lollms-webui/gpt4all_api/api.py
2023-05-19 22:21:13 +02:00

743 lines
30 KiB
Python

######
# Project : GPT4ALL-UI
# File : api.py
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
# Licence : Apache 2.0
# Description :
# A simple api to communicate with gpt4all-ui and its models.
######
import gc
import sys
from datetime import datetime
from gpt4all_api.db import DiscussionsDB
from pathlib import Path
import importlib
from pyaipersonality import AIPersonality
import multiprocessing as mp
import threading
import time
import requests
import urllib.request
from tqdm import tqdm
__author__ = "parisneo"
__github__ = "https://github.com/nomic-ai/gpt4all-ui"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
import subprocess
import pkg_resources
# ===========================================================
# Manage automatic install scripts
def is_package_installed(package_name):
try:
dist = pkg_resources.get_distribution(package_name)
return True
except pkg_resources.DistributionNotFound:
return False
def install_package(package_name):
try:
# Check if the package is already installed
__import__(package_name)
print(f"{package_name} is already installed.")
except ImportError:
print(f"{package_name} is not installed. Installing...")
# Install the package using pip
subprocess.check_call(["pip", "install", package_name])
print(f"{package_name} has been successfully installed.")
def parse_requirements_file(requirements_path):
with open(requirements_path, 'r') as f:
for line in f:
line = line.strip()
if not line or line.startswith('#'):
# Skip empty and commented lines
continue
package_name, _, version_specifier = line.partition('==')
package_name, _, version_specifier = line.partition('>=')
if is_package_installed(package_name):
# The package is already installed
print(f"{package_name} is already installed.")
else:
# The package is not installed, install it
if version_specifier:
install_package(f"{package_name}{version_specifier}")
else:
install_package(package_name)
# ===========================================================
class ModelProcess:
def __init__(self, config=None):
self.config = config
self.generate_queue = mp.Queue()
self.generation_queue = mp.Queue()
self.cancel_queue = mp.Queue(maxsize=1)
self.clear_queue_queue = mp.Queue(maxsize=1)
self.set_config_queue = mp.Queue(maxsize=1)
self.set_config_result_queue = mp.Queue(maxsize=1)
self.started_queue = mp.Queue()
self.process = None
self.is_generating = mp.Value('i', 0)
self.model_ready = mp.Value('i', 0)
self.ready = False
self.id=0
self.n_predict=2048
self.reset_config_result()
def reset_config_result(self):
self._set_config_result = {
'status': 'succeeded',
'backend_status':'ok',
'model_status':'ok',
'personality_status':'ok',
'errors':[]
}
def load_backend(self, backend_name:str):
backend_path = Path("backends")/backend_name
# first find out if there is a requirements.txt file
requirements_file = backend_path/"requirements.txt"
if requirements_file.exists():
parse_requirements_file(requirements_file)
# define the full absolute path to the module
absolute_path = backend_path.resolve()
# infer the module name from the file path
module_name = backend_path.stem
# use importlib to load the module from the file path
loader = importlib.machinery.SourceFileLoader(module_name, str(absolute_path/"__init__.py"))
backend_module = loader.load_module()
backend_class = getattr(backend_module, backend_module.backend_name)
return backend_class
def start(self):
if self.process is None:
self.process = mp.Process(target=self._run)
self.process.start()
def stop(self):
if self.process is not None:
self.generate_queue.put(None)
self.process.join()
self.process = None
def set_backend(self, backend_path):
self.backend = backend_path
def set_model(self, model_path):
self.model = model_path
def set_config(self, config):
self.set_config_queue.put(config)
# Wait for it t o be consumed
while self.set_config_result_queue.empty():
time.sleep(0.5)
return self.set_config_result_queue.get()
def generate(self, full_prompt, prompt, id, n_predict):
self.generate_queue.put((full_prompt, prompt, id, n_predict))
def cancel_generation(self):
self.cancel_queue.put(('cancel',))
def clear_queue(self):
self.clear_queue_queue.put(('clear_queue',))
def rebuild_backend(self, config):
try:
backend = self.load_backend(config["backend"])
print("Backend loaded successfully")
except Exception as ex:
print("Couldn't build backend")
print(ex)
backend = None
self._set_config_result['backend_status'] ='failed'
self._set_config_result['errors'].append(f"couldn't build backend:{ex}")
return backend
def _rebuild_model(self):
try:
print("Rebuilding model")
self.backend = self.load_backend(self.config["backend"])
print("Backend loaded successfully")
try:
model_file = Path("models")/self.config["backend"]/self.config["model"]
print(f"Loading model : {model_file}")
self.model = self.backend(self.config)
self.model_ready.value = 1
print("Model created successfully\n")
except Exception as ex:
print("Couldn't build model")
print(ex)
self.model = None
self._set_config_result['model_status'] ='failed'
self._set_config_result['errors'].append(f"couldn't build model:{ex}")
except Exception as ex:
print("Couldn't build backend")
print(ex)
self.backend = None
self.model = None
def rebuild_personality(self):
try:
personality_path = f"personalities/{self.config['personality_language']}/{self.config['personality_category']}/{self.config['personality']}"
personality = AIPersonality(personality_path)
except Exception as ex:
print("Personality file not found. Please verify that the personality you have selected exists or select another personality. Some updates may lead to change in personality name or category, so check the personality selection in settings to be sure.")
if self.config["debug"]:
print(ex)
personality = AIPersonality()
return personality
def _rebuild_personality(self):
try:
personality_path = f"personalities/{self.config['personality_language']}/{self.config['personality_category']}/{self.config['personality']}"
self.personality = AIPersonality(personality_path)
except Exception as ex:
print("Personality file not found. Please verify that the personality you have selected exists or select another personality. Some updates may lead to change in personality name or category, so check the personality selection in settings to be sure.")
if self.config["debug"]:
print(ex)
self.personality = AIPersonality()
self._set_config_result['personality_status'] ='failed'
self._set_config_result['errors'].append(f"couldn't load personality:{ex}")
def _run(self):
self._rebuild_model()
self._rebuild_personality()
if self.model_ready.value == 1:
self.n_predict = 1
self._generate("I")
print()
print("Ready to receive data")
else:
print("No model loaded. Waiting for new configuration instructions")
self.ready = True
print(f"Listening on :http://{self.config['host']}:{self.config['port']}")
while True:
try:
self._check_set_config_queue()
self._check_cancel_queue()
self._check_clear_queue()
if not self.generate_queue.empty():
command = self.generate_queue.get()
if command is None:
break
if self.cancel_queue.empty() and self.clear_queue_queue.empty():
self.is_generating.value = 1
self.started_queue.put(1)
self.id=command[2]
self.n_predict=command[3]
if self.personality.processor is not None:
if self.personality.processor_cfg is not None:
if "custom_workflow" in self.personality.processor_cfg:
if self.personality.processor_cfg["custom_workflow"]:
output = self.personality.processor.run_workflow(self._generate, command[1], command[0])
self._callback(output)
self.is_generating.value = 0
continue
self._generate(command[0], self._callback)
while not self.generation_queue.empty():
time.sleep(1)
self.is_generating.value = 0
time.sleep(1)
except Exception as ex:
time.sleep(1)
print(ex)
def _generate(self, prompt, callback=None):
if self.model is not None:
self.id = self.id
if self.config["override_personality_model_parameters"]:
output = self.model.generate(
prompt,
new_text_callback=callback,
n_predict=self.n_predict,
temp=self.config['temperature'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
repeat_penalty=self.config['repeat_penalty'],
repeat_last_n = self.config['repeat_last_n'],
seed=self.config['seed'],
n_threads=self.config['n_threads']
)
else:
output = self.model.generate(
prompt,
new_text_callback=callback,
n_predict=self.n_predict,
temp=self.personality.model_temperature,
top_k=self.personality.model_top_k,
top_p=self.personality.model_top_p,
repeat_penalty=self.personality.model_repeat_penalty,
repeat_last_n = self.personality.model_repeat_last_n,
#seed=self.config['seed'],
n_threads=self.config['n_threads']
)
else:
print("No model is installed or selected. Please make sure to install a model and select it inside your configuration before attempting to communicate with the model.")
print("To do this: Install the model to your models/<backend name> folder.")
print("Then set your model information in your local configuration file that you can find in configs/local_default.yaml")
print("You can also use the ui to set your model in the settings page.")
output = ""
return output
def _callback(self, text):
if not self.ready:
print(".",end="")
sys.stdout.flush()
return True
else:
# Stream the generated text to the main process
self.generation_queue.put((text,self.id))
self._check_set_config_queue()
self._check_cancel_queue()
self._check_clear_queue()
# if stop generation is detected then stop
if self.is_generating.value==1:
return True
else:
return False
def _check_cancel_queue(self):
while not self.cancel_queue.empty():
command = self.cancel_queue.get()
if command is not None:
self._cancel_generation()
def _check_clear_queue(self):
while not self.clear_queue_queue.empty():
command = self.clear_queue_queue.get()
if command is not None:
self._clear_queue()
def _check_set_config_queue(self):
while not self.set_config_queue.empty():
config = self.set_config_queue.get()
if config is not None:
print("Inference process : Setting configuration")
self.reset_config_result()
self._set_config(config)
self.set_config_result_queue.put(self._set_config_result)
def _cancel_generation(self):
self.is_generating.value = 0
def _clear_queue(self):
while not self.generate_queue.empty():
self.generate_queue.get()
def _set_config(self, config):
bk_cfg = self.config
self.config = config
print("Changing configuration")
# verify that the backend is the same
if self.config["backend"]!=bk_cfg["backend"] or self.config["model"]!=bk_cfg["model"]:
self._rebuild_model()
# verify that the personality is the same
if self.config["personality"]!=bk_cfg["personality"] or self.config["personality_category"]!=bk_cfg["personality_category"] or self.config["personality_language"]!=bk_cfg["personality_language"]:
self._rebuild_personality()
class GPT4AllAPI():
def __init__(self, config:dict, socketio, config_file_path:str) -> None:
self.socketio = socketio
#Create and launch the process
self.process = ModelProcess(config)
self.process.start()
self.config = config
self.backend = self.process.rebuild_backend(self.config)
self.personality = self.process.rebuild_personality()
if config["debug"]:
print(print(f"{self.personality}"))
self.config_file_path = config_file_path
self.cancel_gen = False
# Keeping track of current discussion and message
self.current_discussion = None
self._current_user_message_id = 0
self._current_ai_message_id = 0
self._message_id = 0
self.db_path = config["db_path"]
# Create database object
self.db = DiscussionsDB(self.db_path)
# If the database is empty, populate it with tables
self.db.populate()
# This is used to keep track of messages
self.full_message_list = []
# =========================================================================================
# Socket IO stuff
# =========================================================================================
@socketio.on('connect')
def connect():
print('Client connected')
@socketio.on('disconnect')
def disconnect():
print('Client disconnected')
@socketio.on('install_model')
def install_model(data):
def install_model_():
print("Install model triggered")
model_path = data["path"]
progress = 0
installation_dir = Path(f'./models/{self.config["backend"]}/')
filename = Path(model_path).name
installation_path = installation_dir / filename
print("Model install requested")
print(f"Model path : {model_path}")
if installation_path.exists():
print("Error: Model already exists")
socketio.emit('install_progress',{'status': 'failed', 'error': 'model already exists'})
socketio.emit('install_progress',{'status': 'progress', 'progress': progress})
def callback(progress):
socketio.emit('install_progress',{'status': 'progress', 'progress': progress})
self.download_file(model_path, installation_path, callback)
socketio.emit('install_progress',{'status': 'succeeded', 'error': ''})
tpe = threading.Thread(target=install_model_, args=())
tpe.start()
@socketio.on('uninstall_model')
def uninstall_model(data):
model_path = data['path']
installation_dir = Path(f'./models/{self.config["backend"]}/')
filename = Path(model_path).name
installation_path = installation_dir / filename
if not installation_path.exists():
socketio.emit('install_progress',{'status': 'failed', 'error': 'The model does not exist'})
installation_path.unlink()
socketio.emit('install_progress',{'status': 'succeeded', 'error': ''})
@socketio.on('generate_msg')
def generate_msg(data):
if self.process.model_ready.value==1:
if self.current_discussion is None:
if self.db.does_last_discussion_have_messages():
self.current_discussion = self.db.create_discussion()
else:
self.current_discussion = self.db.load_last_discussion()
message = data["prompt"]
message_id = self.current_discussion.add_message(
"user", message, parent=self.message_id
)
self.current_user_message_id = message_id
tpe = threading.Thread(target=self.start_message_generation, args=(message, message_id))
tpe.start()
else:
self.socketio.emit('infos',
{
"status":'model_not_ready',
"type": "input_message_infos",
"bot": self.personality.name,
"user": self.personality.user_name,
"message":"",
"user_message_id": self.current_user_message_id,
"ai_message_id": self.current_ai_message_id,
}
)
@socketio.on('generate_msg_from')
def handle_connection(data):
message_id = int(data['id'])
message = data["prompt"]
self.current_user_message_id = message_id
tpe = threading.Thread(target=self.start_message_generation, args=(message, message_id))
tpe.start()
# generation status
self.generating=False
#properties
@property
def message_id(self):
return self._message_id
@property
def current_user_message_id(self):
return self._current_user_message_id
@current_user_message_id.setter
def current_user_message_id(self, id):
self._current_user_message_id=id
self._message_id = id
@property
def current_ai_message_id(self):
return self._current_ai_message_id
@current_ai_message_id.setter
def current_ai_message_id(self, id):
self._current_ai_message_id=id
self._message_id = id
def download_file(self, url, installation_path, callback=None):
"""
Downloads a file from a URL, reports the download progress using a callback function, and displays a progress bar.
Args:
url (str): The URL of the file to download.
installation_path (str): The path where the file should be saved.
callback (function, optional): A callback function to be called during the download
with the progress percentage as an argument. Defaults to None.
"""
try:
response = requests.get(url, stream=True)
# Get the file size from the response headers
total_size = int(response.headers.get('content-length', 0))
with open(installation_path, 'wb') as file:
downloaded_size = 0
with tqdm(total=total_size, unit='B', unit_scale=True, ncols=80) as progress_bar:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
file.write(chunk)
downloaded_size += len(chunk)
if callback is not None:
percentage = (downloaded_size / total_size) * 100
callback(percentage)
progress_bar.update(len(chunk))
if callback is not None:
callback(100.0)
print("File downloaded successfully")
except Exception as e:
print("Couldn't download file:", str(e))
def load_backend(self, backend_name):
backend_path = Path("backends")/backend_name
# define the full absolute path to the module
absolute_path = backend_path.resolve()
# infer the module name from the file path
module_name = backend_path.stem
# use importlib to load the module from the file path
loader = importlib.machinery.SourceFileLoader(module_name, str(absolute_path/"__init__.py"))
backend_module = loader.load_module()
backend_class = getattr(backend_module, backend_module.backend_name)
return backend_class
def condition_chatbot(self):
if self.current_discussion is None:
self.current_discussion = self.db.load_last_discussion()
if self.personality.welcome_message!="":
message_id = self.current_discussion.add_message(
self.personality.name, self.personality.welcome_message,
DiscussionsDB.MSG_TYPE_NORMAL,
0,
-1
)
self.current_ai_message_id = message_id
else:
message_id = 0
return message_id
def prepare_reception(self):
self.bot_says = ""
self.full_text = ""
self.is_bot_text_started = False
def create_new_discussion(self, title):
self.current_discussion = self.db.create_discussion(title)
# Get the current timestamp
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Chatbot conditionning
self.condition_chatbot()
return timestamp
def prepare_query(self, message_id=-1):
messages = self.current_discussion.get_messages()
self.full_message_list = []
for message in messages:
if message["id"]< message_id or message_id==-1:
if message["type"]==self.db.MSG_TYPE_NORMAL:
if message["sender"]==self.personality.name:
self.full_message_list.append(self.personality.ai_message_prefix+message["content"])
else:
self.full_message_list.append(self.personality.user_message_prefix + message["content"])
else:
break
if self.personality.processor is not None:
preprocessed_prompt = self.personality.processor.process_model_input(message["content"])
else:
preprocessed_prompt = message["content"]
if preprocessed_prompt is not None:
self.full_message_list.append(self.personality.user_message_prefix+preprocessed_prompt+self.personality.link_text+self.personality.ai_message_prefix)
else:
self.full_message_list.append(self.personality.user_message_prefix+message["content"]+self.personality.link_text+self.personality.ai_message_prefix)
link_text = self.personality.link_text
if len(self.full_message_list) > self.config["nb_messages_to_remember"]:
discussion_messages = self.personality.personality_conditioning+ link_text.join(self.full_message_list[-self.config["nb_messages_to_remember"]:])
else:
discussion_messages = self.personality.personality_conditioning+ link_text.join(self.full_message_list)
return discussion_messages, message["content"]
def get_discussion_to(self, message_id=-1):
messages = self.current_discussion.get_messages()
self.full_message_list = []
for message in messages:
if message["id"]<= message_id or message_id==-1:
if message["type"]!=self.db.MSG_TYPE_CONDITIONNING:
if message["sender"]==self.personality.name:
self.full_message_list.append(self.personality.ai_message_prefix+message["content"])
else:
self.full_message_list.append(self.personality.user_message_prefix + message["content"])
link_text = self.personality.link_text
if len(self.full_message_list) > self.config["nb_messages_to_remember"]:
discussion_messages = self.personality.personality_conditioning+ link_text.join(self.full_message_list[-self.config["nb_messages_to_remember"]:])
else:
discussion_messages = self.personality.personality_conditioning+ link_text.join(self.full_message_list)
return discussion_messages # Removes the last return
def remove_text_from_string(self, string, text_to_find):
"""
Removes everything from the first occurrence of the specified text in the string (case-insensitive).
Parameters:
string (str): The original string.
text_to_find (str): The text to find in the string.
Returns:
str: The updated string.
"""
index = string.lower().find(text_to_find.lower())
if index != -1:
string = string[:index]
return string
def process_chunk(self, chunk):
print(chunk[0],end="")
sys.stdout.flush()
self.bot_says += chunk[0]
if not self.personality.detect_antiprompt(self.bot_says):
self.socketio.emit('message', {
'data': self.bot_says,
'user_message_id':self.current_user_message_id,
'ai_message_id':self.current_ai_message_id,
'discussion_id':self.current_discussion.discussion_id
}
)
if self.cancel_gen:
print("Generation canceled")
self.process.cancel_generation()
self.cancel_gen = False
else:
self.bot_says = self.remove_text_from_string(self.bot_says, self.personality.user_message_prefix.strip())
self.process.cancel_generation()
print("The model is halucinating")
def start_message_generation(self, message, message_id):
bot_says = ""
# send the message to the bot
print(f"Received message : {message}")
if self.current_discussion:
# First we need to send the new message ID to the client
self.current_ai_message_id = self.current_discussion.add_message(
self.personality.name, "", parent = self.current_user_message_id
) # first the content is empty, but we'll fill it at the end
self.socketio.emit('infos',
{
"status":'generation_started',
"type": "input_message_infos",
"bot": self.personality.name,
"user": self.personality.user_name,
"message":message,#markdown.markdown(message),
"user_message_id": self.current_user_message_id,
"ai_message_id": self.current_ai_message_id,
}
)
# prepare query and reception
self.discussion_messages, self.current_message = self.prepare_query(message_id)
self.prepare_reception()
self.generating = True
print(">Generating message")
self.process.generate(self.discussion_messages, self.current_message, message_id, n_predict = self.config['n_predict'])
self.process.started_queue.get()
while(self.process.is_generating.value): # Simulating other commands being issued
while not self.process.generation_queue.empty():
self.process_chunk(self.process.generation_queue.get())
print()
print("## Done ##")
print()
# Send final message
self.socketio.emit('final', {
'data': self.bot_says,
'ai_message_id':self.current_ai_message_id,
'parent':self.current_user_message_id, 'discussion_id':self.current_discussion.discussion_id
}
)
self.current_discussion.update_message(self.current_ai_message_id, self.bot_says)
self.full_message_list.append(self.bot_says)
self.cancel_gen = False
return bot_says
else:
#No discussion available
print("No discussion selected!!!")
print("## Done ##")
print()
self.cancel_gen = False
return ""