lollms-webui/app.py
2023-04-06 21:12:49 +02:00

356 lines
14 KiB
Python

from flask import Flask, jsonify, request, render_template, Response, stream_with_context
from nomic.gpt4all import GPT4All
import argparse
import threading
from io import StringIO
import sys
import re
import sqlite3
from datetime import datetime
import sqlite3
import json
import time
import traceback
import select
#=================================== Database ==================================================================
class Discussion:
def __init__(self, discussion_id, db_path='database.db'):
self.discussion_id = discussion_id
self.db_path = db_path
@staticmethod
def create_discussion(db_path='database.db', title='untitled'):
with sqlite3.connect(db_path) as conn:
cur = conn.cursor()
cur.execute("INSERT INTO discussion (title) VALUES (?)", (title,))
discussion_id = cur.lastrowid
conn.commit()
return Discussion(discussion_id, db_path)
@staticmethod
def get_discussion(db_path='database.db', id=0):
return Discussion(id, db_path)
def add_message(self, sender, content):
with sqlite3.connect(self.db_path) as conn:
cur = conn.cursor()
cur.execute('INSERT INTO message (sender, content, discussion_id) VALUES (?, ?, ?)',
(sender, content, self.discussion_id))
message_id = cur.lastrowid
conn.commit()
return message_id
@staticmethod
def get_discussions(db_path):
with sqlite3.connect(db_path) as conn:
cursor = conn.cursor()
cursor.execute('SELECT * FROM discussion')
rows = cursor.fetchall()
return [{'id': row[0], 'title': row[1]} for row in rows]
@staticmethod
def rename(db_path, discussion_id, title):
with sqlite3.connect(db_path) as conn:
cursor = conn.cursor()
cursor.execute('UPDATE discussion SET title=? WHERE id=?', (title, discussion_id))
conn.commit()
def delete_discussion(self):
with sqlite3.connect(self.db_path) as conn:
cur = conn.cursor()
cur.execute('DELETE FROM message WHERE discussion_id=?', (self.discussion_id,))
cur.execute('DELETE FROM discussion WHERE id=?', (self.discussion_id,))
conn.commit()
def get_messages(self):
with sqlite3.connect(self.db_path) as conn:
cur = conn.cursor()
cur.execute('SELECT * FROM message WHERE discussion_id=?', (self.discussion_id,))
rows = cur.fetchall()
return [{'sender': row[1], 'content': row[2], 'id':row[0]} for row in rows]
def update_message(self, message_id, new_content):
with sqlite3.connect(self.db_path) as conn:
cur = conn.cursor()
cur.execute('UPDATE message SET content = ? WHERE id = ?', (new_content, message_id))
conn.commit()
def remove_discussion(self):
with sqlite3.connect(self.db_path) as conn:
conn.cursor().execute('DELETE FROM discussion WHERE id=?', (self.discussion_id,))
conn.commit()
def last_discussion_has_messages(db_path='database.db'):
with sqlite3.connect(db_path) as conn:
c = conn.cursor()
c.execute("SELECT * FROM message ORDER BY id DESC LIMIT 1")
last_message = c.fetchone()
return last_message is not None
def export_to_json(db_path='database.db'):
with sqlite3.connect(db_path) as conn:
cur = conn.cursor()
cur.execute('SELECT * FROM discussion')
discussions = []
for row in cur.fetchall():
discussion_id = row[0]
discussion = {'id': discussion_id, 'messages': []}
cur.execute('SELECT * FROM message WHERE discussion_id=?', (discussion_id,))
for message_row in cur.fetchall():
discussion['messages'].append({'sender': message_row[1], 'content': message_row[2]})
discussions.append(discussion)
return discussions
def remove_discussions(db_path='database.db'):
with sqlite3.connect(db_path) as conn:
cur = conn.cursor()
cur.execute('DELETE FROM message')
cur.execute('DELETE FROM discussion')
conn.commit()
# create database schema
def check_discussion_db(db_path):
print("Checking discussions database...")
with sqlite3.connect(db_path) as conn:
cur = conn.cursor()
cur.execute('''
CREATE TABLE IF NOT EXISTS discussion (
id INTEGER PRIMARY KEY AUTOINCREMENT,
title TEXT
)
''')
cur.execute('''
CREATE TABLE IF NOT EXISTS message (
id INTEGER PRIMARY KEY AUTOINCREMENT,
sender TEXT NOT NULL,
content TEXT NOT NULL,
discussion_id INTEGER NOT NULL,
FOREIGN KEY (discussion_id) REFERENCES discussion(id)
)
''')
conn.commit()
print("Ok")
# ========================================================================================================================
app = Flask("GPT4All-WebUI", static_url_path='/static', static_folder='static')
class Gpt4AllWebUI():
def __init__(self, chatbot_bindings, app, db_path='database.db') -> None:
self.current_discussion = None
self.chatbot_bindings = chatbot_bindings
self.app=app
self.db_path= db_path
self.add_endpoint('/', '', self.index, methods=['GET'])
self.add_endpoint('/stream', 'stream', self.stream, methods=['GET'])
self.add_endpoint('/export', 'export', self.export, methods=['GET'])
self.add_endpoint('/new_discussion', 'new_discussion', self.new_discussion, methods=['GET'])
self.add_endpoint('/bot', 'bot', self.bot, methods=['POST'])
self.add_endpoint('/discussions', 'discussions', self.discussions, methods=['GET'])
self.add_endpoint('/rename', 'rename', self.rename, methods=['POST'])
self.add_endpoint('/get_messages', 'get_messages', self.get_messages, methods=['POST'])
self.add_endpoint('/delete_discussion', 'delete_discussion', self.delete_discussion, methods=['POST'])
self.add_endpoint('/update_message', 'update_message', self.update_message, methods=['GET'])
# Chatbot conditionning
# response = self.chatbot_bindings.prompt("This is a discussion between A user and an AI. AI responds to user questions in a helpful manner. AI is not allowed to lie or deceive. AI welcomes the user\n### Response:")
# print(response)
def add_endpoint(self, endpoint=None, endpoint_name=None, handler=None, methods=['GET'], *args, **kwargs):
self.app.add_url_rule(endpoint, endpoint_name, handler, methods=methods, *args, **kwargs)
def index(self):
return render_template('chat.html')
def format_message(self, message):
# Look for a code block within the message
pattern = re.compile(r"(```.*?```)", re.DOTALL)
match = pattern.search(message)
# If a code block is found, replace it with a <code> tag
if match:
code_block = match.group(1)
message = message.replace(code_block, f"<code>{code_block[3:-3]}</code>")
# Return the formatted message
return message
def stream(self):
def generate():
# Replace this with your text-generating code
for i in range(10):
yield f'This is line {i+1}\n'
time.sleep(1)
return Response(stream_with_context(generate()))
def export(self):
return jsonify(export_to_json(self.db_path))
@stream_with_context
def parse_to_prompt_stream(self, message, message_id):
bot_says = ['']
point = b''
bot = self.chatbot_bindings.bot
self.stop=False
# very important. This is the maximum time we wait for the model
wait_val = 15.0 # At the beginning the server may need time to send data. we wait 15s
# send the message to the bot
print(f"Received message : {message}")
bot = self.chatbot_bindings.bot
bot.stdin.write(message.encode('utf-8'))
bot.stdin.write(b"\n")
bot.stdin.flush()
# First we need to send the new message ID to the client
response_id = self.current_discussion.add_message("GPT4All",'') # first the content is empty, but we'll fill it at the end
yield(json.dumps({'type':'input_message_infos','message':message, 'id':message_id, 'response_id':response_id}))
#Now let's wait for the bot to answer
while not self.stop:
readable, _, _ = select.select([bot.stdout], [], [], wait_val)
wait_val = 4.0 # Once started, the process doesn't take that much so we reduce the wait
if bot.stdout in readable:
point += bot.stdout.read(1)
try:
character = point.decode("utf-8")
if character == "\n":
bot_says.append('\n')
yield '\n'
else:
bot_says[-1] += character
yield character
point = b''
except UnicodeDecodeError:
if len(point) > 4:
point = b''
else:
self.current_discussion.update_message(response_id,bot_says)
return "\n".join(bot_says)
def bot(self):
self.stop=True
with sqlite3.connect(self.db_path) as conn:
try:
if self.current_discussion is None or not last_discussion_has_messages(self.db_path):
self.current_discussion=Discussion.create_discussion(self.db_path)
message_id = self.current_discussion.add_message("user", request.json['message'])
message = f"{request.json['message']}"
# Segmented (the user receives the output as it comes)
# We will first send a json entry that contains the message id and so on, then the text as it goes
return Response(stream_with_context(self.parse_to_prompt_stream(message, message_id)))
except Exception as ex:
print(ex)
msg = traceback.print_exc()
return "<b style='color:red;'>Exception :<b>"+str(ex)+"<br>"+traceback.format_exc()+"<br>Please report exception"
def discussions(self):
try:
discussions = Discussion.get_discussions(self.db_path)
return jsonify(discussions)
except Exception as ex:
print(ex)
msg = traceback.print_exc()
return "<b style='color:red;'>Exception :<b>"+str(ex)+"<br>"+traceback.format_exc()+"<br>Please report exception"
def rename(self):
data = request.get_json()
id = data['id']
title = data['title']
Discussion.rename(self.db_path, id, title)
return "renamed successfully"
def get_messages(self):
data = request.get_json()
id = data['id']
self.current_discussion = Discussion(id,self.db_path)
messages = self.current_discussion.get_messages()
return jsonify(messages)
def delete_discussion(self):
data = request.get_json()
id = data['id']
self.current_discussion = Discussion(id, self.db_path)
self.current_discussion.delete_discussion()
self.current_discussion = None
return jsonify({})
def update_message(self):
try:
id = request.args.get('id')
new_message = request.args.get('message')
self.current_discussion.update_message(id, new_message)
return jsonify({"status":'ok'})
except Exception as ex:
print(ex)
msg = traceback.print_exc()
return "<b style='color:red;'>Exception :<b>"+str(ex)+"<br>"+traceback.format_exc()+"<br>Please report exception"
def new_discussion(self):
title = request.args.get('title')
self.current_discussion= Discussion.create_discussion(self.db_path, title)
# Get the current timestamp
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# add a new discussion
self.chatbot_bindings.close()
self.chatbot_bindings.open()
# Return a success response
return json.dumps({'id': self.current_discussion.discussion_id})
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Start the chatbot Flask app.')
parser.add_argument('--temp', type=float, default=0.1, help='Temperature parameter for the model.')
parser.add_argument('--n_predict', type=int, default=128, help='Number of tokens to predict at each step.')
parser.add_argument('--top_k', type=int, default=40, help='Value for the top-k sampling.')
parser.add_argument('--top_p', type=float, default=0.95, help='Value for the top-p sampling.')
parser.add_argument('--repeat_penalty', type=float, default=1.3, help='Penalty for repeated tokens.')
parser.add_argument('--repeat_last_n', type=int, default=64, help='Number of previous tokens to consider for the repeat penalty.')
parser.add_argument('--ctx_size', type=int, default=2048, help='Size of the context window for the model.')
parser.add_argument('--debug', dest='debug', action='store_true', help='launch Flask server in debug mode')
parser.add_argument('--host', type=str, default='localhost', help='the hostname to listen on')
parser.add_argument('--port', type=int, default=9600, help='the port to listen on')
parser.add_argument('--db_path', type=str, default='database.db', help='Database path')
parser.set_defaults(debug=False)
args = parser.parse_args()
chatbot_bindings = GPT4All(decoder_config = {
'temp': args.temp,
'n_predict':args.n_predict,
'top_k':args.top_k,
'top_p':args.top_p,
#'color': True,#"## Instruction",
'repeat_penalty': args.repeat_penalty,
'repeat_last_n':args.repeat_last_n,
'ctx_size': args.ctx_size
})
chatbot_bindings.open()
check_discussion_db(args.db_path)
bot = Gpt4AllWebUI(chatbot_bindings, app, args.db_path)
if args.debug:
app.run(debug=True, host=args.host, port=args.port)
else:
app.run(host=args.host, port=args.port)