mirror of
https://github.com/ParisNeo/lollms.git
synced 2024-12-26 15:51:09 +00:00
added skills library
This commit is contained in:
parent
1d16bc48c1
commit
4a70abd9b3
@ -529,6 +529,7 @@ class LollmsApplication(LoLLMsCom):
|
||||
internet_search_infos = []
|
||||
documentation = ""
|
||||
knowledge = ""
|
||||
knowledge_infos = {"titles":[],"contents":[]}
|
||||
|
||||
|
||||
# boosting information
|
||||
@ -633,15 +634,17 @@ class LollmsApplication(LoLLMsCom):
|
||||
self.personality.step_start("Building skills library")
|
||||
if discussion is None:
|
||||
discussion = self.recover_discussion(client_id)
|
||||
query = self.personality.fast_gen(f"!@>discussion:\n{discussion[-2048:]}\n!@>system: Read the discussion and craft a short skills database search query suited to recover needed information to reply to last {self.config.user_name} message.\nDo not answer the prompt. Do not add explanations.\n!@>search query: ", max_generation_size=256, show_progress=True, callback=self.personality.sink)
|
||||
query = self.personality.fast_gen(f"!@>system: Read the discussion and reformulate {self.config.user_name}'s request.\nDo not answer the request.\nDo not add explanations.\n!@>discussion:\n{discussion[-2048:]}\n!@>search query: ", max_generation_size=256, show_progress=True, callback=self.personality.sink)
|
||||
# skills = self.skills_library.query_entry(query)
|
||||
skills, sorted_similarities, document_ids = self.skills_library.query_vector_db(query, top_k=3, max_dist=1000)#query_entry_fts(query)
|
||||
|
||||
if self.config.debug:
|
||||
ASCIIColors.info(f"Query : {query}")
|
||||
skill_titles, skills = self.skills_library.query_vector_db(query, top_k=3, max_dist=1000)#query_entry_fts(query)
|
||||
knowledge_infos={"titles":skill_titles,"contents":skills}
|
||||
if len(skills)>0:
|
||||
if knowledge=="":
|
||||
knowledge=f"!@>knowledge:\n!@>instructions: Use the knowledge to answer {self.config.user_name}'s message. If you don't have enough information or you don't know how to answer, just say you do not know.\n"
|
||||
for i,(category, title, content) in enumerate(skills):
|
||||
knowledge += f"!@>knowledge {i}:\n!@>category:\n{category}\n!@>title:\n{title}\ncontent:\n{content}"
|
||||
knowledge=f"!@>knowledge:\n"
|
||||
for i,(title, content) in enumerate(zip(skill_titles,skills)):
|
||||
knowledge += f"!@>knowledge {i}:\n!@>title:\n{title}\ncontent:\n{content}"
|
||||
self.personality.step_end("Building skills library")
|
||||
except Exception as ex:
|
||||
ASCIIColors.error(ex)
|
||||
@ -803,6 +806,7 @@ class LollmsApplication(LoLLMsCom):
|
||||
"internet_search_results":internet_search_results,
|
||||
"documentation":documentation,
|
||||
"knowledge":knowledge,
|
||||
"knowledge_infos":knowledge_infos,
|
||||
"user_description":user_description,
|
||||
"discussion_messages":discussion_messages,
|
||||
"positive_boost":positive_boost,
|
||||
|
@ -1,11 +1,11 @@
|
||||
import sqlite3
|
||||
from safe_store.text_vectorizer import TextVectorizer, VectorizationMethod, VisualizationMethod
|
||||
import numpy as np
|
||||
class SkillsLibrary:
|
||||
|
||||
def __init__(self, db_path):
|
||||
self.db_path =db_path
|
||||
self._initialize_db()
|
||||
self.vectorizer = TextVectorizer(VectorizationMethod.TFIDF_VECTORIZER)
|
||||
|
||||
|
||||
def _initialize_db(self):
|
||||
@ -120,33 +120,33 @@ class SkillsLibrary:
|
||||
conn.close()
|
||||
return res
|
||||
|
||||
def query_vector_db(self, query, top_k=3, max_dist=1000):
|
||||
def query_vector_db(self, query_, top_k=3, max_dist=1000):
|
||||
vectorizer = TextVectorizer(VectorizationMethod.TFIDF_VECTORIZER)
|
||||
conn = sqlite3.connect(self.db_path)
|
||||
cursor = conn.cursor()
|
||||
# Use direct string concatenation for the MATCH expression.
|
||||
# Ensure text is safely escaped to avoid SQL injection.
|
||||
query = "SELECT title FROM skills_library"
|
||||
query = "SELECT id, title FROM skills_library"
|
||||
cursor.execute(query)
|
||||
res = cursor.fetchall()
|
||||
cursor.close()
|
||||
conn.close()
|
||||
for entry in res:
|
||||
self.vectorizer.add_document(entry[0])
|
||||
self.vectorizer.index()
|
||||
vectorizer.add_document(entry[0],entry[1])
|
||||
vectorizer.index()
|
||||
|
||||
skill_titles, sorted_similarities, document_ids = self.vectorizer.recover_text(query, top_k)
|
||||
skill_titles, sorted_similarities, document_ids = vectorizer.recover_text(query_, top_k)
|
||||
skills = []
|
||||
for skill, sim in zip(skill_titles, sorted_similarities):
|
||||
if sim>max_dist:
|
||||
for skill_title, sim, id in zip(skill_titles, sorted_similarities, document_ids):
|
||||
if np.linalg.norm(sim[1])<max_dist:
|
||||
conn = sqlite3.connect(self.db_path)
|
||||
cursor = conn.cursor()
|
||||
# Use direct string concatenation for the MATCH expression.
|
||||
# Ensure text is safely escaped to avoid SQL injection.
|
||||
query = "SELECT content FROM skills_library WHERE title LIKE ?"
|
||||
res = cursor.execute(query, (skill,))
|
||||
skills.append(res[0])
|
||||
cursor.execute(query)
|
||||
query = "SELECT content FROM skills_library WHERE id = ?"
|
||||
cursor.execute(query, (id,))
|
||||
res = cursor.fetchall()
|
||||
skills.append(res[0])
|
||||
cursor.close()
|
||||
conn.close()
|
||||
return skill_titles, skills
|
||||
|
Loading…
Reference in New Issue
Block a user