mirror of
https://github.com/ParisNeo/lollms.git
synced 2024-12-19 20:57:58 +00:00
added generate with images as well as new function call livbrary
This commit is contained in:
parent
379f8116bb
commit
42ebabfe0d
70
lollms/functions.py
Normal file
70
lollms/functions.py
Normal file
@ -0,0 +1,70 @@
|
||||
from functools import partial
|
||||
from lollms.tasks import TasksLibrary
|
||||
from typing import Dict, Any, List
|
||||
class FunctionCalling_Library:
|
||||
def __init__(self, tasks_library:TasksLibrary):
|
||||
self.tl = tasks_library
|
||||
self.function_definitions = []
|
||||
|
||||
def register_function(self, function_name, function_callable, function_description, function_parameters):
|
||||
self.function_definitions.append({
|
||||
"function_name": function_name,
|
||||
"function": function_callable,
|
||||
"function_description": function_description,
|
||||
"function_parameters": function_parameters
|
||||
})
|
||||
|
||||
def unregister_function(self, function_name):
|
||||
self.function_definitions = [func for func in self.function_definitions if func["function_name"] != function_name]
|
||||
|
||||
|
||||
def execute_function_calls(self, function_calls: List[Dict[str, Any]]) -> List[Any]:
|
||||
"""
|
||||
Executes the function calls with the parameters extracted from the generated text,
|
||||
using the original functions list to find the right function to execute.
|
||||
|
||||
Args:
|
||||
function_calls (List[Dict[str, Any]]): A list of dictionaries representing the function calls.
|
||||
function_definitions (List[Dict[str, Any]]): The original list of functions with their descriptions and callable objects.
|
||||
|
||||
Returns:
|
||||
List[Any]: A list of results from executing the function calls.
|
||||
"""
|
||||
results = []
|
||||
# Convert function_definitions to a dict for easier lookup
|
||||
functions_dict = {func['function_name']: func['function'] for func in self.function_definitions}
|
||||
|
||||
for call in function_calls:
|
||||
function_name = call.get("function_name")
|
||||
parameters = call.get("function_parameters", [])
|
||||
function = functions_dict.get(function_name)
|
||||
|
||||
if function:
|
||||
try:
|
||||
# Assuming parameters is a dictionary that maps directly to the function's arguments.
|
||||
if type(parameters)==list:
|
||||
result = function(*parameters)
|
||||
elif type(parameters)==dict:
|
||||
result = function(**parameters)
|
||||
results.append(result)
|
||||
except TypeError as e:
|
||||
# Handle cases where the function call fails due to incorrect parameters, etc.
|
||||
results.append(f"Error calling {function_name}: {e}")
|
||||
else:
|
||||
results.append(f"Function {function_name} not found.")
|
||||
|
||||
return results
|
||||
|
||||
def generate_with_functions(self, prompt):
|
||||
# Assuming generate_with_function_calls is a method from TasksLibrary
|
||||
ai_response, function_calls = self.tl.generate_with_function_calls(prompt, self.function_definitions)
|
||||
return ai_response, function_calls
|
||||
|
||||
def generate_with_functions_with_images(self, prompt, image_files):
|
||||
# Assuming generate_with_function_calls_and_images is a method from TasksLibrary
|
||||
if len(image_files) > 0:
|
||||
ai_response, function_calls = self.tl.generate_with_function_calls_and_images(prompt, image_files, self.function_definitions)
|
||||
else:
|
||||
ai_response, function_calls = self.tl.generate_with_function_calls(prompt, self.function_definitions)
|
||||
|
||||
return ai_response, function_calls
|
@ -3384,7 +3384,7 @@ The AI should respond in this format using data from actions_list:
|
||||
|
||||
# Combine the function descriptions with the original prompt.
|
||||
function_info = ' '.join(function_descriptions)
|
||||
upgraded_prompt = f"{function_info} {prompt}"
|
||||
upgraded_prompt = f"{function_info}\n{prompt}"
|
||||
|
||||
return upgraded_prompt
|
||||
|
||||
|
@ -9,6 +9,7 @@ description:
|
||||
"""
|
||||
|
||||
from fastapi import APIRouter, Request, Body, Response
|
||||
from fastapi.responses import PlainTextResponse
|
||||
from lollms.server.elf_server import LOLLMSElfServer
|
||||
from pydantic import BaseModel
|
||||
from starlette.responses import StreamingResponse
|
||||
@ -23,7 +24,7 @@ import random
|
||||
import string
|
||||
import json
|
||||
from enum import Enum
|
||||
import asyncio
|
||||
import base64
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
@ -192,7 +193,7 @@ async def lollms_generate(request: LollmsGenerateRequest):
|
||||
temperature=request.temperature or elf_server.config.temperature
|
||||
)
|
||||
completion_tokens = len(elf_server.binding.tokenize(reception_manager.reception_buffer))
|
||||
return reception_manager.reception_buffer
|
||||
return PlainTextResponse(reception_manager.reception_buffer)
|
||||
else:
|
||||
return None
|
||||
except Exception as ex:
|
||||
@ -200,7 +201,160 @@ async def lollms_generate(request: LollmsGenerateRequest):
|
||||
elf_server.error(ex)
|
||||
return {"status":False,"error":str(ex)}
|
||||
|
||||
|
||||
|
||||
|
||||
class LollmsGenerateRequest(BaseModel):
|
||||
prompt: str
|
||||
images: List[str]
|
||||
model_name: Optional[str] = None
|
||||
personality: Optional[int] = -1
|
||||
n_predict: Optional[int] = 1024
|
||||
stream: bool = False
|
||||
temperature: float = 0.1
|
||||
top_k: Optional[int] = 50
|
||||
top_p: Optional[float] = 0.95
|
||||
repeat_penalty: Optional[float] = 0.8
|
||||
repeat_last_n: Optional[int] = 40
|
||||
seed: Optional[int] = None
|
||||
n_threads: Optional[int] = 8
|
||||
|
||||
@router.post("/lollms_generate_with_images")
|
||||
async def lollms_generate_with_images(request: LollmsGenerateRequest):
|
||||
""" Endpoint for generating text from prompts using the LoLLMs fastAPI server.
|
||||
|
||||
Args:
|
||||
Data model for the Generate with images Request.
|
||||
Attributes:
|
||||
- prompt: str : representing the input text prompt for text generation.
|
||||
- images: str : a list of 64 bits encoded images
|
||||
- model_name: Optional[str] = None : The name of the model to be used (it should be one of the current models)
|
||||
- personality : Optional[int] = None : The name of the mounted personality to be used (if a personality is None, the endpoint will just return a completion text). To get the list of mounted personalities, just use /list_mounted_personalities
|
||||
- n_predict: int representing the number of predictions to generate.
|
||||
- stream: bool indicating whether to stream the generated text or not.
|
||||
- temperature: float representing the temperature parameter for text generation.
|
||||
- top_k: int representing the top_k parameter for text generation.
|
||||
- top_p: float representing the top_p parameter for text generation.
|
||||
- repeat_penalty: float representing the repeat_penalty parameter for text generation.
|
||||
- repeat_last_n: int representing the repeat_last_n parameter for text generation.
|
||||
- seed: int representing the seed for text generation.
|
||||
- n_threads: int representing the number of threads for text generation.
|
||||
|
||||
Returns:
|
||||
- If the elf_server binding is not None:
|
||||
- If stream is True, returns a StreamingResponse of generated text chunks.
|
||||
- If stream is False, returns the generated text as a string.
|
||||
- If the elf_server binding is None, returns None.
|
||||
"""
|
||||
|
||||
try:
|
||||
headers = { 'Content-Type': 'text/event-stream', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive',}
|
||||
reception_manager=RECEPTION_MANAGER()
|
||||
prompt = request.prompt
|
||||
encoded_images = request.images
|
||||
n_predict = request.n_predict if request.n_predict>0 else 1024
|
||||
stream = request.stream
|
||||
prompt_tokens = len(elf_server.binding.tokenize(prompt))
|
||||
if elf_server.binding is not None:
|
||||
image_files = []
|
||||
images_path = elf_server.lollms_paths.personal_outputs_path / "tmp_images"
|
||||
images_path.mkdir(parents=True, exist_ok=True)
|
||||
for i, encoded_image in enumerate(encoded_images):
|
||||
image_path = images_path/ f'image_{i}.png'
|
||||
with open(image_path, 'wb') as image_file:
|
||||
image_file.write(base64.b64decode(encoded_image))
|
||||
image_files.append(image_path)
|
||||
if stream:
|
||||
new_output={"new_values":[]}
|
||||
async def generate_chunks():
|
||||
lk = threading.Lock()
|
||||
|
||||
def callback(chunk, chunk_type:MSG_TYPE=MSG_TYPE.MSG_TYPE_CHUNK):
|
||||
if elf_server.cancel_gen:
|
||||
return False
|
||||
|
||||
if chunk is None:
|
||||
return
|
||||
|
||||
rx = reception_manager.new_chunk(chunk)
|
||||
if rx.status!=ROLE_CHANGE_DECISION.MOVE_ON:
|
||||
if rx.status==ROLE_CHANGE_DECISION.PROGRESSING:
|
||||
return True
|
||||
elif rx.status==ROLE_CHANGE_DECISION.ROLE_CHANGED:
|
||||
return False
|
||||
else:
|
||||
chunk = chunk + rx.value
|
||||
|
||||
# Yield each chunk of data
|
||||
lk.acquire()
|
||||
try:
|
||||
new_output["new_values"].append(reception_manager.chunk)
|
||||
lk.release()
|
||||
return True
|
||||
except Exception as ex:
|
||||
trace_exception(ex)
|
||||
lk.release()
|
||||
return False
|
||||
|
||||
def chunks_builder():
|
||||
if request.model_name in elf_server.binding.list_models() and elf_server.binding.model_name!=request.model_name:
|
||||
elf_server.binding.build_model(request.model_name)
|
||||
|
||||
elf_server.binding.generate_with_images(
|
||||
prompt,
|
||||
image_files,
|
||||
n_predict,
|
||||
callback=callback,
|
||||
temperature=request.temperature or elf_server.config.temperature
|
||||
)
|
||||
reception_manager.done = True
|
||||
thread = threading.Thread(target=chunks_builder)
|
||||
thread.start()
|
||||
current_index = 0
|
||||
while (not reception_manager.done and elf_server.cancel_gen == False):
|
||||
while (not reception_manager.done and len(new_output["new_values"])==0):
|
||||
time.sleep(0.001)
|
||||
lk.acquire()
|
||||
for i in range(len(new_output["new_values"])):
|
||||
current_index += 1
|
||||
yield (new_output["new_values"][i])
|
||||
new_output["new_values"]=[]
|
||||
lk.release()
|
||||
elf_server.cancel_gen = False
|
||||
return StreamingResponse(generate_chunks(), media_type="text/plain", headers=headers)
|
||||
else:
|
||||
def callback(chunk, chunk_type:MSG_TYPE=MSG_TYPE.MSG_TYPE_CHUNK):
|
||||
# Yield each chunk of data
|
||||
if chunk is None:
|
||||
return True
|
||||
|
||||
rx = reception_manager.new_chunk(chunk)
|
||||
if rx.status!=ROLE_CHANGE_DECISION.MOVE_ON:
|
||||
if rx.status==ROLE_CHANGE_DECISION.PROGRESSING:
|
||||
return True
|
||||
elif rx.status==ROLE_CHANGE_DECISION.ROLE_CHANGED:
|
||||
return False
|
||||
else:
|
||||
chunk = chunk + rx.value
|
||||
|
||||
|
||||
return True
|
||||
elf_server.binding.generate_with_images(
|
||||
prompt,
|
||||
image_files,
|
||||
n_predict,
|
||||
callback=callback,
|
||||
temperature=request.temperature or elf_server.config.temperature
|
||||
)
|
||||
completion_tokens = len(elf_server.binding.tokenize(reception_manager.reception_buffer))
|
||||
return PlainTextResponse(reception_manager.reception_buffer)
|
||||
else:
|
||||
return None
|
||||
except Exception as ex:
|
||||
trace_exception(ex)
|
||||
elf_server.error(ex)
|
||||
return {"status":False,"error":str(ex)}
|
||||
|
||||
|
||||
# ----------------------- Open AI ----------------------------------------
|
||||
class Message(BaseModel):
|
||||
role: str
|
||||
|
229
lollms/tasks.py
229
lollms/tasks.py
@ -1,14 +1,14 @@
|
||||
|
||||
import sys
|
||||
from typing import Callable, List
|
||||
from typing import Callable, List, Dict, Any, Optional
|
||||
from functools import partial
|
||||
from datetime import datetime
|
||||
from ascii_colors import ASCIIColors
|
||||
from lollms.types import MSG_TYPE, SUMMARY_MODE
|
||||
from lollms.com import LoLLMsCom
|
||||
from lollms.utilities import PromptReshaper, remove_text_from_string
|
||||
from lollms.utilities import PromptReshaper, remove_text_from_string, process_ai_output
|
||||
from safe_store import DocumentDecomposer
|
||||
|
||||
import json
|
||||
class TasksLibrary:
|
||||
def __init__(self, lollms:LoLLMsCom, callback: Callable[[str, MSG_TYPE, dict, list], bool]=None) -> None:
|
||||
self.lollms = lollms
|
||||
@ -92,7 +92,27 @@ class TasksLibrary:
|
||||
repeat_last_n= repeat_last_n if repeat_last_n is not None else self.lollms.config.repeat_last_n if self.lollms.config.override_personality_model_parameters else self.lollms.personality.model_repeat_last_n,
|
||||
).strip()
|
||||
return self.bot_says
|
||||
|
||||
|
||||
def generate_with_images(self, prompt, images, max_size, temperature = None, top_k = None, top_p=None, repeat_penalty=None, repeat_last_n=None, callback=None, debug=False, show_progress=False ):
|
||||
ASCIIColors.info("Text generation started: Warming up")
|
||||
self.nb_received_tokens = 0
|
||||
self.bot_says = ""
|
||||
if debug:
|
||||
self.print_prompt("gen",prompt)
|
||||
|
||||
self.lollms.model.generate_with_images(
|
||||
prompt,
|
||||
images,
|
||||
max_size,
|
||||
partial(self.process, callback=callback, show_progress=show_progress),
|
||||
temperature=self.lollms.config.model_temperature if temperature is None else temperature,
|
||||
top_k=self.lollms.config.model_top_k if top_k is None else top_k,
|
||||
top_p=self.lollms.config.model_top_p if top_p is None else top_p,
|
||||
repeat_penalty=self.lollms.config.model_repeat_penalty if repeat_penalty is None else repeat_penalty,
|
||||
repeat_last_n = self.lollms.config.model_repeat_last_n if repeat_last_n is None else repeat_last_n
|
||||
).strip()
|
||||
return self.bot_says
|
||||
|
||||
def fast_gen(
|
||||
self,
|
||||
prompt: str,
|
||||
@ -145,7 +165,62 @@ class TasksLibrary:
|
||||
|
||||
return gen
|
||||
|
||||
|
||||
def fast_gen_with_images(self, prompt: str, images:list, max_generation_size: int=None, placeholders: dict = {}, sacrifice: list = ["previous_discussion"], debug: bool = False, callback=None, show_progress=False) -> str:
|
||||
"""
|
||||
Fast way to generate text from text and images
|
||||
|
||||
This method takes in a prompt, maximum generation size, optional placeholders, sacrifice list, and debug flag.
|
||||
It reshapes the context before performing text generation by adjusting and cropping the number of tokens.
|
||||
|
||||
Parameters:
|
||||
- prompt (str): The input prompt for text generation.
|
||||
- max_generation_size (int): The maximum number of tokens to generate.
|
||||
- placeholders (dict, optional): A dictionary of placeholders to be replaced in the prompt. Defaults to an empty dictionary.
|
||||
- sacrifice (list, optional): A list of placeholders to sacrifice if the window is bigger than the context size minus the number of tokens to generate. Defaults to ["previous_discussion"].
|
||||
- debug (bool, optional): Flag to enable/disable debug mode. Defaults to False.
|
||||
|
||||
Returns:
|
||||
- str: The generated text after removing special tokens ("<s>" and "</s>") and stripping any leading/trailing whitespace.
|
||||
"""
|
||||
prompt = "\n".join([
|
||||
"!@>system: I am an AI assistant that can converse and analyze images. When asked to locate something in an image you send, I will reply with:",
|
||||
"boundingbox(image_index, label, left, top, width, height)",
|
||||
"Where:",
|
||||
"image_index: 0-based index of the image",
|
||||
"label: brief description of what is located",
|
||||
"left, top: x,y coordinates of top-left box corner (0-1 scale)",
|
||||
"width, height: box dimensions as fraction of image size",
|
||||
"Coordinates have origin (0,0) at top-left, (1,1) at bottom-right.",
|
||||
"For other queries, I will respond conversationally to the best of my abilities.",
|
||||
prompt
|
||||
])
|
||||
if debug == False:
|
||||
debug = self.lollms.config.debug
|
||||
|
||||
if max_generation_size is None:
|
||||
prompt_size = self.lollms.model.tokenize(prompt)
|
||||
max_generation_size = self.lollms.model.config.ctx_size - len(prompt_size)
|
||||
|
||||
pr = PromptReshaper(prompt)
|
||||
prompt = pr.build(placeholders,
|
||||
self.lollms.model.tokenize,
|
||||
self.lollms.model.detokenize,
|
||||
self.lollms.model.config.ctx_size - max_generation_size,
|
||||
sacrifice
|
||||
)
|
||||
ntk = len(self.lollms.model.tokenize(prompt))
|
||||
max_generation_size = min(self.lollms.model.config.ctx_size - ntk, max_generation_size)
|
||||
# TODO : add show progress
|
||||
|
||||
gen = self.generate_with_images(prompt, images, max_generation_size, callback=callback, show_progress=show_progress).strip().replace("</s>", "").replace("<s>", "")
|
||||
try:
|
||||
gen = process_ai_output(gen, images, "/discussions/")
|
||||
except Exception as ex:
|
||||
pass
|
||||
if debug:
|
||||
self.print_prompt("prompt", prompt+gen)
|
||||
|
||||
return gen
|
||||
|
||||
# Communications with the user
|
||||
def step_start(self, step_text, callback: Callable[[str, MSG_TYPE, dict, list], bool]=None):
|
||||
@ -653,3 +728,147 @@ class TasksLibrary:
|
||||
self.step_end(f" Summary of {doc_name} - Processing chunk : {i+1}/{len(chunks)}")
|
||||
return "\n".join(summeries)
|
||||
|
||||
#======================= Function calls
|
||||
def _upgrade_prompt_with_function_info(self, prompt: str, functions: List[Dict[str, Any]]) -> str:
|
||||
"""
|
||||
Upgrades the prompt with information about function calls.
|
||||
|
||||
Args:
|
||||
prompt (str): The original prompt.
|
||||
functions (List[Dict[str, Any]]): A list of dictionaries describing functions that can be called.
|
||||
|
||||
Returns:
|
||||
str: The upgraded prompt that includes information about the function calls.
|
||||
"""
|
||||
function_descriptions = ["!@>information: If you need to call a function to fulfull the user request, use a function markdown tag with the function call as the following json format:",
|
||||
"```function",
|
||||
"{",
|
||||
'"function_name":the name of the function to be called,',
|
||||
'"function_parameters": a list of parameter values',
|
||||
"}",
|
||||
"```",
|
||||
"You can call multiple functions in one generation.",
|
||||
"Each function call needs to be in a separate function markdown tag.",
|
||||
"Do not add status of the execution as it will be added automatically by the system.",
|
||||
"If you want to get the output of the function before answering the user, then use the keyword @<NEXT>@ at the end of your message.",
|
||||
"!@>List of possible functions to be called:\n"]
|
||||
for function in functions:
|
||||
description = f"{function['function_name']}: {function['function_description']}\nparameters:{function['function_parameters']}"
|
||||
function_descriptions.append(description)
|
||||
|
||||
# Combine the function descriptions with the original prompt.
|
||||
function_info = ' '.join(function_descriptions)
|
||||
upgraded_prompt = f"{function_info}\n{prompt}"
|
||||
|
||||
return upgraded_prompt
|
||||
def extract_function_calls_as_json(self, text: str) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Extracts function calls formatted as JSON inside markdown code blocks.
|
||||
|
||||
Args:
|
||||
text (str): The generated text containing JSON markdown entries for function calls.
|
||||
|
||||
Returns:
|
||||
List[Dict[str, Any]]: A list of dictionaries representing the function calls.
|
||||
"""
|
||||
# Extract markdown code blocks that contain JSON.
|
||||
code_blocks = self.extract_code_blocks(text)
|
||||
|
||||
# Filter out and parse JSON entries.
|
||||
function_calls = []
|
||||
for block in code_blocks:
|
||||
if block["type"]=="function":
|
||||
content = block.get("content", "")
|
||||
try:
|
||||
# Attempt to parse the JSON content of the code block.
|
||||
function_call = json.loads(content)
|
||||
if type(function_call)==dict:
|
||||
function_calls.append(function_call)
|
||||
elif type(function_call)==list:
|
||||
function_calls+=function_call
|
||||
except json.JSONDecodeError:
|
||||
# If the content is not valid JSON, skip it.
|
||||
continue
|
||||
|
||||
return function_calls
|
||||
def execute_function_calls(self, function_calls: List[Dict[str, Any]], function_definitions: List[Dict[str, Any]]) -> List[Any]:
|
||||
"""
|
||||
Executes the function calls with the parameters extracted from the generated text,
|
||||
using the original functions list to find the right function to execute.
|
||||
|
||||
Args:
|
||||
function_calls (List[Dict[str, Any]]): A list of dictionaries representing the function calls.
|
||||
function_definitions (List[Dict[str, Any]]): The original list of functions with their descriptions and callable objects.
|
||||
|
||||
Returns:
|
||||
List[Any]: A list of results from executing the function calls.
|
||||
"""
|
||||
results = []
|
||||
# Convert function_definitions to a dict for easier lookup
|
||||
functions_dict = {func['function_name']: func['function'] for func in function_definitions}
|
||||
|
||||
for call in function_calls:
|
||||
function_name = call.get("function_name")
|
||||
parameters = call.get("function_parameters", [])
|
||||
function = functions_dict.get(function_name)
|
||||
|
||||
if function:
|
||||
try:
|
||||
# Assuming parameters is a dictionary that maps directly to the function's arguments.
|
||||
if type(parameters)==list:
|
||||
result = function(*parameters)
|
||||
elif type(parameters)==dict:
|
||||
result = function(**parameters)
|
||||
results.append(result)
|
||||
except TypeError as e:
|
||||
# Handle cases where the function call fails due to incorrect parameters, etc.
|
||||
results.append(f"Error calling {function_name}: {e}")
|
||||
else:
|
||||
results.append(f"Function {function_name} not found.")
|
||||
|
||||
return results
|
||||
def generate_with_function_calls(self, prompt: str, functions: List[Dict[str, Any]], max_answer_length: Optional[int] = None) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Performs text generation with function calls.
|
||||
|
||||
Args:
|
||||
prompt (str): The full prompt (including conditioning, user discussion, extra data, and the user prompt).
|
||||
functions (List[Dict[str, Any]]): A list of dictionaries describing functions that can be called.
|
||||
max_answer_length (int, optional): Maximum string length allowed for the generated text.
|
||||
|
||||
Returns:
|
||||
List[Dict[str, Any]]: A list of dictionaries with the function names and parameters to execute.
|
||||
"""
|
||||
# Upgrade the prompt with information about the function calls.
|
||||
upgraded_prompt = self._upgrade_prompt_with_function_info(prompt, functions)
|
||||
|
||||
# Generate the initial text based on the upgraded prompt.
|
||||
generated_text = self.fast_gen(upgraded_prompt, max_answer_length)
|
||||
|
||||
# Extract the function calls from the generated text.
|
||||
function_calls = self.extract_function_calls_as_json(generated_text)
|
||||
|
||||
return generated_text, function_calls
|
||||
|
||||
def generate_with_function_calls_and_images(self, prompt: str, images:list, functions: List[Dict[str, Any]], max_answer_length: Optional[int] = None) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Performs text generation with function calls.
|
||||
|
||||
Args:
|
||||
prompt (str): The full prompt (including conditioning, user discussion, extra data, and the user prompt).
|
||||
functions (List[Dict[str, Any]]): A list of dictionaries describing functions that can be called.
|
||||
max_answer_length (int, optional): Maximum string length allowed for the generated text.
|
||||
|
||||
Returns:
|
||||
List[Dict[str, Any]]: A list of dictionaries with the function names and parameters to execute.
|
||||
"""
|
||||
# Upgrade the prompt with information about the function calls.
|
||||
upgraded_prompt = self._upgrade_prompt_with_function_info(prompt, functions)
|
||||
|
||||
# Generate the initial text based on the upgraded prompt.
|
||||
generated_text = self.fast_gen_with_images(upgraded_prompt, images, max_answer_length)
|
||||
|
||||
# Extract the function calls from the generated text.
|
||||
function_calls = self.extract_function_calls_as_json(generated_text)
|
||||
|
||||
return generated_text, function_calls
|
||||
|
Loading…
Reference in New Issue
Block a user