lollms-webui/app.py
2023-04-09 21:26:04 +02:00

439 lines
14 KiB
Python

import argparse
import json
import re
import traceback
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
import sys
from db import Discussion, export_to_json, check_discussion_db, last_discussion_has_messages
from flask import (
Flask,
Response,
jsonify,
render_template,
request,
stream_with_context,
send_from_directory
)
from pyllamacpp.model import Model
from queue import Queue
from pathlib import Path
import gc
app = Flask("GPT4All-WebUI", static_url_path="/static", static_folder="static")
import time
class Gpt4AllWebUI:
def __init__(self, _app, args) -> None:
self.args = args
self.current_discussion = None
self.app = _app
self.db_path = args.db_path
# workaround for non interactive mode
self.full_message = ""
# This is the queue used to stream text to the ui as the bot spits out its response
self.text_queue = Queue(0)
self.add_endpoint("/", "", self.index, methods=["GET"])
self.add_endpoint("/export", "export", self.export, methods=["GET"])
self.add_endpoint(
"/new_discussion", "new_discussion", self.new_discussion, methods=["GET"]
)
self.add_endpoint("/bot", "bot", self.bot, methods=["POST"])
self.add_endpoint(
"/discussions", "discussions", self.discussions, methods=["GET"]
)
self.add_endpoint("/rename", "rename", self.rename, methods=["POST"])
self.add_endpoint(
"/load_discussion", "load_discussion", self.load_discussion, methods=["POST"]
)
self.add_endpoint(
"/delete_discussion",
"delete_discussion",
self.delete_discussion,
methods=["POST"],
)
self.add_endpoint(
"/update_message", "update_message", self.update_message, methods=["GET"]
)
self.add_endpoint(
"/update_model_params", "update_model_params", self.update_model_params, methods=["POST"]
)
self.add_endpoint(
"/list_models", "list_models", self.list_models, methods=["GET"]
)
self.add_endpoint(
"/get_args", "get_args", self.get_args, methods=["GET"]
)
self.prepare_a_new_chatbot()
def list_models(self):
models_dir = Path('./models') # replace with the actual path to the models folder
models = [f.name for f in models_dir.glob('*.bin')]
return jsonify(models)
def prepare_a_new_chatbot(self):
# Create chatbot
self.chatbot_bindings = self.create_chatbot()
# Chatbot conditionning
self.condition_chatbot()
def create_chatbot(self):
return Model(
ggml_model=f"./models/{self.args.model}",
n_ctx=self.args.ctx_size,
seed=self.args.seed,
)
def condition_chatbot(self, conditionning_message = """
Instruction: Act as GPT4All. A kind and helpful AI bot built to help users solve problems.
Start by welcoming the user then stop sending text.
GPT4All:Welcome! I'm here to assist you with anything you need. What can I do for you today?"""
):
self.full_message += conditionning_message +"\n"
self.prepare_query(conditionning_message)
self.chatbot_bindings.generate(
conditionning_message,
new_text_callback=self.new_text_callback,
n_predict=len(conditionning_message),
temp=self.args.temp,
top_k=self.args.top_k,
top_p=self.args.top_p,
repeat_penalty=self.args.repeat_penalty,
repeat_last_n = self.args.repeat_last_n,
seed=self.args.seed,
n_threads=8
)
print(f"Bot said:{self.bot_says}")
def prepare_query(self, message):
self.bot_says = ""
self.full_text = ""
self.is_bot_text_started = False
self.current_message = message
def new_text_callback(self, text: str):
print(text, end="")
sys.stdout.flush()
self.full_text += text
if self.is_bot_text_started:
self.bot_says += text
self.full_message += text
self.text_queue.put(text)
if self.current_message in self.full_text:
self.is_bot_text_started = True
def add_endpoint(
self,
endpoint=None,
endpoint_name=None,
handler=None,
methods=["GET"],
*args,
**kwargs,
):
self.app.add_url_rule(
endpoint, endpoint_name, handler, methods=methods, *args, **kwargs
)
def index(self):
return render_template("chat.html")
def format_message(self, message):
# Look for a code block within the message
pattern = re.compile(r"(```.*?```)", re.DOTALL)
match = pattern.search(message)
# If a code block is found, replace it with a <code> tag
if match:
code_block = match.group(1)
message = message.replace(code_block, f"<code>{code_block[3:-3]}</code>")
# Return the formatted message
return message
def export(self):
return jsonify(export_to_json(self.db_path))
def generate_message(self):
self.generating=True
self.text_queue=Queue()
gc.collect()
self.chatbot_bindings.generate(
self.full_message,#self.current_message,
new_text_callback=self.new_text_callback,
n_predict=len(self.current_message)+self.args.n_predict,
temp=self.args.temp,
top_k=self.args.top_k,
top_p=self.args.top_p,
repeat_penalty=self.args.repeat_penalty,
repeat_last_n = self.args.repeat_last_n,
#seed=self.args.seed,
n_threads=8
)
self.generating=False
@stream_with_context
def parse_to_prompt_stream(self, message, message_id):
bot_says = ""
self.stop = False
# send the message to the bot
print(f"Received message : {message}")
# First we need to send the new message ID to the client
response_id = self.current_discussion.add_message(
"GPT4All", ""
) # first the content is empty, but we'll fill it at the end
yield (
json.dumps(
{
"type": "input_message_infos",
"message": message,
"id": message_id,
"response_id": response_id,
}
)
)
self.current_message = "\nUser: " + message + "\nGPT4All: "
self.full_message += self.current_message
self.prepare_query(self.full_message)
self.generating = True
app.config['executor'].submit(self.generate_message)
while self.generating or not self.text_queue.empty():
try:
value = self.text_queue.get(False)
yield value
except :
time.sleep(1)
self.current_discussion.update_message(response_id, self.bot_says)
#yield self.bot_says# .encode('utf-8').decode('utf-8')
# TODO : change this to use the yield version in order to send text word by word
return "\n".join(bot_says)
def bot(self):
self.stop = True
try:
if self.current_discussion is None or not last_discussion_has_messages(
self.db_path
):
self.current_discussion = Discussion.create_discussion(self.db_path)
message_id = self.current_discussion.add_message(
"user", request.json["message"]
)
message = f"{request.json['message']}"
# Segmented (the user receives the output as it comes)
# We will first send a json entry that contains the message id and so on, then the text as it goes
return Response(
stream_with_context(
self.parse_to_prompt_stream(message, message_id)
)
)
except Exception as ex:
print(ex)
return (
"<b style='color:red;'>Exception :<b>"
+ str(ex)
+ "<br>"
+ traceback.format_exc()
+ "<br>Please report exception"
)
def discussions(self):
try:
discussions = Discussion.get_discussions(self.db_path)
return jsonify(discussions)
except Exception as ex:
print(ex)
return (
"<b style='color:red;'>Exception :<b>"
+ str(ex)
+ "<br>"
+ traceback.format_exc()
+ "<br>Please report exception"
)
def rename(self):
data = request.get_json()
discussion_id = data["id"]
title = data["title"]
Discussion.rename(self.db_path, discussion_id, title)
return "renamed successfully"
def restore_discussion(self, full_message):
self.chatbot_bindings.generate(
full_message,
new_text_callback=self.new_text_callback,
n_predict=0,#len(full_message),
temp=self.args.temp,
top_k=self.args.top_k,
top_p=self.args.top_p,
repeat_penalty= self.args.repeat_penalty,
repeat_last_n = self.args.repeat_last_n,
n_threads=8
)
def load_discussion(self):
data = request.get_json()
discussion_id = data["id"]
self.current_discussion = Discussion(discussion_id, self.db_path)
messages = self.current_discussion.get_messages()
self.full_message = ""
for message in messages:
self.full_message += message['sender'] + ": " + message['content'] + "\n"
app.config['executor'].submit(self.restore_discussion, self.full_message)
return jsonify(messages)
def delete_discussion(self):
data = request.get_json()
discussion_id = data["id"]
self.current_discussion = Discussion(discussion_id, self.db_path)
self.current_discussion.delete_discussion()
self.current_discussion = None
return jsonify({})
def update_message(self):
try:
discussion_id = request.args.get("id")
new_message = request.args.get("message")
self.current_discussion.update_message(discussion_id, new_message)
return jsonify({"status": "ok"})
except Exception as ex:
print(ex)
return (
"<b style='color:red;'>Exception :<b>"
+ str(ex)
+ "<br>"
+ traceback.format_exc()
+ "<br>Please report exception"
)
def new_discussion(self):
title = request.args.get("title")
self.current_discussion = Discussion.create_discussion(self.db_path, title)
# Get the current timestamp
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
app.config['executor'].submit(self.prepare_a_new_chatbot)
# Return a success response
return json.dumps({"id": self.current_discussion.discussion_id, "time": timestamp})
def update_model_params(self):
data = request.get_json()
model = str(data["model"])
if self.args.model != model:
print("New model selected")
self.args.model = model
self.prepare_a_new_chatbot()
self.args.n_predict = int(data["nPredict"])
self.args.seed = int(data["seed"])
self.args.temp = float(data["temp"])
self.args.top_k = int(data["topK"])
self.args.top_p = float(data["topP"])
self.args.repeat_penalty = int(data["repeatPenalty"])
self.args.repeat_last_n = int(data["repeatLastN"])
print("Parameters changed to:")
print(f"\tTemperature:{self.args.temp}")
print(f"\tNPredict:{self.args.n_predict}")
print(f"\tSeed:{self.args.seed}")
print(f"\top_k:{self.args.top_k}")
print(f"\top_p:{self.args.top_p}")
print(f"\trepeat_penalty:{self.args.repeat_penalty}")
print(f"\trepeat_last_n:{self.args.repeat_last_n}")
return jsonify({"status":"ok"})
def get_args(self):
return jsonify(self.args)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Start the chatbot Flask app.")
parser.add_argument(
"-s", "--seed", type=int, default=0, help="Force using a specific model."
)
parser.add_argument(
"-m", "--model", type=str, default="gpt4all-lora-quantized-ggml.bin", help="Force using a specific model."
)
parser.add_argument(
"--temp", type=float, default=0.1, help="Temperature parameter for the model."
)
parser.add_argument(
"--n_predict",
type=int,
default=256,
help="Number of tokens to predict at each step.",
)
parser.add_argument(
"--top_k", type=int, default=40, help="Value for the top-k sampling."
)
parser.add_argument(
"--top_p", type=float, default=0.95, help="Value for the top-p sampling."
)
parser.add_argument(
"--repeat_penalty", type=float, default=1.3, help="Penalty for repeated tokens."
)
parser.add_argument(
"--repeat_last_n",
type=int,
default=64,
help="Number of previous tokens to consider for the repeat penalty.",
)
parser.add_argument(
"--ctx_size",
type=int,
default=512,#2048,
help="Size of the context window for the model.",
)
parser.add_argument(
"--debug",
dest="debug",
action="store_true",
help="launch Flask server in debug mode",
)
parser.add_argument(
"--host", type=str, default="localhost", help="the hostname to listen on"
)
parser.add_argument("--port", type=int, default=9600, help="the port to listen on")
parser.add_argument(
"--db_path", type=str, default="database.db", help="Database path"
)
parser.set_defaults(debug=False)
args = parser.parse_args()
check_discussion_db(args.db_path)
executor = ThreadPoolExecutor(max_workers=2)
app.config['executor'] = executor
bot = Gpt4AllWebUI(app, args)
if args.debug:
app.run(debug=True, host=args.host, port=args.port)
else:
app.run(host=args.host, port=args.port)