("Please select a valid model or install a new one from a url")
self.menu.select_model()
self.cond_tk = self.personality.model.tokenize(self.personality.personality_conditioning)
self.n_cond_tk = len(self.cond_tk)
def reset_context(self):
if self.personality.include_welcome_message_in_disucssion:
full_discussion = (
self.personality.ai_message_prefix +
self.personality.welcome_message +
self.personality.link_text
)
else:
full_discussion = ""
return full_discussion
def safe_generate(self, full_discussion:str, n_predict=None, callback=None):
"""safe_generate
Args:
full_discussion (string): A prompt or a long discussion to use for generation
callback (_type_, optional): A callback to call for each received token. Defaults to None.
Returns:
str: Model output
"""
if n_predict == None:
n_predict =self.personality.model_n_predicts
tk = self.personality.model.tokenize(full_discussion)
n_tokens = len(tk)
fd = self.personality.model.detokenize(tk[-min(self.config.ctx_size-self.n_cond_tk,n_tokens):])
self.bot_says = ""
output = self.personality.model.generate(self.personality.personality_conditioning+fd, n_predict=n_predict, callback=callback)
return output
def remove_text_from_string(self, string, text_to_find):
"""
Removes everything from the first occurrence of the specified text in the string (case-insensitive).
Parameters:
string (str): The original string.
text_to_find (str): The text to find in the string.
Returns:
str: The updated string.
"""
index = string.lower().find(text_to_find.lower())
if index != -1:
string = string[:index]
return string
def start_conversation(self):
full_discussion = self.reset_context()
while True:
try:
prompt = input(f"{ASCIIColors.color_green}You: {ASCIIColors.color_reset}")
if prompt == "exit":
return
if prompt == "menu":
self.menu.main_menu()
continue
if prompt == "reset":
self.reset_context()
print(f"{ASCIIColors.color_red}Context reset issued{ASCIIColors.color_reset}")
continue
if prompt == "start_log":
fp = input("Please enter a log file path (ex: log.txt): ")
self.start_log(fp)
print(f"{ASCIIColors.color_red}Started logging to : {self.log_file_path}{ASCIIColors.color_reset}")
continue
if prompt == "stop_log":
self.stop_log()
print(f"{ASCIIColors.color_red}Log stopped{ASCIIColors.color_reset}")
continue
if prompt == "send_file":
if self.personality.processor is None:
print(f"{ASCIIColors.color_red}This personality doesn't support file reception{ASCIIColors.color_reset}")
continue
fp = input("Please enter a file path: ")
# Remove double quotes using string slicing
if fp.startswith('"') and fp.endswith('"'):
fp = fp[1:-1]
if self.personality.processor.add_file(fp):
print(f"{ASCIIColors.color_green}File imported{ASCIIColors.color_reset}")
else:
print(f"{ASCIIColors.color_red}Couldn't load file{ASCIIColors.color_reset}")
continue
if prompt == "context_infos":
tokens = self.personality.model.tokenize(full_discussion)
print(f"{ASCIIColors.color_green}Current context has {len(tokens)} tokens/ {self.config.ctx_size}{ASCIIColors.color_reset}")
continue
if prompt != '':
if self.personality.processor is not None and self.personality.processor_cfg["process_model_input"]:
preprocessed_prompt = self.personality.processor.process_model_input(prompt)
else:
preprocessed_prompt = prompt
if self.personality.processor is not None and self.personality.processor_cfg["custom_workflow"]:
full_discussion += (
self.personality.user_message_prefix +
preprocessed_prompt
)
else:
full_discussion += (
self.personality.user_message_prefix +
preprocessed_prompt +
self.personality.link_text +
self.personality.ai_message_prefix
)
def callback(text, type:MSG_TYPE=None):
if type == MSG_TYPE.MSG_TYPE_CHUNK:
# Replace stdout with the default stdout
sys.stdout = sys.__stdout__
print(text, end="", flush=True)
bot_says = self.bot_says + text
antiprompt = self.personality.detect_antiprompt(bot_says)
if antiprompt:
self.bot_says = self.remove_text_from_string(bot_says,antiprompt)
print("Detected hallucination")
return False
else:
self.bot_says = bot_says
return True
tk = self.personality.model.tokenize(full_discussion)
n_tokens = len(tk)
fd = self.personality.model.detokenize(tk[-min(self.config.ctx_size-self.n_cond_tk,n_tokens):])
print(f"{ASCIIColors.color_red}{self.personality.name}:{ASCIIColors.color_reset}", end='', flush=True)
if self.personality.processor is not None and self.personality.processor_cfg["custom_workflow"]:
output = self.personality.processor.run_workflow(prompt, previous_discussion_text=self.personality.personality_conditioning+fd, callback=callback)
print(output)
else:
output = self.personality.model.generate(self.personality.personality_conditioning+fd, n_predict=self.personality.model_n_predicts, callback=callback)
full_discussion += output.strip()
print()
if self.personality.processor is not None and self.personality.processor_cfg["process_model_output"]:
output = self.personality.processor.process_model_output(output)
self.log(full_discussion)
except KeyboardInterrupt:
print("Keyboard interrupt detected.\nBye")
break
print("Done")
print(f"{self.personality}")
def main():
# Create the argument parser
parser = argparse.ArgumentParser(description='App Description')
# Add the configuration path argument
parser.add_argument('--configuration_path', default=None,
help='Path to the configuration file')
parser.add_argument('--reset_personal_path', action='store_true', help='Reset the personal path')
parser.add_argument('--reset_config', action='store_true', help='Reset the configurations')
# Parse the command-line arguments
args = parser.parse_args()
if args.reset_personal_path:
LollmsPaths.reset_configs()
if args.reset_config:
cfg_path = LollmsPaths.find_paths().personal_configuration_path / "local_config.yaml"
try:
cfg_path.unlink()
ASCIIColors.success("LOLLMS configuration reset successfully")
except:
ASCIIColors.success("Couldn't reset LOLLMS configuration")
# Parse the command-line arguments
args = parser.parse_args()
configuration_path = args.configuration_path
conversation = Conversation(configuration_path=configuration_path, show_commands_list=True)
conversation.start_conversation()
if __name__ == "__main__":
main()

109
lollms/helpers.py Normal file
View File

@ -0,0 +1,109 @@
from pathlib import Path
import yaml
class ASCIIColors:
# Reset
color_reset = '\u001b[0m'
# Regular colors
color_black = '\u001b[30m'
color_red = '\u001b[31m'
color_green = '\u001b[32m'
color_yellow = '\u001b[33m'
color_blue = '\u001b[34m'
color_magenta = '\u001b[35m'
color_cyan = '\u001b[36m'
color_white = '\u001b[37m'
color_orange = '\u001b[38;5;202m'
# Bright colors
color_bright_black = '\u001b[30;1m'
color_bright_red = '\u001b[31;1m'
color_bright_green = '\u001b[32;1m'
color_bright_yellow = '\u001b[33;1m'
color_bright_blue = '\u001b[34;1m'
color_bright_magenta = '\u001b[35;1m'
color_bright_cyan = '\u001b[36;1m'
color_bright_white = '\u001b[37;1m'
color_bright_orange = '\u001b[38;5;208m'
@staticmethod
def print(text, color=color_bright_red):
print(f"{color}{text}{ASCIIColors.color_reset}")
@staticmethod
def warning(text):
print(f"{ASCIIColors.color_bright_orange}{text}{ASCIIColors.color_reset}")
@staticmethod
def error(text):
print(f"{ASCIIColors.color_bright_red}{text}{ASCIIColors.color_reset}")
@staticmethod
def success(text):
print(f"{ASCIIColors.color_green}{text}{ASCIIColors.color_reset}")
@staticmethod
def info(text):
print(f"{ASCIIColors.color_blue}{text}{ASCIIColors.color_reset}")
class BaseConfig():
def __init__(self, exceptional_keys=[], config = None):
self.exceptional_keys = exceptional_keys
self.config = config
def to_dict(self):
return self.config
def __getitem__(self, key):
if self.config is None:
raise ValueError("No configuration loaded.")
return self.config[key]
def __getattr__(self, key):
if key == "exceptional_keys":
return super().__getattribute__(key)
if key in self.exceptional_keys+ ["config"] or key.startswith("__"):
return super().__getattribute__(key)
else:
if self.config is None:
raise ValueError("No configuration loaded.")
return self.config[key]
def __setattr__(self, key, value):
if key == "exceptional_keys":
return super().__setattr__(key, value)
if key in self.exceptional_keys+ ["config"] or key.startswith("__"):
super().__setattr__(key, value)
else:
if self.config is None:
raise ValueError("No configuration loaded.")
self.config[key] = value
def __setitem__(self, key, value):
if self.config is None:
raise ValueError("No configuration loaded.")
self.config[key] = value
def __contains__(self, item):
if self.config is None:
raise ValueError("No configuration loaded.")
return item in self.config
def load_config(self, file_path:Path=None):
if file_path is None:
file_path = self.file_path
with open(file_path, 'r', encoding='utf-8') as stream:
self.config = yaml.safe_load(stream)
def save_config(self, file_path:Path=None):
if file_path is None:
file_path = self.file_path
if self.config is None:
raise ValueError("No configuration loaded.")
with open(file_path, "w") as f:
yaml.dump(self.config, f)

View File

@ -0,0 +1,267 @@
"""Wrapper around llama.cpp."""
import logging
from typing import Any, Dict, Generator, List, Optional
from pydantic import Field, root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
logger = logging.getLogger(__name__)
class LLMModel(LLM):
"""Wrapper around the llama.cpp model.
To use, you should have the llama-cpp-python library installed, and provide the
path to the Llama model as a named parameter to the constructor.
Check out: https://github.com/abetlen/llama-cpp-python
Example:
.. code-block:: python
from langchain.llms import LlamaCppEmbeddings
llm = LlamaCppEmbeddings(model_path="/path/to/llama/model")
"""
client: Any #: :meta private:
model_path: str
"""The path to the Llama model file."""
lora_base: Optional[str] = None
"""The path to the Llama LoRA base model."""
lora_path: Optional[str] = None
"""The path to the Llama LoRA. If None, no LoRa is loaded."""
n_ctx: int = Field(512, alias="n_ctx")
"""Token context window."""
n_parts: int = Field(-1, alias="n_parts")
"""Number of parts to split the model into.
If -1, the number of parts is automatically determined."""
seed: int = Field(-1, alias="seed")
"""Seed. If -1, a random seed is used."""
f16_kv: bool = Field(True, alias="f16_kv")
"""Use half-precision for key/value cache."""
logits_all: bool = Field(False, alias="logits_all")
"""Return logits for all tokens, not just the last token."""
vocab_only: bool = Field(False, alias="vocab_only")
"""Only load the vocabulary, no weights."""
use_mlock: bool = Field(False, alias="use_mlock")
"""Force system to keep model in RAM."""
n_threads: Optional[int] = Field(None, alias="n_threads")
"""Number of threads to use.
If None, the number of threads is automatically determined."""
n_batch: Optional[int] = Field(8, alias="n_batch")
"""Number of tokens to process in parallel.
Should be a number between 1 and n_ctx."""
n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers")
"""Number of layers to be loaded into gpu memory. Default None."""
suffix: Optional[str] = Field(None)
"""A suffix to append to the generated text. If None, no suffix is appended."""
max_tokens: Optional[int] = 256
"""The maximum number of tokens to generate."""
temperature: Optional[float] = 0.8
"""The temperature to use for sampling."""
top_p: Optional[float] = 0.95
"""The top-p value to use for sampling."""
logprobs: Optional[int] = Field(None)
"""The number of logprobs to return. If None, no logprobs are returned."""
echo: Optional[bool] = False
"""Whether to echo the prompt."""
stop: Optional[List[str]] = []
"""A list of strings to stop generation when encountered."""
repeat_penalty: Optional[float] = 1.1
"""The penalty to apply to repeated tokens."""
top_k: Optional[int] = 40
"""The top-k value to use for sampling."""
last_n_tokens_size: Optional[int] = 64
"""The number of tokens to look back when applying the repeat_penalty."""
use_mmap: Optional[bool] = True
"""Whether to keep the model loaded in RAM"""
streaming: bool = True
"""Whether to stream the results, token by token."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
model = values["model"]
model_param_names = [
"lora_path",
"lora_base",
"n_ctx",
"n_parts",
"seed",
"f16_kv",
"logits_all",
"vocab_only",
"use_mlock",
"n_threads",
"n_batch",
"use_mmap",
"last_n_tokens_size",
]
model_params = {k: values[k] for k in model_param_names}
# For backwards compatibility, only include if non-null.
if values["n_gpu_layers"] is not None:
model_params["n_gpu_layers"] = values["n_gpu_layers"]
values["client"] = model
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling llama_cpp."""
return {
"suffix": self.suffix,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"logprobs": self.logprobs,
"echo": self.echo,
"stop_sequences": self.stop, # key here is convention among LLM classes
"repeat_penalty": self.repeat_penalty,
"top_k": self.top_k,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model_path": self.model_path}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "lollms_generic_llm"
def _get_parameters(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
"""
Performs sanity check, preparing paramaters in format needed by llama_cpp.
Args:
stop (Optional[List[str]]): List of stop sequences for llama_cpp.
Returns:
Dictionary containing the combined parameters.
"""
# Raise error if stop sequences are in both input and default params
if self.stop and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
params = self._default_params
# llama_cpp expects the "stop" key not this, so we remove it:
params.pop("stop_sequences")
# then sets it as configured, or default to an empty list:
params["stop"] = self.stop or stop or []
return params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Call the model and return the output.
Args:
prompt: The prompt to use for generation.
stop: A list of strings to stop generation when encountered.
Returns:
The generated text.
Example:
.. code-block:: python
from langchain.llms import LlamaCpp
llm = LlamaCpp(model_path="/path/to/local/llama/model.bin")
llm("This is a prompt.")
"""
if self.streaming:
# If streaming is enabled, we use the stream
# method that yields as they are generated
# and return the combined strings from the first choices's text:
combined_text_output = ""
for token in self.stream(prompt=prompt, stop=stop, run_manager=run_manager):
combined_text_output += token["choices"][0]["text"]
return combined_text_output
else:
params = self._get_parameters(stop)
result = self.client(prompt=prompt, **params)
return result["choices"][0]["text"]
def stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> Generator[Dict, None, None]:
"""Yields results objects as they are generated in real time.
BETA: this is a beta feature while we figure out the right abstraction:
Once that happens, this interface could change.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens being generated.
Yields:
A dictionary like objects containing a string token and metadata.
See llama-cpp-python docs and below for more.
Example:
.. code-block:: python
from langchain.llms import LlamaCpp
llm = LlamaCpp(
model_path="/path/to/local/model.bin",
temperature = 0.5
)
for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
stop=["'","\n"]):
result = chunk["choices"][0]
print(result["text"], end='', flush=True)
"""
params = self._get_parameters(stop)
result = self.client(prompt=prompt, stream=True, **params)
for chunk in result:
token = chunk["choices"][0]["text"]
log_probs = chunk["choices"][0].get("logprobs", None)
if run_manager:
run_manager.on_llm_new_token(
token=token, verbose=self.verbose, log_probs=log_probs
)
yield chunk

178
lollms/paths.py Normal file
View File

@ -0,0 +1,178 @@
from pathlib import Path
import shutil
from lollms.helpers import ASCIIColors
from lollms.helpers import BaseConfig
lollms_path = Path(__file__).parent
lollms_default_cfg_path = lollms_path / "configs/config.yaml"
lollms_bindings_zoo_path = lollms_path / "bindings_zoo"
lollms_personalities_zoo_path = lollms_path / "personalities_zoo"
# Now we speify the personal folders
class LollmsPaths:
def __init__(self, lollms_path=None, personal_path=None, custom_default_cfg_path=None):
if lollms_path is None:
lollms_path = Path(__file__).parent
else:
lollms_path = Path(lollms_path)
if personal_path is None:
personal_path = Path.home() / "Documents/lollms"
else:
personal_path = Path(personal_path)
if custom_default_cfg_path is not None:
self.default_cfg_path = Path(custom_default_cfg_path)
else:
self.default_cfg_path = lollms_path / "configs/config.yaml"
self.bindings_zoo_path = lollms_path / "bindings_zoo"
self.personalities_zoo_path = lollms_path / "personalities_zoo"
self.personal_path = personal_path
self.personal_configuration_path = personal_path / "configs"
self.personal_models_path = personal_path / "models"
self.create_directories()
self.copy_default_config()
def change_personal_path(self, path):
self.personal_path = path
def create_directories(self):
self.personal_path.mkdir(parents=True, exist_ok=True)
self.personal_configuration_path.mkdir(parents=True, exist_ok=True)
self.personal_models_path.mkdir(parents=True, exist_ok=True)
def copy_default_config(self):
local_config_path = self.personal_configuration_path / "local_config.yaml"
if not local_config_path.exists():
shutil.copy(self.default_cfg_path, str(local_config_path))
@staticmethod
def find_paths(force_local=False, custom_default_cfg_path=None):
lollms_path = Path(__file__).parent
global_paths_cfg = Path("./global_paths_cfg.yaml")
if global_paths_cfg.exists():
try:
cfg = BaseConfig()
cfg.load_config(global_paths_cfg)
lollms_path = cfg.lollms_path
lollms_personal_path = cfg.lollms_personal_path
return LollmsPaths(lollms_path, lollms_personal_path, custom_default_cfg_path=custom_default_cfg_path)
except Exception as ex:
print(f"{ASCIIColors.color_red}Global paths configuration file found but seems to be corrupted{ASCIIColors.color_reset}")
print("Couldn't find your personal data path!")
cfg.lollms_path = Path(__file__).parent
cfg.lollms_personal_path = input("Please specify the folder where your configuration files, your models and your custom personalities need to be stored:")
cfg.save_config(global_paths_cfg)
lollms_path = cfg.lollms_path
lollms_personal_path = cfg.lollms_personal_path
return LollmsPaths(lollms_path, lollms_personal_path, custom_default_cfg_path=custom_default_cfg_path)
else:
# if the app is not forcing a specific path, then try to find out if the default installed library has specified a default path
global_paths_cfg = lollms_path/"global_paths_cfg.yaml"
if global_paths_cfg.exists():
try:
cfg = BaseConfig()
cfg.load_config(global_paths_cfg)
lollms_path = cfg.lollms_path
lollms_personal_path = cfg.lollms_personal_path
return LollmsPaths(lollms_path, lollms_personal_path, custom_default_cfg_path=custom_default_cfg_path)
except Exception as ex:
print(f"{ASCIIColors.color_red}Global paths configuration file found but seems to be corrupted{ASCIIColors.color_reset}")
print("Couldn't find your personal data path!")
cfg.lollms_path = Path(__file__).parent
cfg.lollms_personal_path = input("Please specify the folder where your configuration files, your models and your custom personalities need to be stored:")
cfg.save_config(global_paths_cfg)
lollms_path = cfg.lollms_path
lollms_personal_path = cfg.lollms_personal_path
return LollmsPaths(lollms_path, lollms_personal_path, custom_default_cfg_path=custom_default_cfg_path)
else: # First time
print(f"{ASCIIColors.color_green}Welcome! It seems this is your first use of the new lollms app.{ASCIIColors.color_reset}")
print(f"To make it clear where your data are stored, we now give the user the choice where to put its data.")
print(f"This allows you to mutualize models which are heavy, between multiple lollms compatible apps.")
print(f"You can change this at any tome using the lollms-update_path script or by simply change the content of the global_paths_cfg.yaml file.")
print(f"Please provide a folder to store your configurations files, your models and your personal data (database, custom personalities etc).")
cfg = BaseConfig(config={
"lollms_path":str(Path(__file__).parent),
"lollms_personal_path":str(Path.home()/"Documents/lollms")
})
cfg.lollms_personal_path = input(f"Folder path: ({cfg.lollms_personal_path}):")
if cfg.lollms_personal_path=="":
cfg.lollms_personal_path = str(Path.home()/"Documents/lollms")
print(f"Selected: {cfg.lollms_personal_path}")
pp= Path(cfg.lollms_personal_path)
if not pp.exists():
try:
pp.mkdir(parents=True)
except:
print(f"{ASCIIColors.color_red}It seams there is an error in the path you rovided{ASCIIColors.color_reset}")
return None
if force_local:
global_paths_cfg = Path("./global_paths_cfg.yaml")
else:
global_paths_cfg = lollms_path/"global_paths_cfg.yaml"
cfg.save_config(global_paths_cfg)
return LollmsPaths(cfg.lollms_path, cfg.lollms_personal_path, custom_default_cfg_path=custom_default_cfg_path)
@staticmethod
def reset_configs():
lollms_path = Path(__file__).parent
global_paths_cfg = Path("./global_paths_cfg.yaml")
if global_paths_cfg.exists():
ASCIIColors.error("Resetting local settings")
global_paths_cfg.unlink()
return
global_paths_cfg = lollms_path/"global_paths_cfg.yaml"
if global_paths_cfg.exists():
ASCIIColors.error("Resetting global settings")
global_paths_cfg.unlink()
# Try to find out if the application has a global paths config
# If the application has a local configuration file that points us to the paths configuration then load it
"""
global_paths_cfg = Path("./global_paths_cfg.yaml")
if global_paths_cfg.exists():
cfg = BaseConfig()
cfg.load_config(global_paths_cfg)
try:
lollms_personal_path = cfg.global_path
except Exception as ex:
print("Couldn't find your global path!")
cfg.global_path = input("Please specify the folder where your configuration files, your models and your custom personalities need to be stored:")
lollms_personal_path = cfg.global_path
cfg.save_config(global_paths_cfg)
else:
# if the app is not forcing a specific path, then try to find out if the default installed library has specified a default path
global_paths_cfg = lollms_path/"global_paths_cfg.yaml"
if global_paths_cfg.exists():
cfg = BaseConfig()
cfg.load_config(global_paths_cfg)
try:
lollms_personal_path = cfg.global_path
except Exception as ex:
print("Couldn't find your global path!")
cfg.global_path = input("Please specify the folder where your configuration files, your models and your custom personalities need to be stored:")
lollms_personal_path = cfg.global_path
cfg.save_config(global_paths_cfg)
lollms_personal_path = Path.home()/"Documents/lollms"
lollms_personal_configuration_path = lollms_personal_path/"configs"
lollms_personal_models_path = lollms_personal_path/"models"
lollms_personal_path.mkdir(parents=True, exist_ok=True)
lollms_personal_configuration_path.mkdir(parents=True, exist_ok=True)
lollms_personal_models_path.mkdir(parents=True, exist_ok=True)
if not(lollms_personal_configuration_path/"local_config.yaml").exists():
shutil.copy(lollms_path / "configs/config.yaml", str(lollms_personal_configuration_path/"local_config.yaml"))
"""

@ -0,0 +1 @@
Subproject commit e20c0687ce98f4ed80cf6e1bc7ddcc144be83154

989
lollms/personality.py Normal file
View File

@ -0,0 +1,989 @@
from datetime import datetime
from pathlib import Path
from lollms.paths import LollmsPaths
from lollms.binding import LLMBinding
import pkg_resources
from pathlib import Path
from PIL import Image
from typing import Optional, List
import re
from datetime import datetime
import importlib
import shutil
import subprocess
import yaml
from enum import Enum
class MSG_TYPE(Enum):
MSG_TYPE_CHUNK=0
MSG_TYPE_FULL=1
MSG_TYPE_META=2
MSG_TYPE_REF=3
MSG_TYPE_CODE=4
MSG_TYPE_UI=5
class APScript:
"""
Template class for implementing personality processor classes in the APScript framework.
This class provides a basic structure and placeholder methods for processing model inputs and outputs.
Personality-specific processor classes should inherit from this class and override the necessary methods.
Methods:
__init__():
Initializes the APScript object.
run_workflow(generate_fn, prompt):
Runs the workflow for processing the model input and output.
process_model_input(text):
Process the model input.
process_model_output(text):
Process the model output.
Attributes:
None
Usage:
```
# Create a personality-specific processor class that inherits from APScript
class MyPersonalityProcessor(APScript):
def __init__(self):
super().__init__()
def process_model_input(self, text):
# Implement the desired behavior for processing the model input
# and return the processed model input
def process_model_output(self, text):
# Implement the desired behavior for processing the model output
# and return the processed model output
# Create an instance of the personality processor
my_processor = MyPersonalityProcessor()
# Define the generate function and prompt
def generate_fn(prompt):
# Implement the logic to generate model output based on the prompt
# and return the generated text
prompt = "Enter your input: "
# Run the workflow
my_processor.run_workflow(generate_fn, prompt)
```
"""
def __init__(self, personality=None) -> None:
self.files=[]
self.personality = personality
def install_personality(self, personality_path, force_reinstall=False):
install_file_name = "install.py"
install_script_path = personality_path/ "scripts" / install_file_name
if install_script_path.exists():
module_name = install_file_name[:-3] # Remove the ".py" extension
module_spec = importlib.util.spec_from_file_location(module_name, str(install_script_path))
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
if hasattr(module, "Install"):
module.Install(self.personality,force_reinstall=force_reinstall)
def add_file(self, path):
self.files.append(path)
return True
def remove_file(self, path):
self.files.remove(path)
def load_config_file(self, path):
"""
Load the content of local_config.yaml file.
The function reads the content of the local_config.yaml file and returns it as a Python dictionary.
Args:
None
Returns:
dict: A dictionary containing the loaded data from the local_config.yaml file.
"""
with open(path, 'r') as file:
data = yaml.safe_load(file)
return data
def remove_text_from_string(self, string, text_to_find):
"""
Removes everything from the first occurrence of the specified text in the string (case-insensitive).
Parameters:
string (str): The original string.
text_to_find (str): The text to find in the string.
Returns:
str: The updated string.
"""
index = string.lower().find(text_to_find.lower())
if index != -1:
string = string[:index]
return string
def process(self, text:str, message_type:MSG_TYPE):
bot_says = self.bot_says + text
antiprompt = self.personality.detect_antiprompt(bot_says)
if antiprompt:
self.bot_says = self.remove_text_from_string(bot_says,antiprompt)
print("Detected hallucination")
return False
else:
self.bot_says = bot_says
return True
def generate(self, prompt, max_size):
self.bot_says = ""
return self.personality.model.generate(
prompt,
max_size,
self.process,
temperature=self.personality.model_temperature,
top_k=self.personality.model_top_k,
top_p=self.personality.model_top_p,
repeat_penalty=self.personality.model_repeat_penalty,
).strip()
def run_workflow(self, prompt:str, previous_discussion_text:str="", callback=None):
"""
Runs the workflow for processing the model input and output.
This method should be called to execute the processing workflow.
Args:
generate_fn (function): A function that generates model output based on the input prompt.
The function should take a single argument (prompt) and return the generated text.
prompt (str): The input prompt for the model.
previous_discussion_text (str, optional): The text of the previous discussion. Default is an empty string.
Returns:
None
"""
return None
def process_model_input(self, text:str):
"""
Process the model input.
This method should be overridden in the personality-specific processor class to define
the desired behavior for processing the model input.
Args:
text (str): The model input text.
Returns:
Any: The processed model input.
"""
return None
def process_model_output(self, text:str):
"""
Process the model output.
This method should be overridden in the personality-specific processor class to define
the desired behavior for processing the model output.
Args:
text (str): The model output text.
Returns:
Any: The processed model output.
"""
return None
def is_package_installed(package_name):
try:
dist = pkg_resources.get_distribution(package_name)
return True
except pkg_resources.DistributionNotFound:
return False
def install_package(package_name):
try:
# Check if the package is already installed
__import__(package_name)
print(f"{package_name} is already installed.")
except ImportError:
print(f"{package_name} is not installed. Installing...")
# Install the package using pip
subprocess.check_call(["pip", "install", package_name])
print(f"{package_name} has been successfully installed.")
class AIPersonality:
# Extra
Conditionning_commands={
"date_time": datetime.now().strftime("%A, %B %d, %Y %I:%M:%S %p"), # Replaces {{date}} with actual date
"date": datetime.now().strftime("%A, %B %d, %Y"), # Replaces {{date}} with actual date
"time": datetime.now().strftime("%H:%M:%S"), # Replaces {{time}} with actual time
}
def __init__(
self,
lollms_paths:LollmsPaths,
personality_package_path: str|Path = None,
model:LLMBinding=None,
run_scripts=True,
is_relative_path=True,
force_reinstall=False
):
"""
Initialize an AIPersonality instance.
Parameters:
personality_package_path (str or Path): The path to the folder containing the personality package.
Raises:
ValueError: If the provided path is not a folder or does not contain a config.yaml file.
"""
self.lollms_paths = lollms_paths
self.model = model
self.files = []
self.force_reinstall = force_reinstall
# First setup a default personality
# Version
self._version = pkg_resources.get_distribution('lollms').version
self.run_scripts = run_scripts
#General information
self._author: str = "ParisNeo"
self._name: str = "lollms"
self._user_name: str = "user"
self._language: str = "english"
self._category: str = "General"
# Conditionning
self._personality_description: str = "This personality is a helpful and Kind AI ready to help you solve your problems"
self._personality_conditioning: str = """## Instructions:
lollms (Lord of LLMs) is a smart and helpful Assistant built by the computer geek ParisNeo.
It is compatible with many bindings to LLM models such as llama, gpt4all, gptj, autogptq etc.
It can discuss with humans and assist them on many subjects.
It runs locally on your machine. No need to connect to the internet.
It answers the questions with precise details
Its performance depends on the underlying model size and training.
Try to answer with as much details as you can
Date: {{date}}
"""
self._welcome_message: str = "Welcome! I am lollms (Lord of LLMs) A free and open assistant built by ParisNeo. What can I do for you today?"
self._include_welcome_message_in_disucssion: bool = True
self._user_message_prefix: str = "## Human: "
self._link_text: str = "\n"
self._ai_message_prefix: str = "## lollms:"
self._anti_prompts:list = ["## Human","## lollms","##Human","##Assistant","##lollms"]
# Extra
self._dependencies: List[str] = []
# Disclaimer
self._disclaimer: str = ""
# Default model parameters
self._model_temperature: float = 0.8 # higher: more creative, lower more deterministic
self._model_n_predicts: int = 2048 # higher: generates many words, lower generates
self._model_top_k: int = 50
self._model_top_p: float = 0.95
self._model_repeat_penalty: float = 1.3
self._model_repeat_last_n: int = 40
self._processor_cfg: dict = {}
self._logo: Optional[Image.Image] = None
self._processor = None
if personality_package_path is None:
self.config = {}
self.assets_list = []
self.personality_package_path = None
return
else:
if is_relative_path:
self.personality_package_path = self.lollms_paths.personalities_zoo_path/personality_package_path
else:
self.personality_package_path = Path(personality_package_path)
# Validate that the path exists
if not self.personality_package_path.exists():
raise ValueError("The provided path does not exist.")
# Validate that the path format is OK with at least a config.yaml file present in the folder
if not self.personality_package_path.is_dir():
raise ValueError("The provided path is not a folder.")
# Open and store the personality
self.load_personality(personality_package_path)
def __str__(self):
return f"{self.language}/{self.category}/{self.name}"
def load_personality(self, package_path=None):
"""
Load personality parameters from a YAML configuration file.
Args:
package_path (str or Path): The path to the package directory.
Raises:
ValueError: If the configuration file does not exist.
"""
if package_path is None:
package_path = self.personality_package_path
else:
package_path = Path(package_path)
# Verify that there is at least a configuration file
config_file = package_path / "config.yaml"
if not config_file.exists():
raise ValueError(f"The provided folder {package_path} does not exist.")
with open(config_file, "r") as f:
config = yaml.safe_load(f)
secret_file = package_path / "secret.yaml"
if secret_file.exists():
with open(secret_file, "r") as f:
self._secret_cfg = yaml.safe_load(f)
else:
self._secret_cfg = None
# Load parameters from the configuration file
self._version = config.get("version", self._version)
self._author = config.get("author", self._author)
self._name = config.get("name", self._name)
self._user_name = config.get("user_name", self._user_name)
self._language = config.get("language", self._language)
self._category = config.get("category", self._category)
self._personality_description = config.get("personality_description", self._personality_description)
self._personality_conditioning = config.get("personality_conditioning", self._personality_conditioning)
self._welcome_message = config.get("welcome_message", self._welcome_message)
self._include_welcome_message_in_disucssion = config.get("include_welcome_message_in_disucssion", self._include_welcome_message_in_disucssion)
self._user_message_prefix = config.get("user_message_prefix", self._user_message_prefix)
self._link_text = config.get("link_text", self._link_text)
self._ai_message_prefix = config.get("ai_message_prefix", self._ai_message_prefix)
self._anti_prompts = config.get("anti_prompts", self._anti_prompts)
self._dependencies = config.get("dependencies", self._dependencies)
self._disclaimer = config.get("disclaimer", self._disclaimer)
self._model_temperature = config.get("model_temperature", self._model_temperature)
self._model_n_predicts = config.get("model_n_predicts", self._model_n_predicts)
self._model_top_k = config.get("model_top_k", self._model_top_k)
self._model_top_p = config.get("model_top_p", self._model_top_p)
self._model_repeat_penalty = config.get("model_repeat_penalty", self._model_repeat_penalty)
self._model_repeat_last_n = config.get("model_repeat_last_n", self._model_repeat_last_n)
# Script parameters (for example keys to connect to search engine or any other usage)
self._processor_cfg = config.get("processor_cfg", self._processor_cfg)
#set package path
self.personality_package_path = package_path
# Check for a logo file
self.logo_path = self.personality_package_path / "assets" / "logo.png"
if self.logo_path.is_file():
self._logo = Image.open(self.logo_path)
# Get the assets folder path
self.assets_path = self.personality_package_path / "assets"
# Get the scripts folder path
self.scripts_path = self.personality_package_path / "scripts"
# If not exist recreate
self.assets_path.mkdir(parents=True, exist_ok=True)
# If not exist recreate
self.scripts_path.mkdir(parents=True, exist_ok=True)
if self.run_scripts:
#If it has an install script then execute it.
install_file_name = "install.py"
self.install_script_path = self.scripts_path / install_file_name
if self.install_script_path.exists():
module_name = install_file_name[:-3] # Remove the ".py" extension
module_spec = importlib.util.spec_from_file_location(module_name, str(self.install_script_path))
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
if hasattr(module, "Install"):
self._install = module.Install(self, force_reinstall=self.force_reinstall)
else:
self._install = None
#Install requirements
for entry in self._dependencies:
if not is_package_installed(entry):
install_package(entry)
# Search for any processor code
processor_file_name = "processor.py"
self.processor_script_path = self.scripts_path / processor_file_name
if self.processor_script_path.exists():
module_name = processor_file_name[:-3] # Remove the ".py" extension
module_spec = importlib.util.spec_from_file_location(module_name, str(self.processor_script_path))
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
if hasattr(module, "Processor"):
self._processor = module.Processor(self)
else:
self._processor = None
else:
self._processor = None
# Get a list of all files in the assets folder
contents = [str(file) for file in self.assets_path.iterdir() if file.is_file()]
self._assets_list = contents
return config
def save_personality(self, package_path=None):
"""
Save the personality parameters to a YAML configuration file.
Args:
package_path (str or Path): The path to the package directory.
"""
if package_path is None:
package_path = self.personality_package_path
else:
package_path = Path(package_path)
# Building output path
config_file = package_path / "config.yaml"
assets_folder = package_path / "assets"
# Create assets folder if it doesn't exist
if not assets_folder.exists():
assets_folder.mkdir(exist_ok=True, parents=True)
# Create the configuration dictionary
config = {
"author": self._author,
"version": self._version,
"name": self._name,
"user_name": self._user_name,
"language": self._language,
"category": self._category,
"personality_description": self._personality_description,
"personality_conditioning": self._personality_conditioning,
"welcome_message": self._welcome_message,
"include_welcome_message_in_disucssion": self._include_welcome_message_in_disucssion,
"user_message_prefix": self._user_message_prefix,
"link_text": self._link_text,
"ai_message_prefix": self._ai_message_prefix,
"anti_prompts": self._anti_prompts,
"dependencies": self._dependencies,
"disclaimer": self._disclaimer,
"model_temperature": self._model_temperature,
"model_n_predicts": self._model_n_predicts,
"model_top_k": self._model_top_k,
"model_top_p": self._model_top_p,
"model_repeat_penalty": self._model_repeat_penalty,
"model_repeat_last_n": self._model_repeat_last_n
}
# Save the configuration to the YAML file
with open(config_file, "w") as f:
yaml.dump(config, f)
def as_dict(self):
"""
Convert the personality parameters to a dictionary.
Returns:
dict: The personality parameters as a dictionary.
"""
return {
"author": self._author,
"version": self._version,
"name": self._name,
"user_name": self._user_name,
"language": self._language,
"category": self._category,
"personality_description": self._personality_description,
"personality_conditioning": self._personality_conditioning,
"welcome_message": self._welcome_message,
"include_welcome_message_in_disucssion": self._include_welcome_message_in_disucssion,
"user_message_prefix": self._user_message_prefix,
"link_text": self._link_text,
"ai_message_prefix": self._ai_message_prefix,
"anti_prompts": self._anti_prompts,
"dependencies": self._dependencies,
"disclaimer": self._disclaimer,
"model_temperature": self._model_temperature,
"model_n_predicts": self._model_n_predicts,
"model_top_k": self._model_top_k,
"model_top_p": self._model_top_p,
"model_repeat_penalty": self._model_repeat_penalty,
"model_repeat_last_n": self._model_repeat_last_n,
"assets_list":self._assets_list
}
# ========================================== Properties ===========================================
@property
def logo(self):
"""
Get the personality logo.
Returns:
PIL.Image.Image: The personality logo as a Pillow Image object.
"""
if hasattr(self, '_logo'):
return self._logo
else:
return None
@property
def version(self):
"""Get the version of the package."""
return self._version
@version.setter
def version(self, value):
"""Set the version of the package."""
self._version = value
@property
def author(self):
"""Get the author of the package."""
return self._author
@author.setter
def author(self, value):
"""Set the author of the package."""
self._author = value
@property
def name(self) -> str:
"""Get the name."""
return self._name
@name.setter
def name(self, value: str):
"""Set the name."""
self._name = value
@property
def user_name(self) -> str:
"""Get the user name."""
return self._user_name
@user_name.setter
def user_name(self, value: str):
"""Set the user name."""
self._user_name = value
@property
def language(self) -> str:
"""Get the language."""
return self._language
@language.setter
def language(self, value: str):
"""Set the language."""
self._language = value
@property
def category(self) -> str:
"""Get the category."""
return self._category
@category.setter
def category(self, value: str):
"""Set the category."""
self._category = value
@property
def personality_description(self) -> str:
"""
Getter for the personality description.
Returns:
str: The personality description of the AI assistant.
"""
return self._personality_description
@personality_description.setter
def personality_description(self, description: str):
"""
Setter for the personality description.
Args:
description (str): The new personality description for the AI assistant.
"""
self._personality_description = description
@property
def personality_conditioning(self) -> str:
"""
Getter for the personality conditioning.
Returns:
str: The personality conditioning of the AI assistant.
"""
return self.replace_keys(self._personality_conditioning, self.Conditionning_commands)
@personality_conditioning.setter
def personality_conditioning(self, conditioning: str):
"""
Setter for the personality conditioning.
Args:
conditioning (str): The new personality conditioning for the AI assistant.
"""
self._personality_conditioning = conditioning
@property
def welcome_message(self) -> str:
"""
Getter for the welcome message.
Returns:
str: The welcome message of the AI assistant.
"""
return self.replace_keys(self._welcome_message, self.Conditionning_commands)
@welcome_message.setter
def welcome_message(self, message: str):
"""
Setter for the welcome message.
Args:
message (str): The new welcome message for the AI assistant.
"""
self._welcome_message = message
@property
def include_welcome_message_in_disucssion(self) -> bool:
"""
Getter for the include welcome message in disucssion.
Returns:
bool: whether to add the welcome message to tje discussion or not.
"""
return self._include_welcome_message_in_disucssion
@include_welcome_message_in_disucssion.setter
def include_welcome_message_in_disucssion(self, message: bool):
"""
Setter for the welcome message.
Args:
message (str): The new welcome message for the AI assistant.
"""
self._include_welcome_message_in_disucssion = message
@property
def user_message_prefix(self) -> str:
"""
Getter for the user message prefix.
Returns:
str: The user message prefix of the AI assistant.
"""
return self._user_message_prefix
@user_message_prefix.setter
def user_message_prefix(self, prefix: str):
"""
Setter for the user message prefix.
Args:
prefix (str): The new user message prefix for the AI assistant.
"""
self._user_message_prefix = prefix
@property
def link_text(self) -> str:
"""
Getter for the link text.
Returns:
str: The link text of the AI assistant.
"""
return self._link_text
@link_text.setter
def link_text(self, text: str):
"""
Setter for the link text.
Args:
text (str): The new link text for the AI assistant.
"""
self._link_text = text
@property
def ai_message_prefix(self):
"""
Get the AI message prefix.
Returns:
str: The AI message prefix.
"""
return self._ai_message_prefix
@ai_message_prefix.setter
def ai_message_prefix(self, prefix):
"""
Set the AI message prefix.
Args:
prefix (str): The AI message prefix to set.
"""
self._ai_message_prefix = prefix
@property
def anti_prompts(self):
"""
Get the anti-prompts list.
Returns:
list: The anti-prompts list.
"""
return self._anti_prompts
@anti_prompts.setter
def anti_prompts(self, prompts):
"""
Set the anti-prompts list.
Args:
prompts (list): The anti-prompts list to set.
"""
self._anti_prompts = prompts
@property
def dependencies(self) -> List[str]:
"""Getter method for the dependencies attribute.
Returns:
List[str]: The list of dependencies.
"""
return self._dependencies
@dependencies.setter
def dependencies(self, dependencies: List[str]):
"""Setter method for the dependencies attribute.
Args:
dependencies (List[str]): The list of dependencies.
"""
self._dependencies = dependencies
@property
def disclaimer(self) -> str:
"""Getter method for the disclaimer attribute.
Returns:
str: The disclaimer text.
"""
return self._disclaimer
@disclaimer.setter
def disclaimer(self, disclaimer: str):
"""Setter method for the disclaimer attribute.
Args:
disclaimer (str): The disclaimer text.
"""
self._disclaimer = disclaimer
@property
def model_temperature(self) -> float:
"""Get the model's temperature."""
return self._model_temperature
@model_temperature.setter
def model_temperature(self, value: float):
"""Set the model's temperature.
Args:
value (float): The new temperature value.
"""
self._model_temperature = value
@property
def model_n_predicts(self) -> int:
"""Get the number of predictions the model generates."""
return self._model_n_predicts
@model_n_predicts.setter
def model_n_predicts(self, value: int):
"""Set the number of predictions the model generates.
Args:
value (int): The new number of predictions value.
"""
self._model_n_predicts = value
@property
def model_top_k(self) -> int:
"""Get the model's top-k value."""
return self._model_top_k
@model_top_k.setter
def model_top_k(self, value: int):
"""Set the model's top-k value.
Args:
value (int): The new top-k value.
"""
self._model_top_k = value
@property
def model_top_p(self) -> float:
"""Get the model's top-p value."""
return self._model_top_p
@model_top_p.setter
def model_top_p(self, value: float):
"""Set the model's top-p value.
Args:
value (float): The new top-p value.
"""
self._model_top_p = value
@property
def model_repeat_penalty(self) -> float:
"""Get the model's repeat penalty value."""
return self._model_repeat_penalty
@model_repeat_penalty.setter
def model_repeat_penalty(self, value: float):
"""Set the model's repeat penalty value.
Args:
value (float): The new repeat penalty value.
"""
self._model_repeat_penalty = value
@property
def model_repeat_last_n(self) -> int:
"""Get the number of words to consider for repeat penalty."""
return self._model_repeat_last_n
@model_repeat_last_n.setter
def model_repeat_last_n(self, value: int):
"""Set the number of words to consider for repeat penalty.
Args:
value (int): The new number of words value.
"""
self._model_repeat_last_n = value
@property
def assets_list(self) -> list:
"""Get the number of words to consider for repeat penalty."""
return self._assets_list
@assets_list.setter
def assets_list(self, value: list):
"""Set the number of words to consider for repeat penalty.
Args:
value (int): The new number of words value.
"""
self._assets_list = value
@property
def processor(self) -> APScript:
"""Get the number of words to consider for repeat penalty."""
return self._processor
@processor.setter
def processor(self, value: APScript):
"""Set the number of words to consider for repeat penalty.
Args:
value (int): The new number of words value.
"""
self._processor = value
@property
def processor_cfg(self) -> list:
"""Get the number of words to consider for repeat penalty."""
return self._processor_cfg
@processor_cfg.setter
def processor_cfg(self, value: dict):
"""Set the number of words to consider for repeat penalty.
Args:
value (int): The new number of words value.
"""
self._processor_cfg = value
# ========================================== Helper methods ==========================================
def detect_antiprompt(self, text:str) -> bool:
"""
Detects if any of the antiprompts in self.anti_prompts are present in the given text.
Used for the Hallucination suppression system
Args:
text (str): The text to check for antiprompts.
Returns:
bool: True if any antiprompt is found in the text (ignoring case), False otherwise.
"""
for prompt in self.anti_prompts:
if prompt.lower() in text.lower():
return prompt.lower()
return None
# Helper functions
@staticmethod
def replace_keys(input_string, replacements):
"""
Replaces all occurrences of keys in the input string with their corresponding
values from the replacements dictionary.
Args:
input_string (str): The input string to replace keys in.
replacements (dict): A dictionary of key-value pairs, where the key is the
string to be replaced and the value is the replacement string.
Returns:
str: The input string with all occurrences of keys replaced by their
corresponding values.
"""
pattern = r"\{\{(\w+)\}\}"
# The pattern matches "{{key}}" and captures "key" in a group.
# The "\w+" matches one or more word characters (letters, digits, or underscore).
def replace(match):
key = match.group(1)
return replacements.get(key, match.group(0))
output_string = re.sub(pattern, replace, input_string)
return output_string

457
lollms/server.py Normal file
View File

@ -0,0 +1,457 @@
from flask import Flask, render_template, request
from flask_socketio import SocketIO, emit
from flask_cors import CORS
from lollms.personality import AIPersonality, MSG_TYPE
from lollms.binding import LOLLMSConfig, LLMBinding
from lollms.helpers import ASCIIColors
from lollms.console import MainMenu
from lollms.paths import LollmsPaths
from lollms.console import MainMenu
from lollms import BindingBuilder, ModelBuilder, PersonalityBuilder
from typing import List, Tuple
import importlib
from pathlib import Path
import argparse
import logging
import shutil
import yaml
import copy
class LoLLMsServer:
def __init__(self):
self.app = Flask("LoLLMsServer_Server")
#self.app.config['SECRET_KEY'] = 'lollmssecret'
CORS(self.app) # Enable CORS for all routes
self.socketio = SocketIO(self.app, cors_allowed_origins='*')
self.clients = {}
self.current_binding = None
self.current_model = None
self.personalities = []
self.answer = ['']
self.lollms_paths = LollmsPaths.find_paths(force_local=False)
self.menu = MainMenu(self)
# Set log level to warning
self.app.logger.setLevel(logging.WARNING)
# Configure a custom logger for Flask-SocketIO
self.socketio_log = logging.getLogger('socketio')
self.socketio_log.setLevel(logging.WARNING)
self.socketio_log.addHandler(logging.StreamHandler())
self.initialize_routes()
self.run()
def load_binding(self):
if self.config.binding_name is None:
print(f"No bounding selected")
print("Please select a valid model or install a new one from a url")
self.menu.select_binding()
# cfg.download_model(url)
else:
try:
self.binding_class = BindingBuilder().build_binding(self.lollms_paths.bindings_zoo_path, self.config)
except Exception as ex:
print(ex)
print(f"Couldn't find binding. Please verify your configuration file at {self.config.file_path} or use the next menu to select a valid binding")
self.menu.select_binding()
def load_model(self):
try:
self.model = ModelBuilder(self.binding_class, self.config).get_model()
except Exception as ex:
ASCIIColors.error(f"Couldn't load model.")
ASCIIColors.error(f"Binding returned this exception : {ex}")
ASCIIColors.error(f"{self.config.get_model_path_infos()}")
print("Please select a valid model or install a new one from a url")
self.menu.select_model()
def load_personality(self):
try:
self.personality = PersonalityBuilder(self.lollms_paths, self.config, self.model).build_personality()
except Exception as ex:
ASCIIColors.error(f"Couldn't load personality.")
ASCIIColors.error(f"Binding returned this exception : {ex}")
ASCIIColors.error(f"{self.config.get_personality_path_infos()}")
print("Please select a valid model or install a new one from a url")
self.menu.select_model()
self.cond_tk = self.personality.model.tokenize(self.personality.personality_conditioning)
self.n_cond_tk = len(self.cond_tk)
def initialize_routes(self):
@self.socketio.on('connect')
def handle_connect():
client_id = request.sid
self.clients[client_id] = {"namespace": request.namespace, "full_discussion_blocks": []}
ASCIIColors.success(f'Client connected with session ID: {client_id}')
@self.socketio.on('disconnect')
def handle_disconnect():
client_id = request.sid
if client_id in self.clients:
del self.clients[client_id]
print(f'Client disconnected with session ID: {client_id}')
@self.socketio.on('list_available_bindings')
def handle_list_bindings():
binding_infs = []
for p in self.bindings_path.iterdir():
if p.is_dir():
with open(p/"binding_card.yaml", "r") as f:
card = yaml.safe_load(f)
with open(p/"models.yaml", "r") as f:
models = yaml.safe_load(f)
entry={
"name":p.name,
"card":card,
"models":models
}
binding_infs.append(entry)
emit('bindings_list', {'success':True, 'bindings': binding_infs}, room=request.sid)
@self.socketio.on('list_available_personalities')
def handle_list_available_personalities():
personalities_folder = self.personalities_path
personalities = {}
for language_folder in personalities_folder.iterdir():
if language_folder.is_dir():
personalities[language_folder.name] = {}
for category_folder in language_folder.iterdir():
if category_folder.is_dir():
personalities[language_folder.name][category_folder.name] = []
for personality_folder in category_folder.iterdir():
if personality_folder.is_dir():
try:
personality_info = {"folder":personality_folder.stem}
config_path = personality_folder / 'config.yaml'
with open(config_path) as config_file:
config_data = yaml.load(config_file, Loader=yaml.FullLoader)
personality_info['name'] = config_data.get('name',"No Name")
personality_info['description'] = config_data.get('personality_description',"")
personality_info['author'] = config_data.get('author', 'ParisNeo')
personality_info['version'] = config_data.get('version', '1.0.0')
scripts_path = personality_folder / 'scripts'
personality_info['has_scripts'] = scripts_path.is_dir()
assets_path = personality_folder / 'assets'
gif_logo_path = assets_path / 'logo.gif'
webp_logo_path = assets_path / 'logo.webp'
png_logo_path = assets_path / 'logo.png'
jpg_logo_path = assets_path / 'logo.jpg'
jpeg_logo_path = assets_path / 'logo.jpeg'
bmp_logo_path = assets_path / 'logo.bmp'
personality_info['has_logo'] = png_logo_path.is_file() or gif_logo_path.is_file()
if gif_logo_path.exists():
personality_info['avatar'] = str(gif_logo_path).replace("\\","/")
elif webp_logo_path.exists():
personality_info['avatar'] = str(webp_logo_path).replace("\\","/")
elif png_logo_path.exists():
personality_info['avatar'] = str(png_logo_path).replace("\\","/")
elif jpg_logo_path.exists():
personality_info['avatar'] = str(jpg_logo_path).replace("\\","/")
elif jpeg_logo_path.exists():
personality_info['avatar'] = str(jpeg_logo_path).replace("\\","/")
elif bmp_logo_path.exists():
personality_info['avatar'] = str(bmp_logo_path).replace("\\","/")
else:
personality_info['avatar'] = ""
personalities[language_folder.name][category_folder.name].append(personality_info)
except Exception as ex:
print(f"Couldn't load personality from {personality_folder} [{ex}]")
emit('personalities_list', {'personalities': personalities}, room=request.sid)
@self.socketio.on('list_available_models')
def handle_list_available_models():
"""List the available models
Returns:
_type_: _description_
"""
if self.binding_class is None:
emit('available_models_list', {'success':False, 'error': "No binding selected"}, room=request.sid)
model_list = self.binding_class.get_available_models()
models = []
for model in model_list:
try:
filename = model.get('filename',"")
server = model.get('server',"")
image_url = model.get("icon", '/images/default_model.png')
license = model.get("license", 'unknown')
owner = model.get("owner", 'unknown')
owner_link = model.get("owner_link", 'https://github.com/ParisNeo')
filesize = int(model.get('filesize',0))
description = model.get('description',"")
model_type = model.get("model_type","")
if server.endswith("/"):
path = f'{server}{filename}'
else:
path = f'{server}/{filename}'
local_path = self.models_path/f'{self.config["binding_name"]}/{filename}'
is_installed = local_path.exists() or model_type.lower()=="api"
models.append({
'title': filename,
'icon': image_url, # Replace with the path to the model icon
'license': license,
'owner': owner,
'owner_link': owner_link,
'description': description,
'isInstalled': is_installed,
'path': path,
'filesize': filesize,
'model_type': model_type
})
except Exception as ex:
print("#################################")
print(ex)
print("#################################")
print(f"Problem with model : {model}")
emit('available_models_list', {'success':True, 'available_models': models}, room=request.sid)
@self.socketio.on('list_available_personalities_languages')
def handle_list_available_personalities_languages():
try:
languages = [l for l in self.personalities_path.iterdir()]
emit('available_personalities_languages_list', {'success': True, 'available_personalities_languages': languages})
except Exception as ex:
emit('available_personalities_languages_list', {'success': False, 'error':str(ex)})
@self.socketio.on('list_available_personalities_categories')
def handle_list_available_personalities_categories(data):
try:
language = data["language"]
categories = [l for l in (self.personalities_path/language).iterdir()]
emit('available_personalities_categories_list', {'success': True, 'available_personalities_categories': categories})
except Exception as ex:
emit('available_personalities_categories_list', {'success': False, 'error':str(ex)})
@self.socketio.on('list_available_personalities_names')
def handle_list_available_personalities_names(data):
try:
language = data["language"]
category = data["category"]
personalities = [l for l in (self.personalities_path/language/category).iterdir()]
emit('list_available_personalities_names_list', {'success': True, 'list_available_personalities_names': personalities})
except Exception as ex:
emit('list_available_personalities_names_list', {'success': False, 'error':str(ex)})
@self.socketio.on('select_binding')
def handle_select_binding(data):
self.cp_config = copy.deepcopy(self.config)
self.cp_config["binding_name"] = data['binding_name']
try:
self.binding_class = self.build_binding(self.bindings_path, self.cp_config)
self.config = self.cp_config
emit('select_binding', {'success':True, 'binding_name': self.cp_config["binding_name"]}, room=request.sid)
except Exception as ex:
print(ex)
emit('select_binding', {'success':False, 'binding_name': self.cp_config["binding_name"], 'error':f"Couldn't load binding:\n{ex}"}, room=request.sid)
@self.socketio.on('select_model')
def handle_select_model(data):
model_name = data['model_name']
if self.binding_class is None:
emit('select_model', {'success':False, 'model_name': model_name, 'error':f"Please select a binding first"}, room=request.sid)
return
self.cp_config = copy.deepcopy(self.config)
self.cp_config["model_name"] = data['model_name']
try:
self.current_model = self.binding_class(self.cp_config)
emit('select_model', {'success':True, 'model_name': model_name}, room=request.sid)
except Exception as ex:
print(ex)
emit('select_model', {'success':False, 'model_name': model_name, 'error':f"Please select a binding first"}, room=request.sid)
@self.socketio.on('add_personality')
def handle_add_personality(data):
personality_path = data['path']
try:
personality = AIPersonality(self.lollms_paths, personality_path)
self.personalities.append(personality)
self.config["personalities"].append(personality_path)
emit('personality_added', {'success':True, 'name': personality.name, 'id':len(self.personalities)-1}, room=request.sid)
self.config.save_config()
except Exception as e:
error_message = str(e)
emit('personality_add_failed', {'success':False, 'error': error_message}, room=request.sid)
@self.socketio.on('list_active_personalities')
def handle_list_active_personalities():
personality_names = [p.name for p in self.personalities]
emit('active_personalities_list', {'success':True, 'personalities': personality_names}, room=request.sid)
@self.socketio.on('activate_personality')
def handle_activate_personality(data):
personality_id = data['id']
if personality_id<len(self.personalities):
self.active_personality=self.personalities[personality_id]
emit('activate_personality', {'success':True, 'name': self.active_personality, 'id':len(self.personalities)-1}, room=request.sid)
self.config["active_personality_id"]=personality_id
self.config.save_config()
else:
emit('personality_add_failed', {'success':False, 'error': "Personality ID not valid"}, room=request.sid)
@self.socketio.on('generate_text')
def handle_generate_text(data):
model = self.current_model
client_id = request.sid
prompt = data['prompt']
personality: AIPersonality = self.personalities[data['personality']]
personality.model = model
cond_tk = personality.model.tokenize(personality.personality_conditioning)
n_cond_tk = len(cond_tk)
# Placeholder code for text generation
# Replace this with your actual text generation logic
print(f"Text generation requested by client: {client_id}")
self.answer[0] = ''
full_discussion_blocks = self.clients[client_id]["full_discussion_blocks"]
if prompt != '':
if personality.processor is not None and personality.processor_cfg["process_model_input"]:
preprocessed_prompt = personality.processor.process_model_input(prompt)
else:
preprocessed_prompt = prompt
if personality.processor is not None and personality.processor_cfg["custom_workflow"]:
full_discussion_blocks.append(personality.user_message_prefix)
full_discussion_blocks.append(preprocessed_prompt)
else:
full_discussion_blocks.append(personality.user_message_prefix)
full_discussion_blocks.append(preprocessed_prompt)
full_discussion_blocks.append(personality.link_text)
full_discussion_blocks.append(personality.ai_message_prefix)
else:
print(output.strip(),end="",flush=True)
full_discussion = personality.personality_conditioning + ''.join(full_discussion_blocks)
def callback(text, message_type: MSG_TYPE):
if message_type == MSG_TYPE.MSG_TYPE_CHUNK:
self.answer[0] = self.answer[0] + text
emit('text_chunk', {'chunk': text}, room=client_id)
return True
tk = personality.model.tokenize(full_discussion)
n_tokens = len(tk)
fd = personality.model.detokenize(tk[-min(self.config.ctx_size-n_cond_tk,n_tokens):])
if personality.processor is not None and personality.processor_cfg["custom_workflow"]:
print("processing...", end="", flush=True)
generated_text = personality.processor.run_workflow(prompt, previous_discussion_text=personality.personality_conditioning+fd, callback=callback)
print(generated_text)
else:
print("generating...", end="", flush=True)
generated_text = personality.model.generate(personality.personality_conditioning+fd, n_predict=personality.model_n_predicts, callback=callback)
if personality.processor is not None and personality.processor_cfg["process_model_output"]:
generated_text = personality.processor.process_model_output(generated_text)
full_discussion_blocks.append(generated_text.strip())
print(f"{ASCIIColors.color_green}ok{ASCIIColors.color_reset}", end="", flush=True)
# Emit the generated text to the client
emit('text_generated', {'text': generated_text}, room=client_id)
def build_binding(self, bindings_path: Path, cfg: LOLLMSConfig)->LLMBinding:
binding_path = Path(bindings_path) / cfg["binding_name"]
# first find out if there is a requirements.txt file
install_file_name = "install.py"
install_script_path = binding_path / install_file_name
if install_script_path.exists():
module_name = install_file_name[:-3] # Remove the ".py" extension
module_spec = importlib.util.spec_from_file_location(module_name, str(install_script_path))
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
if hasattr(module, "Install"):
module.Install(self.config)
# define the full absolute path to the module
absolute_path = binding_path.resolve()
# infer the module name from the file path
module_name = binding_path.stem
# use importlib to load the module from the file path
loader = importlib.machinery.SourceFileLoader(module_name, str(absolute_path / "__init__.py"))
binding_module = loader.load_module()
binding_class = getattr(binding_module, binding_module.binding_name)
return binding_class
def run(self, host="localhost", port="9600"):
parser = argparse.ArgumentParser()
parser.add_argument('--host', '-hst', default=host, help='Host name')
parser.add_argument('--port', '-prt', default=port, help='Port number')
parser.add_argument('--config', '-cfg', default=None, help='Path to the configuration file')
parser.add_argument('--bindings_path', '-bp', default=str(self.lollms_paths.bindings_zoo_path),
help='The path to the Bindings folder')
parser.add_argument('--personalities_path', '-pp',
default=str(self.lollms_paths.personalities_zoo_path),
help='The path to the personalities folder')
parser.add_argument('--models_path', '-mp', default=str(self.lollms_paths.personal_models_path),
help='The path to the models folder')
parser.add_argument('--binding_name', '-b', default="llama_cpp_official",
help='Binding to be used by default')
parser.add_argument('--model_name', '-m', default=None,
help='Model name')
parser.add_argument('--personality_full_name', '-p', default="personality",
help='Personality path relative to the personalities folder (language/category/name)')
args = parser.parse_args()
# Configuration loading part
self.config = LOLLMSConfig.autoload(self.lollms_paths, args.config)
if args.binding_name:
self.config.binding_name = args.binding_name
if args.model_name:
self.config.model_name = args.model_name
# Recover bindings path
self.personalities_path = Path(args.personalities_path)
self.bindings_path = Path(args.bindings_path)
self.models_path = Path(args.models_path)
if self.config.binding_name is None:
self.menu.select_binding()
else:
self.binding_class = self.build_binding(self.bindings_path, self.config)
if self.config.model_name is None:
self.menu.select_model()
else:
try:
self.current_model = self.binding_class(self.config)
except Exception as ex:
print(f"{ASCIIColors.color_red}Couldn't load model Please select a valid model{ASCIIColors.color_reset}")
print(f"{ASCIIColors.color_red}{ex}{ASCIIColors.color_reset}")
self.menu.select_model()
for p in self.config.personalities:
personality = AIPersonality(self.lollms_paths, self.config.lollms_paths.personalities_zoo_path/p, self.current_model)
self.personalities.append(personality)
self.active_personality = self.personalities[self.config.active_personality_id]
self.menu.show_logo()
print(f"{ASCIIColors.color_red}Current personality : {ASCIIColors.color_reset}{self.active_personality}")
print("running...")
self.socketio.run(self.app, host=args.host, port=args.port)
def main():
LoLLMsServer()
if __name__ == '__main__':
main()

265
lollms/settings.py Normal file
View File

@ -0,0 +1,265 @@
from lollms.personality import AIPersonality, MSG_TYPE
from lollms.binding import LOLLMSConfig, LLMBinding
from lollms.helpers import ASCIIColors
from lollms.paths import LollmsPaths
import shutil
import yaml
import importlib
from pathlib import Path
import sys
import pkg_resources
import argparse
from tqdm import tqdm
from lollms import BindingBuilder, ModelBuilder, PersonalityBuilder
from lollms.console import MainMenu
class Settings:
def __init__(
self,
configuration_path:str|Path=None,
show_logo:bool=True,
show_commands_list:bool=False,
show_personality_infos:bool=True,
show_model_infos:bool=True,
show_welcome_message:bool=True
):
# Fore it to be a path
self.is_logging = False
self.log_file_path = ""
self.bot_says = ""
# get paths
self.lollms_paths = LollmsPaths.find_paths(force_local=False)
# Build menu
self.menu = MainMenu(self)
# Change configuration
original = self.lollms_paths.default_cfg_path
if configuration_path is None:
local = self.lollms_paths.personal_configuration_path / "local_config.yaml"
else:
local = Path(configuration_path)
if not local.exists():
shutil.copy(original, local)
self.cfg_path = local
self.config = LOLLMSConfig(self.cfg_path)
# load binding
self.load_binding()
# Load model
self.load_model()
# cfg.binding_name = llm_binding.binding_folder_name
# cfg.model_name = model_name
# Load personality
try:
self.load_personality()
except Exception as ex:
print(f"No personality selected. Please select one from the zoo. {ex}")
self.menu.select_personality()
if show_logo:
self.menu.show_logo()
if show_commands_list:
self.menu.show_commands_list()
if show_personality_infos:
print()
print(f"{ASCIIColors.color_green}Current personality : {ASCIIColors.color_reset}{self.personality}")
print(f"{ASCIIColors.color_green}Version : {ASCIIColors.color_reset}{self.personality.version}")
print(f"{ASCIIColors.color_green}Author : {ASCIIColors.color_reset}{self.personality.author}")
print(f"{ASCIIColors.color_green}Description : {ASCIIColors.color_reset}{self.personality.personality_description}")
print()
if show_model_infos:
print()
print(f"{ASCIIColors.color_green}Current binding : {ASCIIColors.color_reset}{self.config['binding_name']}")
print(f"{ASCIIColors.color_green}Current model : {ASCIIColors.color_reset}{self.config['model_name']}")
print()
# If there is a disclaimer, show it
if self.personality.disclaimer != "":
print(f"\n{ASCIIColors.color_red}Disclaimer")
print(self.personality.disclaimer)
print(f"{ASCIIColors.color_reset}")
if show_welcome_message and self.personality.welcome_message:
print(self.personality.name+": ", end="")
print(self.personality.welcome_message)
self.menu.main_menu()
def ask_override_file(self):
user_input = input("Would you like to override the existing file? (Y/N): ")
user_input = user_input.lower()
if user_input == "y" or user_input == "yes":
print("File will be overridden.")
return True
elif user_input == "n" or user_input == "no":
print("File will not be overridden.")
return False
else:
print("Invalid input. Please enter 'Y' or 'N'.")
# Call the function again recursively to prompt the user for valid input
return self.ask_override_file()
def start_log(self, file_name):
if Path(file_name).is_absolute():
self.log_file_path = Path(file_name)
else:
home_dir = Path.home()/"Documents/lollms/logs"
home_dir.mkdir(parents=True, exist_ok=True)
self.log_file_path = home_dir/file_name
if self.log_file_path.exists():
if not self.ask_override_file():
print("Canceled")
return
try:
with(open(self.log_file_path, "w") as f):
self.header = f"""------------------------
Log file for lollms discussion
Participating personalities:
{self.config['personalities']}
------------------------
"""
f.write(self.header)
self.is_logging = True
return True
except:
return False
def log(self, text, append=False):
try:
with(open(self.log_file_path, "a" if append else "w") as f):
f.write(text) if append else f.write(self.header+self.personality.personality_conditioning+text)
return True
except:
return False
def stop_log(self):
self.is_logging = False
def load_binding(self):
if self.config.binding_name is None:
print(f"No bounding selected")
print("Please select a valid model or install a new one from a url")
self.menu.select_binding()
# cfg.download_model(url)
else:
try:
self.binding_class = BindingBuilder().build_binding(self.lollms_paths.bindings_zoo_path, self.config)
except Exception as ex:
print(ex)
print(f"Couldn't find binding. Please verify your configuration file at {self.cfg_path} or use the next menu to select a valid binding")
self.menu.select_binding()
def load_model(self):
try:
self.model = ModelBuilder(self.binding_class, self.config).get_model()
except Exception as ex:
ASCIIColors.error(f"Couldn't load model. Please verify your configuration file at {self.cfg_path} or use the next menu to select a valid model")
ASCIIColors.error(f"Binding returned this exception : {ex}")
ASCIIColors.error(f"{self.config.get_model_path_infos()}")
print("Please select a valid model or install a new one from a url")
self.menu.select_model()
def load_personality(self):
try:
self.personality = PersonalityBuilder(self.lollms_paths, self.config, self.model).build_personality()
except Exception as ex:
ASCIIColors.error(f"Couldn't load personality. Please verify your configuration file at {self.cfg_path} or use the next menu to select a valid personality")
ASCIIColors.error(f"Binding returned this exception : {ex}")
ASCIIColors.error(f"{self.config.get_personality_path_infos()}")
print("Please select a valid model or install a new one from a url")
self.menu.select_model()
self.cond_tk = self.personality.model.tokenize(self.personality.personality_conditioning)
self.n_cond_tk = len(self.cond_tk)
def reset_context(self):
if self.personality.include_welcome_message_in_disucssion:
full_discussion = (
self.personality.ai_message_prefix +
self.personality.welcome_message +
self.personality.link_text
)
else:
full_discussion = ""
return full_discussion
def safe_generate(self, full_discussion:str, n_predict=None, callback=None):
"""safe_generate
Args:
full_discussion (string): A prompt or a long discussion to use for generation
callback (_type_, optional): A callback to call for each received token. Defaults to None.
Returns:
str: Model output
"""
if n_predict == None:
n_predict =self.personality.model_n_predicts
tk = self.personality.model.tokenize(full_discussion)
n_tokens = len(tk)
fd = self.personality.model.detokenize(tk[-min(self.config.ctx_size-self.n_cond_tk,n_tokens):])
self.bot_says = ""
output = self.personality.model.generate(self.personality.personality_conditioning+fd, n_predict=n_predict, callback=callback)
return output
def remove_text_from_string(self, string, text_to_find):
"""
Removes everything from the first occurrence of the specified text in the string (case-insensitive).
Parameters:
string (str): The original string.
text_to_find (str): The text to find in the string.
Returns:
str: The updated string.
"""
index = string.lower().find(text_to_find.lower())
if index != -1:
string = string[:index]
return string
def main():
# Create the argument parser
parser = argparse.ArgumentParser(description='App Description')
# Add the configuration path argument
parser.add_argument('--configuration_path', default=None,
help='Path to the configuration file')
parser.add_argument('--reset_personal_path', action='store_true', help='Reset the personal path')
parser.add_argument('--reset_config', action='store_true', help='Reset the configurations')
# Parse the command-line arguments
args = parser.parse_args()
if args.reset_personal_path:
LollmsPaths.reset_configs()
if args.reset_config:
cfg_path = LollmsPaths.find_paths().personal_configuration_path / "local_config.yaml"
try:
cfg_path.unlink()
ASCIIColors.success("LOLLMS configuration reset successfully")
except:
ASCIIColors.success("Couldn't reset LOLLMS configuration")
configuration_path = args.configuration_path
Settings(configuration_path=configuration_path, show_commands_list=True)
if __name__ == "__main__":
main()

7
requirements.txt Normal file
View File

@ -0,0 +1,7 @@
tqdm
pyyaml
Pillow
flask
flask_socketio
flask-cors
simple-websocket

7
requirements_dev.txt Normal file
View File

@ -0,0 +1,7 @@
tqdm
pyyaml
Pillow
flask
flask_socketio
flask-cors
simple-websocket

52
setup.py Normal file
View File

@ -0,0 +1,52 @@
from pathlib import Path
from typing import Union
import setuptools
with open("README.md", "r") as fh:
long_description = fh.read()
def read_requirements(path: Union[str, Path]):
with open(path, "r") as file:
return file.read().splitlines()
requirements = read_requirements("requirements.txt")
requirements_dev = read_requirements("requirements_dev.txt")
def get_all_files(path):
path = Path(path)
file_list = []
for file_path in path.rglob('*'):
if file_path.is_file():
if file_path.name != "__pycache__" and file_path.suffix !=".pyc" and file_path.name!="local_config.yaml" and file_path.name!=".installed" and file_path.name!=".git" and file_path.name!=".gitignore":
file_list.append("/".join(str(file_path).replace("\\","/").split("/")[1:]))
return file_list
setuptools.setup(
name="lollms",
version="1.1.60",
author="Saifeddine ALOUI",
author_email="aloui.saifeddine@gmail.com",
description="A python library for AI personality definition",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/ParisNeo/lollms",
packages=setuptools.find_packages(),
include_package_data=True,
install_requires=requirements,
entry_points={
'console_scripts': [
'lollms-server = lollms.server:main',
'lollms-console = lollms.console:main',
'lollms-settings = lollms.settings:main',
],
},
extras_require={"dev": requirements_dev},
classifiers=[
"Programming Language :: Python :: 3.8",
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
],
)

2
train/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
output
!output/.keep

View File

@ -0,0 +1,48 @@
{
"train_batch_size": "auto",
"gradient_accumulation_steps": "auto",
"train_micro_batch_size_per_gpu": "auto",
"fp16": {
"enabled": "auto",
"min_loss_scale": 1,
"loss_scale_window": 1000,
"hysteresis": 2,
"initial_scale_power": 32
},
"bf16": {
"enabled": "auto"
},
"gradient_clipping": 1,
"zero_optimization": {
"stage": 2,
"offload_param": {
"device": "none"
},
"offload_optimizer": {
"device": "none"
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"contiguous_gradients": true
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": [
0.9,
0.999
],
"eps": 1e-08
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"warmup_type": "linear"
}
}
}

View File

@ -0,0 +1,29 @@
# model/tokenizer
model_name: # add model here
tokenizer_name: # add model here
gradient_checkpointing: true
save_name: # CHANGE
# dataset
streaming: false
num_proc: 64
dataset_path: # update
max_length: 1024
batch_size: 32
# train dynamics
lr: 5.0e-5
eval_every: 800
eval_steps: 100
save_every: 800
output_dir: # CHANGE
checkpoint: null
lora: false
warmup_steps: 100
num_epochs: 2
# logging
wandb: true
wandb_entity: # update
wandb_project_name: # update
seed: 42

View File

@ -0,0 +1,31 @@
# model/tokenizer
model_name: # update
tokenizer_name: # update
gradient_checkpointing: false
save_name: # CHANGE
# dataset
streaming: false
num_proc: 64
dataset_path: # CHANGE
max_length: 1024
batch_size: 4
# train dynamics
lr: 5.0e-5
min_lr: 0
weight_decay: 0.0
eval_every: 2000
eval_steps: 100
save_every: 2000
output_dir: # CHANGE
checkpoint: null
lora: true
warmup_steps: 100
num_epochs: 2
# logging
wandb: true
wandb_entity: # update
wandb_project_name: # update
seed: 42

View File

@ -0,0 +1,31 @@
# model/tokenizer
model_name: jondurbin/airoboros-7b-gpt4 # update
tokenizer_name: jondurbin/airoboros-7b-gpt4 # update
gradient_checkpointing: false
save_name: parisneo-7b_gpt42_lora # CHANGE
# dataset
streaming: false
num_proc: 64
dataset_path: # CHANGE
max_length: 1024
batch_size: 4
# train dynamics
lr: 5.0e-5
min_lr: 0
weight_decay: 0.0
eval_every: 2000
eval_steps: 100
save_every: 2000
output_dir: output # CHANGE
checkpoint: null
lora: true
warmup_steps: 100
num_epochs: 2
# logging
wandb: false # update if you want to use weights and biases
wandb_entity: # update
wandb_project_name: # update
seed: 42

15
train/requirements.txt Normal file
View File

@ -0,0 +1,15 @@
accelerate
datasets
torchmetrics
evaluate
transformers>=4.28.0
wandb
pip
peft
nodelist-inflator
deepspeed
sentencepiece
jsonlines
nomic
scikit-learn
matplotlib

233
train/train.py Normal file
View File

@ -0,0 +1,233 @@
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler, LlamaForCausalLM
import torch
from torch.optim import AdamW
from argparse import ArgumentParser
from read import read_config
from accelerate import Accelerator
from accelerate.utils import DummyScheduler, DummyOptim, set_seed
from peft import get_peft_model, LoraConfig, TaskType
from data import load_data
from torchmetrics import MeanMetric
from tqdm import tqdm
import wandb
torch.backends.cuda.matmul.allow_tf32 = True
def format_metrics(metrics, split, prefix=""):
log = f"[{split}]" + prefix
log += " ".join([f"{key}: {value:.4f}" for key, value in metrics.items()])
return log
def evaluate(model, val_dataloader):
model.eval()
val_loss = MeanMetric(nan_strategy="error").to(model.device)
with torch.no_grad():
for batch in tqdm(val_dataloader):
loss = model(**batch).loss
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
val_loss.update(loss_values["loss"])
return val_loss
def train(accelerator, config):
set_seed(config['seed'])
accelerator.print(config)
accelerator.print(f"Using {accelerator.num_processes} GPUs")
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'])
# if no pad token, set it to eos
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
with accelerator.main_process_first():
train_dataloader, val_dataloader = load_data(config, tokenizer)
checkpoint = config["gradient_checkpointing"]
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
use_cache=False if checkpoint else True,
trust_remote_code=True)
if checkpoint:
model.gradient_checkpointing_enable()
if config["lora"]:
peft_config = LoraConfig(
# should R be configurable?
task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
optimizer_cls = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
# karpathy doesn't decay embeddding, maybe we should exclude
# https://github.com/karpathy/minGPT/commit/bbbdac74fa9b2e55574d70056163ffbae42310c1#diff-2075fa9c224b395be5bda85544dd36572b59c76c54562819eadadbf268602834R157s
optimizer = optimizer_cls(model.parameters(), lr=config["lr"], weight_decay=config["weight_decay"])
if accelerator.state.deepspeed_plugin is not None:
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
# decay to min_lr instead of 0
lr_ratio = config["min_lr"] / config["lr"]
accelerator.print(f"Len of train_dataloader: {len(train_dataloader)}")
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * config["num_epochs"]
# instead of decaying to zero, decay to ratio of min_lr / lr
total_num_steps += int(total_num_steps * lr_ratio) + config["warmup_steps"]
accelerator.print(f"Total training steps: {total_num_steps}")
# Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
scheduler = get_scheduler(
name="cosine",
optimizer=optimizer,
num_warmup_steps=config["warmup_steps"] * accelerator.num_processes,
num_training_steps=total_num_steps,
)
else:
scheduler = DummyScheduler(
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
)
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, val_dataloader, scheduler
)
# setup for saving training states in case preemption
accelerator.register_for_checkpointing(scheduler)
if config["checkpoint"]:
accelerator.load_state(config["checkpoint"])
accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}")
path = os.path.basename(config["train_args"]["resume_from_checkpoint"])
training_difference = os.path.splitext(path)[0]
resume_step = int(training_difference.replace("step_", ""))
accelerator.skip_first_batches(train_dataloader, resume_step)
accelerator.print(f"Resuming from step {resume_step}")
# log gradients
if accelerator.is_main_process and config["wandb"]:
wandb.watch(model, log_freq=config["log_grads_every"], log="all")
for epoch in range(config["num_epochs"]):
train_loss = MeanMetric(nan_strategy="error").to(model.device)
for step, batch in enumerate(tqdm(train_dataloader)):
model.train()
outputs = model(**batch)
loss = outputs.loss
# gather loss before backprop in case of gradient accumulation
loss_values = accelerator.gather_for_metrics({"loss": loss.detach().float()})
train_loss.update(loss_values["loss"])
loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
# get gradient norm of all params
# log LR in case something weird happens
if step > 0 and step % (config["eval_every"] // 10) == 0:
if config["wandb"]:
curr_step = step + epoch * len(train_dataloader)
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step)
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if step > 0 and step % config["save_every"] == 0:
curr_step = step + epoch * len(train_dataloader)
accelerator.save_state(f"{config['output_dir']}/step_{curr_step}")
if step > 0 and (step % config["eval_every"] == 0 or step == len(train_dataloader) - 1):
val_loss = evaluate(model, val_dataloader)
log_train = {
"train_loss": train_loss.compute()
}
log_val = {
"val_loss": val_loss.compute()
}
if config["wandb"]:
curr_step = step + epoch * len(train_dataloader)
accelerator.log({**log_train, **log_val}, step=curr_step)
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
accelerator.print(format_metrics(log_train, "train", f" step {step} "))
accelerator.print(format_metrics(log_val, "val", f" step {step} "))
train_loss.reset()
accelerator.print(f"Epoch {epoch} finished")
accelerator.print(f"Pushing to HF hub")
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
try:
if accelerator.is_main_process:
unwrapped_model.push_to_hub(config["save_name"] + f"-epoch_{epoch}", private=True)
except Exception as e:
accelerator.print(e)
accelerator.print(f"Failed to push to hub")
unwrapped_model.save_pretrained(
f"{config['output_dir']}/epoch_{epoch}",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(model),
)
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
f"{config['output_dir']}/final",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(model),
)
accelerator.end_training()
if __name__ == "__main__":
# parse arguments by reading in a config
parser = ArgumentParser()
parser.add_argument("--config", type=str, default="config.yaml")
args = parser.parse_args()
config = read_config(args.config)
if config["wandb"]:
accelerator = Accelerator(log_with="wandb")
accelerator.init_trackers(
project_name=config["wandb_project_name"],
config=config,
init_kwargs={"wandb": {"entity": config["wandb_entity"]}},
)
else:
accelerator = Accelerator()
train(accelerator, config=config)