lollms-webui/static/js/settings.js
2023-04-14 02:10:22 +02:00

203 lines
6.1 KiB
JavaScript

fetch('/settings')
.then(response => response.text())
.then(html => {
document.getElementById('settings').innerHTML = html;
modelInput = document.getElementById('model');
personalityInput = document.getElementById('personalities');
languageInput = document.getElementById('language');
seedInput = document.getElementById('seed');
tempInput = document.getElementById('temp');
nPredictInput = document.getElementById('n-predict');
topKInput = document.getElementById('top-k');
topPInput = document.getElementById('top-p');
repeatPenaltyInput = document.getElementById('repeat-penalty');
repeatLastNInput = document.getElementById('repeat-last-n');
temperatureValue = document.getElementById('temperature-value');
n_predictValue = document.getElementById('n-predict-value');
topkValue = document.getElementById('top-k-value');
toppValue = document.getElementById('top-p-value');
repeatPenaltyValue = document.getElementById('repeat-penalty-value');
repeatLastNValue = document.getElementById('repeat-last-n');
tempInput.addEventListener('input',() => {
temperatureValue.textContent =`Temperature(${tempInput.value})`
})
nPredictInput.addEventListener('input',() => {
n_predictValue.textContent =`N Predict(${nPredictInput.value})`
})
topKInput.addEventListener('input',() => {
topkValue.textContent =`Top-K(${topKInput.value})`
})
topPInput.addEventListener('input',() => {
toppValue.textContent =`Top-P(${topPInput.value})`
})
repeatPenaltyInput.addEventListener('input',() => {
repeatPenaltyValue.textContent =`Repeat penalty(${repeatPenaltyInput.value})`
})
repeatLastNInput.addEventListener('input',() => {
repeatLastNValue.textContent =`Repeat last N(${repeatLastNInput.value})`
})
fetch('/get_config')
.then((response) => response.json())
.then((data) => {
console.log(data);
modelInput.value = data["model"]
personalityInput.value = data["personality"]
languageInput.value = data["language"]
seedInput.value = data["seed"]
tempInput.value = data["temp"]
nPredictInput.value = data["n_predict"]
topKInput.value = data["top_k"]
topPInput.value = data["top_p"]
repeatPenaltyInput.textContent = data["repeat_penalty"]
repeatLastNInput.textContent = data["repeat_last_n"]
temperatureValue.textContent =`Temperature(${data["temp"]})`
n_predictValue.textContent =`N Predict(${data["n_predict"]})`
topkValue.textContent =`Top-K(${data["top_k"]})`
toppValue.textContent =`Top-P(${data["top_p"]})`
repeatPenaltyValue.textContent =`Repeat penalty(${data["repeat_penalty"]})`
repeatLastNValue.textContent =`Repeat last N(${data["repeat_last_n"]})`
})
.catch((error) => {
console.error('Error:', error);
});
const submitButton = document.getElementById('submit-model-params');
submitButton.addEventListener('click', (event) => {
// Prevent default form submission
event.preventDefault();
// Get form values and put them in an object
const formValues = {
model: modelInput.value,
seed: seedInput.value,
temp: tempInput.value,
nPredict: nPredictInput.value,
topK: topKInput.value,
topP: topPInput.value,
repeatPenalty: repeatPenaltyInput.value,
repeatLastN: repeatLastNInput.value
};
console.log(formValues);
// Use fetch to send form values to Flask endpoint
fetch('/update_model_params', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(formValues),
})
.then((response) => response.json())
.then((data) => {
console.log(data);
})
.catch((error) => {
console.error('Error:', error);
});
});
})
.catch(error => {
console.error('Error loading settings page:', error);
});
function populate_models(){
// Get a reference to the <select> element
const selectElement = document.getElementById('model');
// Fetch the list of .bin files from the models subfolder
fetch('/list_models')
.then(response => response.json())
.then(data => {
if (Array.isArray(data)) {
// data is an array
const selectElement = document.getElementById('model');
data.forEach(filename => {
const optionElement = document.createElement('option');
optionElement.value = filename;
optionElement.textContent = filename;
selectElement.appendChild(optionElement);
});
// fetch('/get_args')
// .then(response=> response.json())
// .then(data=>{
// })
} else {
console.error('Expected an array, but received:', data);
}
});
// Fetch the list of .yaml files from the models subfolder
fetch('/list_personalities')
.then(response => response.json())
.then(data => {
if (Array.isArray(data)) {
// data is an array
const selectElement = document.getElementById('personalities');
data.forEach(filename => {
const optionElement = document.createElement('option');
optionElement.value = filename;
optionElement.textContent = filename;
selectElement.appendChild(optionElement);
});
// fetch('/get_args')
// .then(response=> response.json())
// .then(data=>{
// })
} else {
console.error('Expected an array, but received:', data);
}
});
// Fetch the list of .yaml files from the models subfolder
fetch('/list_languages')
.then(response => response.json())
.then(data => {
if (Array.isArray(data)) {
// data is an array
const selectElement = document.getElementById('language');
data.forEach(row => {
const optionElement = document.createElement('option');
optionElement.value = row.value;
optionElement.innerHTML = row.label;
selectElement.appendChild(optionElement);
});
// fetch('/get_args')
// .then(response=> response.json())
// .then(data=>{
// })
} else {
console.error('Expected an array, but received:', data);
}
});
}
populate_models()